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Abstract: Due to the overall improvement of living standards and considering the priority to reduce
the energy consumption, the adoption of efficient strategies, mainly in the building area is mandatory.
In fact, the construction sector can be considered as one of the key field essential for the sustainability,
due to the diversity of components and their life cycles. Reuse strategies may play an essential role in
reducing the environmental impact of building processes. Within this framework, the reuse of textile
waste to produce insulating materials represents one of the biggest opportunities for the promotion
of a circular economy. It contributes significantly to improve the environmental sustainability reusing
a waste as new raw matter involved to achieve high energy efficient buildings. This paper provides
the results of an experimental campaign performed using wool waste derived from the industrial
disposal of fabrics matched with phase change materials (PCMs) used in order to enhance the thermal
mass of the final products. Physical and thermal parameters were measured in order to demonstrate
the good performances of the textile materials and the essential role played by PCMs in shifting heat
waves and reduce surface temperatures. Furthermore, DesignBuilder software was used to assess
the energy consumption of a mobile shelter type structure under three different climatic scenarios.
A comparison between the experimented materials and other solutions, currently available in the
market, highlighted a significant reduction in energy consumption when adopting the materials
under test.

Keywords: sheep wool; gum arabic; textile waste; PCM; thermal efficiency; energy saving;
sustainability; circular economy

1. Introduction

Buildings account for the largest share of total EU final energy consumption (40%)
and produce about 35% of all greenhouse emissions. More than ever, we need to apply
circular economy and resource efficiency principles to buildings to reduce resource use
in the future. The European Commission has reaffirmed this message by means of the
European Green Deal [1].

Recycling nonwoven textile waste as building components could help reducing envi-
ronmental impacts [2]. In the past few decades, the fiber production increased enormously.
Several application fields can be counted from the industrial sector to the home furnishing.
Wang [3] stated that the textile waste can be divided into three different categories: the
short term (e.g., disposables), medium term (e.g., apparel and carpet), and long term
(e.g., textiles for buildings). Bilal et al. [4] stated that the textile by-products represent
an excellent opportunity for the production of high performances building composites.
Several researchers demonstrated that these materials can be excellent when used for the
production of thermal insulators [2,5,6].

However, a low thermal mass value characterizes these materials. Thus, in order to
improve their thermal performances the addition of phase change materials (PCMs) can be
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considered an efficient method as clearly represented by the many literature reviews on this
topic [7–10]. In particular, Soares et al. [7] compiled one of the first comprehensive review
on PCMs used in latent heat thermal energy storage (LHTES) systems, in order to improve
building’s energy performance. Such LHTES systems can increase indoor thermal comfort;
reduce energy consumption; decrease the conditioning power needed, and contribute to
the reduction of CO2 emissions in heating and cooling.

PCMs can be included in building materials through different ways (i.e., direct incor-
poration, immersion, encapsulation, and stabilization), ensuring in all cases a reduction
of extreme temperatures and lower temperature fluctuations. Encapsulation is the most
frequently used technique and, in particular, microencapsulation, which involves the in-
corporation of PCMs in microcapsules with a protective shell which prevents material
dispersion during the liquid phase and, in addition, makes the PCM to be directly used
in the mixing process of the construction materials [10]. Several studies showed that such
approach allowed a straightforward use of microencapsulated PCMs in concretes [11],
which proved to ensure long-term durability and performance stability [12]. However, as
stated above, it is with low thermal mass materials that PCMs prove to be more effective
and the most frequent, cheapest, and easiest use of microcapsules filled with paraffin, is
their incorporation into gypsum-based plasters paste for internal walls or plasterboard
panels [13–15]. These solutions have been experimented for years [9]. The main purpose of
integrating PCMs into lightweight building materials is to increase their thermal energy
storage capability and consequently reduce temperature fluctuations, economically, and
effectively, both in case of renovations of existing buildings and in case of new ones. Peippo
et al. [16] discussed the use of walls containing PCMs (fatty acids, to be precise) for the
short-term storage of latent heat in passive solar applications. After defining guidelines
for the ideal determination of the melting temperature and the wall thickness, in order to
optimize the amount of stored energy, they estimated an energy saving varying between 5%
and 20%. In Feldman et al.’s experiment [14], a tenfold increase in the heat storage capacity
of a classic plasterboard panel was found, following the direct incorporation of PCM.

The current framework deriving from scientific literature about PCMs incorporation
in gypsum-based plasters (and cement-based too) confirms many advantages deriving
from this application [15,17,18]. The most significant, among them, include a considerable
increase in specific heat, an increase in thermal mass, with a consequent reduction in tem-
perature peaks and their amplitude, and an improvement (albeit non-linear) in the overall
performance of the compound according to the amount of paraffin embodied. Recently,
the potential of multiple melting ranges has been also successfully investigated [19].

In this work the use of PCM within insulating materials obtained from textile waste
was investigated. Textile fibers and PCMs were bonded with gum arabic solution, at
minimum cost and very limited environmental impact, to improve thermal properties of
the product.

2. Materials and Methods
2.1. Sheep Wool

In recent years, the use of textile waste in the construction sector has been explored
as an economic and sustainable alternative to the traditional insulating materials used so
far, especially those deriving from the shearing or textile industry [5,20,21]. Sheep wool is
one of the oldest thermal insulators in the world, it is a natural thermoregulator and has
interesting characteristics [22]. Wool contributes to improve the indoor air quality, filtering
the air from any harmful chemicals present in the walls, such as formaldehyde (CH2O),
nitrogen dioxide (NO2), and sulfur dioxide (SO2). Wool is hygroscopic and hydrophobic,
i.e., it is difficult to wet but, at the same time, it is able to control and absorb humidity,
minimizing surface condensation. It prevents mold and fungi formation, due to the keratin.
Wool effectively absorbs sound waves and, if used as disconnecting layer between massive
layers, may contribute to provide excellent acoustic insulation. Wool is naturally fire
resistant, as it is self-extinguishing and in case of fire it does not burn but it melts. Finally,
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it is elastic and breathable, valid against both cold and heat, and it is entirely renewable
and sustainable.

In this work, 100% pure merino wool extracted from pieces of tailoring waste deriving
from the manufacturing process was used (Figure 1). Merino wool is the fiber obtained by
shearing the homonymous sheep, a particular breed highly appreciated for its fleece. In
fact, it is a type of wool highly sought-after because of its fineness, which, added to the
qualities of common wool, makes it a very valuable fiber.
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2.2. Phase Change Materials

For the subsequently described investigation Micronal® DS 5001 X was chosen, an
organic PCM produced by the German company BASF. It is a dry powder PCM, microen-
capsulated with highly crosslinked polymethylmethacrylate polymer wall, formaldehyde-
free. The particle size varies from 0.1 to 0.3 mm, with a bulk density ranging from 250
to 350 kg/m3. Its 26 ◦C melting temperature falls within the range of average operating
temperatures that characterize a Mediterranean climate, making the Micronal® DS 5001
X suitable for construction applications through direct incorporation into building mate-
rials for the purpose of improving interior comfort conditions [22–24]. Once this melting
point is reached, the material inside the microcapsules will maintain a slightly constant
temperature for a more or less significant period depending on the amount of PCM used,
and this because all the absorbed thermal energy is used to break the chemical bonds and
make the phase change happen. This thermal energy is called latent heat of fusion, and for
this PCM is about 110 kJ/kg, with an overall storage capacity of 145 kJ/kg in temperature
range 10–30 ◦C.

More detailed information about the properties of the Micronal® DS 5001 X can
be found in Giro-Paloma et al. [25]. According to these authors this material shows a
phase-change temperature between 26.09 ◦C and 27.81 ◦C, a melting enthalpy between
114.98 kJ/kg and 142.55 kJ/kg and a solidification enthalpy between 117.85 kJ/kg and
137.85 kJ/kg.

A dynamic Differential Scanning Calorimetry (DSC) analysis (Figure 2) with constant
heating rates of 0.5 ◦C/min was performed in order to characterize the thermal behavior of
the PCM. The analysis was carried out on a 5.5 mg sample of PCM by using a DSC 1 Star
System Mettler Toledo device, according to ISO 11357-1 [26].
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Figure 2. Differential Scanning Calorimetry (DSC) curve of Micronal® DS 5001 X obtained using
nitrogen at 50 mL/min as purge gas.

The first endothermic transformation at T = 0 ◦C refers to the phase change of the water
present within the sample, therefore it is not to be taken into consideration. Data resulting
from the second endothermic process, on the other hand, refer exclusively to Micronal®

DS 5001 X: area is 632.09 mJ, melting enthalpy is 114.93 kJ/kg, with Tonset = 24.72 ◦C,
Tpeak = 29.19 ◦C, and Tendset = 33.71 ◦C. The melting enthalpy of the PCM (Figure 3) is
consistent with that indicated by the manufacturer on the data sheet (110 kJ/kg). On
the contrary, the peak temperature can be wrongly compared with the phase change
temperature. In fact, Tpeak depends on the measurement conditions, including heating
speed and mass of the sample used, so it is not an intrinsic value of the material and it is
generally unreliable for comparison purposes [25]. Thus, the discrepancy of about 3 ◦C
compared to the nominal value of the melting temperature (26 ◦C) can be explained in the
light of the above differences.
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2.3. Gum Arabic

Gum arabic is considered as a biopolymer as it is a hardened sap from the Acacia tree
and is therefore commonly used as a natural gum. Its chemical composition is a complex
polysaccharide with high molecular weight, water soluble, and its solution gives a slight
yellow to reddish color [5]. Gum arabic shows an important mineralizing ability thanks to
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its rich content of calcium, magnesium, and potassium salts, while its antibacterial potential
is ensured by the presence of tannins in the plant [27].

Although gum arabic is widely used as dispersant in the food industry, it has great
potential for application in building materials. Zhao et al. [28] tested the disperse-holding
capacity of the gum arabic in Portland cement paste, proving a decrease in the viscosity
and an increase in the fluidity. The dispersing effects on concrete particles were confirmed
by Elinwa et al. [29] who also observed an improvement of the mechanical properties of
the cement with natural biopolymer. Mohamed et al. [30] tested the antibacterial capacity
of the gum arabic, evaluating its positive effects on the durability of concrete in aggressive
ambient. In fact, cement samples including the biopolymer showed better resistance to the
acid attack, achieving lower mass lost than samples without it. The bio-adhesive capacity
of the gum arabic has been also investigated. Abuarra et al. [31] studied the effects of
the gum arabic addition in particleboards made from stems of a typical mangrove tree of
the tropical and subtropical coasts regions. Results revealed that the gum arabic bonded
panels resulted in smooth surfaces, rigid texture, and good internal bonding strength.
Dieye et al. [32] investigated the thermal properties of innovative boards made from a
mixture of powder Typha leaves and gum arabic as binder, observing a promising thermal
insulating behaviour. Liuzzi et al. [33] used gum arabic aqueous solution as binder of
almond skin wastes for high hygrothermal and acoustic performances building panels.

In this work, powdered gum arabic produced by BiOrigins (Hampshire, UK) was
used, with a very fine consistency and a color tending to white. Its gluing power resulting
once the gum is diluted in water was used to produce fully sustainable building materials.

2.4. Samples Preparation

Several test samples were made in the Building Physics Lab of the Polytechnic Uni-
versity of Bari, in order to identify the best proportions of wool, binder and PCM. The
starting point for all the samples was wool carding, a manual process performed by two
hand carders and through which cloth strips were decomposed into its elementary fibers.
The carded wool is soaked into a water and gum arabic solution (Figure 4) and suitably
squeezed by passing small quantities through two rollers in order to eliminate the excess
binder. Then, tufts of wool are placed inside a cylindrical mold, with a diameter of 10 cm
and a height of 5 cm. During this step, PCM powder is homogeneously added between the
various layers of wool, so that it can remain trapped between the meshes of the sample.
The latter is finally dried in an oven for about 12 h at 60 ◦C.
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Three specimens were made (Figure 5), one being the reference (without PCM) and the
other two having different weight percentages of phase change material (Tables 1 and 2).
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The amount of wool and binder always remained the same, so that, with equal volumes,
when PCM increased the total weight, sample density increased too.
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Table 1. Quantity of materials used in the specimens.

PCM_00 PCM_26 PCM_41

Wool (g) 25 25 25
Gum arabic (g) 20 20 20

Water (mL) 100 100 100
PCM (g) / 12.50 25

Table 2. Weigh percentage of the materials present in the specimens after squeezing.

PCM_0 PCM_26 PCM_41

Wool (%) 73.19 52.55 40.72
Gum arabic (%) 26.81 21.17 18.57

PCM (%) / 26.28 40.72

From the analysis of scanning electron microscope (SEM) images of the specimen
surface, with a magnification rate of 200 and 500×, the interaction between the PCM
microcapsules, the wool fibers and the gum arabic was observed (Figure 6), showing that
microcapsules often tended to cluster rather than being uniformly distributed among the
fibers, possibly having implications on making phase change less efficient because of lower
surface-to-volume ratio.
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2.5. Measurements of Thermal Properties

The thermal properties of the specimens, i.e., thermal conductivity, thermal diffusivity
and volumetric heat capacity, were evaluated with the dynamic plane source method
(Figure 7), using the ISOMET 2104 instrument (Applied Precision Ltd., Bratislava, Slovakia).
The measurement is based on the analysis of the material thermal response to a heat flow
impulse generated by the electrical resistance of a probe, directly in contact with the sample
surface [34]. The error in the measurement of thermal conductivity, thermal diffusivity, and
volumetric heat capacity is estimated to be within ±4%, ±5%, and ±7%, respectively [35].
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However, at room temperature this test was performed only for the sample without
PCM. In fact, the presence of phase change material could interfere with the measurement.
The instrument, generating a heat flow at temperatures around 26 ◦C, would cause a phase
change from solid to liquid state in the PCM, without any change in temperature which
could consequently bias the measurement.

For this reason, measurements of thermal properties of the specimens with PCMs were
carried out in a climatic chamber (Angelantoni DY340), under controlled hygrothermal
conditions, setting temperature values far from the phase change zone (Figure 8). Two
configurations were chosen: (16 ◦C, 50% RH) and (36 ◦C, 50% RH). When the hygrothermal
conditions in the climatic chamber reached constant values of temperature and relative
humidity, the measurement was started.
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In order to investigate the thermal behaviour of the specimens under dynamic regime,
a dynamic thermal response test [36] was carried out using a small Hot Box (Figure 9). The
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Hot Box had a parallelepiped shape with dimensions of 40 × 43 × 53 cm, with a metal
frame, inside which six polystyrene panels (4.85 cm thick) were placed and carefully fitted
together. Polystyrene panels had a thermal conductivity of 0.0351 W·m−1·K−1. In the
center of three of the four side surfaces, circular holes with a 10 cm diameter were cut out
in order to put in the three samples. Finally, a simple 28 W halogen bulb was placed inside
the box as heat source.
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For each specimen, two T-type thermocouples were used to monitor the internal and
external surface temperatures, while two more thermocouples were used to monitor the
internal and external air temperature. All the thermocouples were connected to an Agilent
34970A data acquisition multiplexer, which scanned and stored the temperature values
read by each thermocouple at regular intervals of 10 s through its proprietary software
(Agilent BenchLink Data Logger).

The test lasted about 5 h and was divided into two heating cycles (60 min each) and
two cooling cycles (90 min each).

3. Results

Results of thermal properties evaluated using the ISOMET 2014 are shown in Table 3,
where the “mean temperature” is given by the mean test temperature that occurred at
the interface between the probe and the specimen surface during the measurement. It
can be observed that thermal conductivity showed a predictable increase as a function of
temperature (considering that air filling pores increases its own conductivity by about 6%
from 20 to 40 ◦C). Similarly, the thermal conductivity is strictly related to the amount PCM
due to the increased connections among fibers and the reduction of pore volume. The latter
consideration is clearly supported also by the significant increase in density resulting from
PCM addition.

Table 3. Mean values of thermal properties.

Sample
Mean

Temperature
(◦C)

Thermal
Conductivity λ

(W·m−1·K−1)

Volumetric Heat
Capacity ρc

(106 J·m−3·K−1)

Thermal
Diffusivity α

(10−6 m2·s−1)

Density ρ

(kg·m−3)

Specific Heat
Capacity c

(J·kg−1·K−1)

PCM_00 27.3 0.053 0.307 0.172 103.7 2961.7
PCM_00 37.8 0.069 0.446 0.191 103.7 3936.4
PCM_26 19.8 0.060 0.287 0.209 136.7 2099.7
PCM_26 39.4 0.064 0.402 0.160 136.7 2941.0
PCM_41 19.5 0.077 0.341 0.226 173.1 1969.8
PCM_41 37.7 0.085 0.446 0.191 173.1 2576.3
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Regarding the specific heat capacity, it is noted that the values are much greater than
the literature values. For example, Schiavoni et al. [37] reported a value of 1800 J·kg−1·K−1

for sheep’s wool with a density of 20 kg·m−3. In the present work, the wool sample
under test (PCM_00) has a density of 103.7 kg·m−3 and a specific heat capacity of about
3 kJ·kg−1·K−1. The influence of thickening due to the binding action of gum arabic present
for 26.81% by mass is evident.

Taking into account the results from the DSC measurements, the enthalpy variation as
a function of temperature was determined according to the following equation:

h(T) = fw ·cw(T)·T + fPCM ·hPCM(T) (1)

where

- fw is the weight percent fraction of the mixture wool-gum arabic (PCM_00);
- cw(T) = 92.827·T + 427.5 (J·kg−1·K−1) is the specific heat capacity of PCM_00 sample

obtained with a linear interpolation on the values in Table 3;
- fPCM is the weight percent fraction of PCM;
- hPCM(T) is the enthalpy vs temperature of the pure PCM as obtained from the DSC

diagram (Figures 2 and 3).

The resulting enthalpy vs. temperature h(T) plots for the three mixtures are shown
in Figure 10, where the grey zone shows the temperature range in which phase change
takes place.
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Figure 10. Enthalpy variation as a function of temperature for the three mixtures.

The analysis of the temperatures resulting from the Hot Box test (Figure 11) provides
interesting insights. In fact, both the samples embodying PCMs showed a much slower
temperature variation on the interior face (with instantaneous differences up to 2 ◦C
compared to PCM_00 configuration) both during heating and cooling. During heating
both the samples have lower temperatures than the reference (suggesting a clear energy
storage inside the samples). Similarly, during cooling, temperatures are higher than the
reference and the air, suggesting an unloading of the stored energy. Differences between
the three samples are even more emphasized when temperature values on the outside
face were considered. The heat flows exchanged on the internal and external faces of the
specimens were evaluated through an estimate of the surface heat exchange coefficients.
These coefficients were measured on the fourth vertical wall of the Hot Box by measuring
the surface temperatures with T-type thermocouples under quasi steady-state conditions.
Once the surface temperatures are known, as well as the thickness of the polystyrene plate



Appl. Sci. 2021, 11, 1262 10 of 17

(4.85 cm) and its thermal conductivity (0.0351 W·m−1·K−1), the heat flux was estimated
from the following equation:

ϕ =
λ

d
(Tsi − Tse)

(
W·m−2

)
(2)

and the internal and external surface heat exchange coefficients were:

hi =
ϕ

(Ti − Tsi)

(
W·m2·K−1

)
(3)

he =
ϕ

(Tse − Te)

(
W·m2·K−1

)
(4)
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Figure 11. Air and surface temperatures in the Hot Box: Internal side (bottom) and external side (top).

The mean values were 2.8 W·m−2·K−1 for hi, and 7.6 W·m−2·K−1 for he (Figure 12).
The lower value for the coefficient on the internal side was due to the negligible contribution
of the exchange by radiation, since the internal surfaces of the Hot Box are practically
isothermal. The value of hi is very close to that which can be calculated with the ASHRAE
formula [38] for natural convection heat flux between a heated or cooled wall panel surface
and indoor air, for vertical surface with height H = 0.53 m:

hi = 1.87·(Ti − Tsi)
0.32·H−0.05

(
W·m−2·K−1

)
(5)

Figure 13 shows time variation of heat flux on the internal and external faces of the
specimens and it shows how clearly the PCM affects the phase shift of heat flux on the
external face.
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Figure 12. Internal (hi) and external (he) surface heat exchange coefficients.
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Figure 13. Specific heat flux through the internal (int) and external (ext) specimen side.

The PCM influence is more evident in Figure 14, where the difference between the
thermal flow entering through the internal face of the specimen and the thermal flux exiting
from the external face is reported, as a function of the mean temperature (average between
the internal surface temperature and the external surface one). Compared to the PCM_00
trend (green line), the PCM presence make the heat flow imbalance greater (about four
times), and the peak shifts to the temperature range typical of the phase change.

The apparent hysteresis that is evident in the material with PCM that leads the
unloading cycle not to resume the initial conditions of the loading one, can be explained
by the fact that the PCM used might not have the same latent heat of solidification and
liquefaction [39] (thus suggesting a different storage capacity in heating or in cooling), or
that the solidification process might not be completed when the new heating cycle starts,
thus reducing the heat that can be stored.
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4. Case Study

The tested materials were applied to a mobile operating unit in meeting office and/or
secretarial configuration, made in the form of multifunctional shelter, potentially installed
on a road trailer. The shelter had a parallelepiped geometry of 6 × 2.5 × 2.4 m. The
envelope was assumed to be made up of expandable sandwich panels, consisting of two
aluminum sheets of 10/10 thickness each, and an insulator among them. On one side there
were two glazed windows, one square meter each, with a movable sun screen. Figure 15
shows the render produced by the software DesignBuilder [40].
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Figure 15. DesignBuilder render of the shelter.

Four kinds of insulation were compared: polyurethane foam, wool board, wool with
26% in weight of PCM and wool with 41% in weight of PCM.

The performance comparison was carried out while keeping constant the thermal
transmittance of the opaque wall (U = 0.626 W·m−2·K−1), and therefore with variable
insulation thicknesses due to the different thermal conductivity of the considered insulators
(Table 4). The reference U-value was taken from Apulian regional standard procurement
specifications for this kind of shelter [41].
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Table 4. Properties of the insulation (at 24 ◦C).

Insulation Thermal Conductivity
W·m−1·K−1

Thicknesscm
cm

Polyurethane foam (30 kg·m−3) 0.028 4.0
PCM_00 0.049 7.0
PCM_26 0.061 8.6
PCM_41 0.080 11.4

Windows model consisted of a double-glazed unit with air cavity (6/6/6 mm). Internal
screens had high reflectivity slats operated by solar control with 120 W·m−2 set point. Their
thermal transmittance was 3.094 W·m−2·K−1. The door on the short side had the identical
structure of the opaque wall.

The shelter was supposed to be occupied by two adults from 8 to 19 from Monday to
Friday. During the occupation period, there was 200 W heat input for lighting and electrical
appliances, and a natural ventilation of 10 l/s per person.

The air conditioning system was defined through a “Simple HVAC”, so that Design-
Builder could automatically calculate heating and cooling capacity in the zone. The HVAC
sizing option was set to “Adequate”, that means that the heating and cooling equipment
had unlimited capacity to meet demands, always maintaining set point temperatures.

In order to highlight the local climate influence on structure thermal behavior depend-
ing on the insulating material used for the opaque envelope, the energy performances
were simulated in three locations with three different climates. Some characteristic climatic
parameters of these locations (Palermo, Bari, and Bolzano) are shown in Tables 5 and 6.

Table 5. Site climatic properties (EnergyPlus weather data [42]).

Palermo Bari Bolzano

Max site air-dry bulb
temperature (◦C) 34.6 (5 August) 39.0 (10 August) 34.6 (9 July)

Min site air-dry bulb
temperature (◦C) 5.9 (22 December) 0.0 (11 January) −11.6 (15 January)

Max daily thermal
excursion (◦C) 13.2 (26 April) 16.2 (15 August) 20.1 (22 May)

Max Direct Normal Solar
Rad (Wh·m−2) 7997 (22 June) 7708 (25 May) 7595 (26 June)

Köppen–Geiger climate
classification Cfa Cfa Dfb

Table 6. Site climatic properties (Italian regulations).

Palermo Bari Bolzano

Climatic Zone (D.P.R. 412/93) B C E
Heating period 01/12–31/03 15/11–31/03 15/10–15/04

Heating Degrees Day (◦C·d/yr) 751 1185 2791
Design external temperature (◦C) 5 0 −15

The simulations were carried out with internal set point temperature of 20 ◦C in the
heating period and 25 ◦C in the cooling period, and only during the occupation hours.
Figure 16 shows the annual energy requirement for air conditioning system (heating and
cooling) for those locations.

Figure 17 shows the percentage change of annual energy requirement for air condition-
ing system of the studied wool-based materials compared to polyurethane foam (reference).
The higher thermal inertia of the wool-PCM materials produces an increase in consumption
for heating and a reduction in consumption for cooling. This leads to a substantial annual
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need decrease (Figure 18) for air conditioning system in temperate climates (Palermo and
Bari), and a limited increase in predominantly cold climates (Bolzano).
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5. Discussion

The use of textile waste for wool-based insulation panels production proved to be
a sustainable and efficient solution. It is sustainable because it contributes to solve the
disposal problem of textile waste with a view to a circular economy and minimum usage
of additional resources for the panel fabrication, and it is efficient as it allows a significant
reduction in the energy requirements for air conditioning. In fact, in active cooling mode,
the wool-based material, with or without PCM, has a better performance in terms of energy
requirements for air conditioning system than the polyurethane foam.

However, considering the air conditioning energy requirement over the whole year by
adding both heating and cooling contributions, the advantage of using wool-PCM based
insulation was impressive in warmer locations, but greatly reduced in locations with a
longer and severe winter season. On annual basis, in temperate climate locations like
Palermo the wool-based insulation with 41% in weight of PCM requires 26% less annual
energy for air conditioning system and 31.6% less for cooling than the polyurethane foam
insulation.

6. Conclusions

An innovative thermal insulation for buildings was studied. It consists of wool
obtained from textile waste, treated with a natural binder solution made of gum arabic
and thermally improved by the addition of a phase change material, a microencapsulated
paraffinic mixture called Micronal® DS 5001 X, produced by BASF. A DSC test allowed
to verify the performance declared by the PCM manufacturer, while a series of thermal
conductivity measurements through the dynamic plane source method allowed to evaluate
the characteristic thermal parameters of the tested materials as a function of temperature.

The performance of the studied insulation was evaluated with DesignBuilder software
assuming an application in a mobile shelter type structure, usually made with a layer of
polyurethane foam between two metal sheets.

The structure was simulated in three different locations, Palermo, Bari, and Bolzano,
with different climatic characteristics. The simulation results showed a better performance
of the proposed insulators compared to the traditional polyurethane foam, especially in the
cooling season. The advantage in terms of energy requirements for air conditioning system
throughout the year is considerable for warmer climate locations, much less for colder one.

The experimental study conducted so far has taken into consideration only the thermal
properties of the material studied. Its application has been tested in a particular condition,
that of the shelter structure, which, due to its construction, does not expose the layer of
insulating material to problems of a hygrometric nature. For use in construction on a larger
scale, a thorough experimental campaign is required to measure the hygrometric properties
of the wool-PCM insulation.
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