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Abstract: In this work, we report on a flexible triboelectric generator (TEG) with a multilayer polymer
structure, consisting of a poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) layer sand-
wiched by polydimethylsiloxane (PDMS) layers for the performance enhancement of TEGs. We
confirmed that the output performance of the TEG is closely dependent on the structure and polar-
ization direction of the PVDF-TrFE layer. In addition, the PDMS layer serves as the electron trapping
layer and suppresses the discharging of the surface charges, boosting the output performance. Fur-
thermore, the polarized PVDF-TrFE layer in the preferred direction contributes to increasing the
surface potential during the contact–separation motion. The interaction between these two polymer
layers synergistically leads to the boosted output performance of TEGs. Specifically, the maximum
peak-to-peak output voltage and current density of 420 V and 50 µA/cm2 generated by the proposed
architecture, representing approximately a fivefold improvement compared with the TEG with a
single layer, even though the same friction layers were used for contact electrification.

Keywords: triboelectric generator; ferroelectric coupling effect; flexible polymers

1. Introduction

The triboelectric generator (TEG), which converts different mechanical stimuli into
electrical energy through frictional electrification and electrostatic induction, has attracted
great attention as a kinetic energy harvesting device, thanks to its relatively simple device
structure and higher outputs compared with other energy harvesting devices [1–8]. Since
triboelectric power generation is highly dependent on the triboelectric surface properties
of the friction layers, proper treatment of the friction surface is the key to enhancing the
performance of a TEG. To this end, several methods, such as surface patterning [9–12],
chemical functionalization [13–15], and dielectric property modulation [16–18], have been
introduced, which have demonstrated notable output performance enhancement of TEGs.
Most of these approaches, however, focus only on the surface properties of the friction lay-
ers, but the role of the layer beneath the friction surface has been largely ignored. Recently,
an interesting approach to embedding the charge storage inside or beneath the friction
surface was tried, and significant output performance enhancement was achieved [19,20].
In addition, the improvement of the surface potential through the dipolar coupling effect
by adopting ferroelectric materials was also recently reported [21–23]. These recent ap-
proaches exploit charge trapping or dipolar coupling of the sublayer to increase the surface
charge density or potential of the triboelectric friction surface. However, the effective use
of these methods is still unclear, and only a few results have been reported [24,25]. Fur-
thermore, no attempts have been made to apply both methods simultaneously. Therefore,
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further studies are necessary to develop the triboelectric friction layers that synergistically
improve the performance of TEGs. In particular, only limited performance enhancement
methods are available for the TEGs made of only flexible polymeric layers [26–29].

In this work, we report on a multi-layered (sandwich) polymer structure consisting of
polydimethylsiloxane (PDMS) and polarized poly(vinylidene fluoride-co-trifluoroethylene)
(PVDF-TrFE) layers to boost the surface charge density of the friction surfaces of a TEG.
Here, the PDMS layer functions as a charge blocking layer and charge reservoir, provid-
ing charge trapping states at the interface between the PVDF-TrFE and the PDMS. In
addition, the ferroelectric PVDF-TrFE layer plays dual roles as a negative triboelectric
friction layer and surface charge modulation layer by polarizing the internal dipoles in a
preferred direction. Our findings show that the outputs of TEGs can be greatly improved
by forming a multilayered (sandwich) structure in the friction layer and properly polar-
izing the PVDF-TrFE layer. To determine the optimal multilayer structure composed of
PVDF-TrFE and PDMS, we examined four different friction pairs of TEGs. Using these
approaches, the TEG with the polarized sandwich structure generated the maximum peak-
to-peak output voltage and current density of ~420 V and ~50 µA/cm2, respectively, which
were approximately values about five times higher than the TEG with a non-polarized
single layer.

2. Materials and Methods
2.1. Materials

A silicone elastomer kit (Sylgard 184) and PVDF-TrFE powder (70:30 mol%) were
purchased from Dow Corning (Midland, MI, USA) and Piezotech Arkema Corp (Colombes,
France), respectively. N,N-Dimethylformamide (DMF) and acetone were purchased from
Daejung chemicals and metals (Siheung, Korea). All chemicals were used without further
purification steps.

2.2. Fabrication of Devices

A silicone elastomer with a 5:1 weight ratio (PDMS to curing agent) and a PVDF-TrFE
solution (7 wt%) were used for the contact layers. For the PVDF-TrFE solution, PVDF-TrFE
powder was dissolved in a co-solvent of DMF and acetone (1:1 volume ratio) at 70 ◦C while
stirring for 2 h. All of the solutions used in this work were deposited via spin coating at
3000 rpm for 30 s, followed by a curing process on a hot plate at 90 ◦C for 20 min. The area
of as-fabricated TEGs was kept at 2 × 2 cm2.

2.3. Measurement and Characterization

The output voltage and current were measured by using an oscilloscope (Wavesurfer
3022, Lecroy, Chestnut Ridge, NY, USA) and a current preamplifier (SR570, Stanford
research systems, Sunnyvale, CA, USA), respectively. The charge density was measured by
using an electrometer (6514, Keithley, Solon, OH, USA). The custom-made vertical pressure
machine was used to measure the triboelectric outputs. The Kelvin probe force microscopy
(KPFM) was obtained using an XE7 (Park systems, Suwon, Korea). X-ray diffraction (XRD)
analysis was performed using a D8 discover (Bruker, Billerica, MA, USA). The electrostatic
voltmeter (ESVM) was measured using an ARS-S005 (SECOS, New Taipei City, Taiwan).
The capacitor charging test was performed by using a high-precision digital multimeter
(34401A, Agilent, Santa Clara, CA, USA). The polarization versus the electric field curves
was measured by using a ferroelectric tester (RT66C, Radiant Tech, Albuquerque, NW,
USA). Fourier-transform infrared spectroscopy (FTIR) analysis was conducted using Alpha
(Bruker, Billerica, MA, USA). We must note that the active area, where vertical force was
applied on the devices, was kept at 1 × 1 cm2.
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3. Results and Discussion
3.1. Role of the Buried Layer with the Performance

Schematic diagrams of the TEG fabrication process are illustrated in Figure 1a. A
co-solvent of DMF and acetone was used for the synthesis of the PVDF-TrFE solution, and
the mixture of the silicone elastomer and the curing agent was employed for the PDMS
friction layer. Each solution was spin coated on a pre-cleaned indium tin oxide (ITO)-
coated polyethylene terephthalate (PET) substrate. We should note that all the prepared
samples were flexible. The detailed fabrication process of friction pairs is described in
Section 2. To investigate the role of the buried layer on the performance of a TEG, the
TEGs with different buried layers but identical surface friction pairs were prepared as
shown in Figure 1b. We should note that the surface friction pairs of all the samples were
kept as PVDF-TrFE and PDMS for a fair comparison. The output generation mechanism
of the contact mode TEG is described in Figure S1 (Supplementary Materials). Figure 1c
schematically shows the different charge trapping mechanisms of the buried PDMS layer
and the buried PVDF-TrFE layer. PVDF-TrFE, which is on the relatively negative side
of the triboelectric series, has a stronger electronegativity than PDMS, so when the two
friction surfaces are contact-electrified, the electrons on the PDMS surface are transferred
to the PVDF-TrFE surface [30]. Here, we note that PDMS is known to have deep trap
states, while PVDF-TrFE has shallow trap states [31,32]. Thus, the electrons transferred to
the PVDF-TrFE layer could be easily discharged to the ITO electrode layer if the PDMS
blocking layer was not formed underneath (Figure 1c (left) and Figure 1b (iii)). On the other
hand, when the electrons were transferred to the PVDF-TrFE surface with a buried PDMS
layer, they were filling the deep states at the interface between the two layers, reducing
the charge recombination and increasing the overall surface potential (Figure 1c (right)
and Figure 1b (ii)) [32–34]. Figure 2a,b shows the measured output voltage and current
density, respectively, of the as-fabricated TEGs with identical surface friction pairs but
with different buried layers. For the output measurement, a pressure of 100 kPa normal
to the contact surface was applied at 1 Hz for all the samples. Overall, the outputs of
the TEGs with the buried layers were relatively higher than those of the TEGs with the
single-layered friction pairs. Here, the buried layer served as an electron trapping layer.
Thus, the TEGs with the buried layer could exhibit relatively high surface potentials
during contact electrification (Figure 2c) and thus demonstrate relatively high output
performances (Figure 2a,b). We must note that the output of a TEG with a buried PDMS
layer (Figure 2a (ii)) was higher than that with a buried PDVF-TrFE layer (Figure 2a (iii)).
The buried PDMS layer, which had a higher trap density compared with the PVDF-TrFE,
alleviated the discharging of surface charges induced during the contact and separation
motion. Therefore, the electrostatic surface potential of the buried PDMS could be higher
than that of the buried PVDF-TrFE (Figure 2c (ii,iii)), leading to a similar trend in outputs
(Figure 2a (ii,iii), Figure 2b (ii,iii)). Furthermore, as shown in Figure 2d, the output voltage
of each TEG was monitored in real-time during the cyclic contact electrification. The results
indicated that it took more time to reach the saturation voltage when the buried PDMS
layer was adopted, due to the high trap density of the buried PDMS layer. Particularly,
the highest output was obtained when the PVDF-TrFE layer was sandwiched between
the PDMS layers (Figure 2a (iv)). Likewise, the electrostatic surface potential and voltage
saturation time of each sample also represented a similar trend (Figure 2c,d).
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Figure 1. (a) Schematic fabrication process by the solution spin coating method. (b) Schematics 
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PDMS (right). 

 

Figure 1. (a) Schematic fabrication process by the solution spin coating method. (b) Schemat-
ics showing four different contact friction pairs, consisting of polydimethylsiloxane (PDMS) and
poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) layers. (c) Schematic diagram showing
the charge trapping mechanism for two different buried layers: buried PVDF-TrFE (left) and buried
PDMS (right).
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Figure 2. (a) Output voltage and (b) current density measured from each triboelectric generator
(TEG). The inset is the detailed response of the voltage and current density. (c) Electrostatic voltmeter
(ESVM) measurement of four TEGs after several contact–separation motions. (d) The saturated
output voltage of four TEGs used in this study.
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3.2. Ferroelectric Properties of PVDF-TrFE

Next, the polarization of the ferroelectric PVDF-TrFE layer and its dipolar coupling
effect on the surface potential were investigated. Figure 3a schematically shows the po-
larization process of the ferroelectric PVDF-TrFE layer. In this work, we denoted negative
polarization when the PVDF layer was polarized to have negative dipole centers on the
friction surface and positive polarization when it was polarized to have positive dipole cen-
ters instead. For the polarization of the PVDF-TrFE layer, a high electric field of 24 kV/cm
was applied between the electrodes while maintained at 90 ◦C for 6 h. Afterward, the
polarization vs electric field (P-E) curve of the differently polarized PVDF-TrFE layers
was measured. As shown in Figure 3b, the remanent polarization (Pr) increased after the
polarization process, regardless of the polarization direction. In general, the spin-coated
PVDF-TrFE film exhibited both α- and β-phases, of which the β-phase exhibited a ferroelec-
tric property. Thus, a relatively higher β-phase formation was desired to achieve the electric
dipole alignment effect. To further investigate the augmentation of the β-phase through
polarization, XRD and FTIR analyses were performed, as shown in Figure 3c and Figure S3
(Supplementary Materials), where both spectra indicated the increase of the β-phase and
the suppression of the β-phase. These results show that the ferroelectric properties of
PVDF-TrFE could be effectively improved by applying an appropriate polarization process.
In addition, to investigate the influence of the polarization direction, the surface potential
of each layer was measured by non-contact mode KPFM over an area of 25 µm2. Figure 3d
shows the surface potentials of the PVDF-TrFE layers after different polarizations: non-
polarization, negative polarization and positive polarization. The results indicated that
the polarization direction had an explicit influence on its surface potentials. The measured
surface potentials of the non-, negative and positive polarizations were −330 mV, −410 mV
and −260 mV, respectively. When the ferroelectric layer was electrically polarized in the
negative or positive direction, the surface potential either increased or decreased compared
with the non-polarized state, depending on the polarization direction.
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3.3. Embedded Ferroelectric Polymer for the Performance Enhancement of TEGs

Figure 4a,b summarizes the peak-to-peak output voltage and current density mea-
sured from each TEG having different buried layers before or after the polarization process.
Before polarization, the highest outputs were obtained from the TEG with PVDF-TrFE
embedded in the PDMS layer. Even after polarization, the highest outputs were also
observed from the same TEG structure. For all the TEGs with the buried layer, the output
performance was further enhanced, regardless of the polarization direction, which was
partially due to a permittivity increase after polarization. Using the results shown in
Figure 4, both the triboelectrically positive and negative layers could be determined. As
a negative contact friction layer for the TEG, either the PVDF-TrFE single layer or the
PVDF-TrFE layer with buried PDMS layer could be used (Figure 1b (i,ii)). Here, the highest
output was observed from the device with the negatively polarized PVDF-TrFE layer with
buried PDMS. Negative polarization of the PVDF layer rendered the surface potential more
negatively, and the induced surface charges were partially stored at the interface between
the PVDF-TrFE layer and the PDMS layer. Next, a more obvious increase was achieved for
the positive contact friction layer (Figure 1b (iv)). By positively polarizing the PVDF-TrFE
layer embedded in PDMS, the output voltage was increased from 140 V to 425 V, which was
approximately a threefold enhancement. Consistent results were also observed from the
charge density measurement (Figure 4c). As shown in Figure 4d, by positively polarizing
the PVDF-TrFE layer sandwiched between the PDMS layers, the PDMS friction surface
could also be rendered more positively; thus, triboelectrically induced positive charges on
the PDMS surface were screened less at the surface, contributing to increasing the surface
potential and the outputs of the TEG. On the other hand, when the PVDF-TrFE layer was
negatively polarized, the PDMS friction surface was terminated with negative charge
centers; thus, triboelectrically induced positive charges were partially screened at the
surface [19]. Therefore, it can be seen that the surface potential was greatly affected by the
polarization direction of the dipoles in the embedded PVDF-TrFE layer. Here, the output
of the TEG was rather decreased when the number of buried layers further increased, as
shown in Figure S5 (Supplementary Materials). As the number of buried layers increased,
the total thickness of the friction layer also increased, causing electrostatic induction losses
and weakening the dipolar coupling effect. Thus, there exists an optimal number of layers
to maximize the output performance.
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Figure 4. (a) Output voltage, (b) current density and (c) charge density measured from four different
friction pairs, shown in Figure 1b, after non-, negative and positive polarization of the PVDF-TrFE
layer. (d) Suppression of the triboelectrically induced positive surface charge screening effect by the
positively polarized PVDF-TrFE layer (left) and screening of the triboelectrically induced positive
surface charges by the negatively polarized PVDF-TrFE layer (right).
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Lastly, we prepared a friction pair with buried layers to demonstrate the performance
improvement of the TEG (Figure 5a). Here, as a negative friction layer, negatively polarized
PVDF-TrFE with a buried PDMS layer was prepared. Since the PVDF-TrFE layer innately
had a triboelectrically negative nature, this layer was used as a negative friction surface
after negative polarization so that the negative center of the dipole was mainly distributed
on the surface. During the cyclic contact friction, electrons on the friction surface could
be partially stored at the interface with the PDMS layer, increasing the overall charge
density of the layer. On the other hand, a positively polarized PVDF-TrFE-embedded
PDMS layer was used as a positive friction layer. Here, since the PVDF-TrFE layer was
triboelectrically negative compared with the PDMS layer, it was buried inside the PDMS
layer to avoid the friction between the same surfaces and indirectly charge the PDMS
surface positively through the polarized dipoles. We should note that both the PVDF-TrFE
layers were polarized in a preferable direction. Figure 5b shows the output voltage and
current density of the TEGs measured using the same friction pair with or without buried
layers. The outputs measured after polarization of the PVDF-TrFE are shown next to each
plot (red color). For the TEGs with the buried layers, the output voltage and current density
of the TEG were clearly enhanced from 110 V to 360 V and from 15 µA/cm2 to 47 µA/cm2,
respectively, after polarization of the PVDF-TrFE layer in a preferred direction. On the
other hand, in the case of the TEG with single-layer friction pairs, an output voltage and
current density of 100 V and 10 µA/cm2 were measured, even after polarization. Therefore,
the polarization effect could be boosted by forming a friction pair with buried layers. Next,
the output voltage and current density of the TEG were also evaluated by varying the
load resistances, as shown in Figure 5c. The output voltage increased with the connected
load resistance while the current density decreased. A maximum output power density of
~3.3 mW/cm2 was obtained by connecting a ~10 M
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an output voltage and current density of 100 V and 10 μA/cm2 were measured, even after 
polarization. Therefore, the polarization effect could be boosted by forming a friction pair 
with buried layers. Next, the output voltage and current density of the TEG were also 
evaluated by varying the load resistances, as shown in Figure 5c. The output voltage in-
creased with the connected load resistance while the current density decreased. A maxi-
mum output power density of ~3.3 mW/cm2 was obtained by connecting a ~10 MΏ resistor 
(Figure 5d). 

 
Figure 5. (a) Schematic representation of the TEG consisting of a friction pair with buried layers.
(b) Output voltage and current density, measured using a single-layer friction pair and a friction
pair with buried layers. The red colored lines show the outputs after polarization. (c) Dependence
of the output voltage and current density on the load resistances. (d) Dependence of the power
density on the load resistances. (e) Charging test using a capacitor (1 µF) for each contact friction
pair. The inset is a schematic diagram of a full-wave bridge circuit connected to a capacitor or Light
emitting diode (LED). (f) Instantaneous lighting of 20 (top) and 100 (bottom) blue LEDs during the
contact–separation motions of two different contact friction pairs.
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To explicitly demonstrate the performance of the TEGs, a capacitor (1 µF) was charged
using each TEG. It can be clearly noticed that a capacitor could be quickly charged by adopt-
ing friction pairs with a buried PDMS layer and a polarized PVDF-TrFE layer (Figure 5e). In
addition, while 20 LEDs can be turned on when using the TEG with single-layered friction
pairs, the TEG with multilayered (sandwich) friction pairs could instantaneously turn on
at least 100 LEDs (Figure 5f). Here, we constructed the load by the series and parallel
connection of 100 commercial blue LEDs, as shown in Figure 5e (inset). Since the turn-on
voltage of an LED is ~2.5 V, the total forward turn-on voltage of 100 LEDs connected as
shown was ~100 V, which was lower than the open-circuit voltage of the TEG. By connecting
this load to the output of the TEG, the output current through the circuit was measured as
~20 µA (Figure S6 in Supplementary Materials). Thus, the total resistance of 100 LEDs was
~5 M
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, which was slightly smaller than the impedance at the maximum power density.

4. Conclusions

In this work, we reported the utilization of a ferroelectric PVDF-TrFE layer to improve
the output performance of TEGs. Using four different TEG structures consisting of PVDF-
TrFE and PDMS layers, we investigated the roles of buried polymer layers on the output
performance of TEGs and proposed both positive and negative triboelectric friction layers.
Specifically, by polarizing the ferroelectric PVDF-TrFE layer sandwiched between the PDMS
layers in the preferred direction, the positive triboelectric friction surface charge density
was greatly enhanced. On the other hand, a layer of PDMS serving as a charge reservoir was
inserted between the polarized PVDF-TrFE friction surface and the electrode to increase the
negative triboelectric friction surface charge density. Consequently, a maximum peak-to-
peak output voltage and current density of 420 V and 50 µA/cm2 were accomplished by the
proposed architecture with the embedded polymer layers, demonstrating about a fivefold
higher output when compared with the TEG having a non-polarized single friction layer.
Until now, most of the studies have been focused on the properties of the friction surface to
improve the surface charge density. However, in this work, we focused on the roles of the
buried layer and revealed that the triboelectric surface charge density can also be greatly
influenced by the layer buried under the friction surface. The approach proposed here
provides an effective platform for the output enhancement of all polymer-based flexible
TEGs, including a ferroelectric layer.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-341
7/11/3/1284/s1. Figure S1: Schematic diagrams of the output generation mechanism of the contact
mode TEG; Figure S2: The detailed voltage (a) and current (b) responses of Figure 2a, b; Figure S3:
FTIR analysis of the PVDF-TrFE layers before and after polarization. The inset is the magnified
plot of the a-phase; Figure S4: The raw data of the measured output voltage, current density and
charge density of each TEG; Figure S5: (a) Schematic diagrams of TEGs consisting of four and five
layers, consisting of PDMS and PVDF-TrFE, alternatively. (b) Measured output voltage and current
density of the non-, negative-, and positive-polarized TEGs with four and five layers; Figure S6: The
measured current through the 100 LEDs driven by the TEG.
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