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Abstract: Aberrant metabolism is one of the hallmarks of cancers. The contributions of dysregulated
metabolism to cancer development, such as tumor cell survival, metastasis and drug resistance,
have been extensively characterized. “Reprogrammed” metabolic pathways in cancer cells are
mainly represented by excessive glucose consumption and hyperactive de novo lipogenesis. Natural
compounds with anticancer activities are constantly being demonstrated to target metabolic processes,
such as glucose transport, aerobic glycolysis, fatty acid synthesis and desaturation. However, their
molecular targets and underlying anticancer mechanisms remain largely unclear or controversial.
Mounting evidence indicated that these natural compounds could modulate the expression of
key regulatory enzymes in various metabolic pathways at transcriptional and translational levels.
Meanwhile, natural compounds could also inhibit the activities of these enzymes by acting as
substrate analogs or altering their protein conformations. The actions of natural compounds in
the crosstalk between metabolism modulation and cancer cell destiny have become increasingly
attractive. In this review, we summarize the activities of natural small molecules in inhibiting key
enzymes of metabolic pathways. We illustrate the structural characteristics of these compounds at
the molecular level as either inhibitor of various enzymes or regulators of metabolic pathways in
cancer cells. Our ultimate goal is to both facilitate the clinical application of natural compounds in
cancer therapies and promote the development of novel anticancer therapeutics.

Keywords: phytochemical; cancer; metabolic reprogramming; glycolysis; lipogenesis

1. Introduction

Cancers are characterized by disordered metabolism. Specific metabolic activities essen-
tial to cell transformation or other related biological processes promote tumor growth [1,2].
In order to meet the needs of both energy and biosynthesis, cancer cells can “reprogram”
their metabolism systems mainly through the following mechanisms:

(1) Increased uptake and utilization of nutrient substrates, especially glucose. In cancer
cells, the glycolytic rate is approximately 30-fold higher than that in normal cells. Thus, the
rate-limiting step in glucose metabolism is glucose uptake across the plasma membrane,
which is carried out by glucose transporter 1 (GLUT1), a protein with an oncogenic role
and frequent overexpression in cancer cells [3,4];

(2) Employing metabolic pathways beneficial to biosynthesis in the catabolism of
nutrients. A well-cited example is the “Warburg effect” [5] that reveals the propensity of
cancer cells to consume glucose through anaerobic glycolysis even under aerobic condi-
tions. In terms of ATP production, glycolysis is inefficient compared to oxidative phos-
phorylation. Importantly, converting glucose into lactate instead of utilizing it through
mitochondrial metabolism provides more substrates and thus permits the synthesis of
various biomolecules, such as fatty acids and amino acids [5]. The pentose phosphate
pathway (PPP) is another major pathway of glucose catabolism that produces important
resources for biosynthesis, such as ribose 5-phosphate (R5P) and NADPH [6];
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(3) Aberrantly activated biosynthesis pathways. To meet the excessive demands of
cell membranes and signaling molecules in tumors, a number of pathways related to
fatty acid biosynthesis and their desaturation pathways in tumor cells are remarkably
active. Fatty acid synthase (FASN), a key enzyme to catalyze the cellular process of fatty
acid synthesis, exhibits oncogenic activity and is a bona fide target in cancer therapies [7].
“Reprogrammed” metabolic processes are not only important for cancer cell growth but also
increasingly appreciated as a major determinant of cell destiny [8,9]. Rapid proliferation
is a key characteristic of cancer cells, which confers them with oncogene addiction and
non-oncogene dependence, including metabolic dependence. This allows us to design
effective strategies and develop new clinical anticancer agents [10].

Compared with synthetic chemicals, natural compounds have several advantages,
such as decent safety, low side effects and multistep targeting; thus, many of them have
been used as therapeutic and preventive agents for a number of diseases, including cancers.
Various compounds from edible plants and traditional Chinese herbals have been revealed
to have suppressive effects on the initiation, development and metastasis of human can-
cers [11,12]. Some of these compounds with well-characterized anticancer activities, such
as paclitaxel, are already in the clinic. Although a number of natural compounds have
been used for many years and their anticancer characteristics are well-appreciated, the
underlying molecular mechanisms of their tumor-suppressive action still remain elusive.

To date, an increasing number of natural compounds have been demonstrated to
block metabolic processes in cancer cells. Many of them can repress tumor growth through
directly or indirectly regulating different rate-limiting enzymes, especially those involved
in glucose and lipid metabolism [13,14]. For example, GLUT1 is inhibited by multiple
components in green tea extracts, and each compound exhibits unique characteristics to
exert the activity, dependent on its specific structural feature and GLUT1-binding mode.
In addition, as a key enzyme of lipid synthesis, FASN is blocked by many small molecule
compounds through their binding to different functional domains.

Comprehensively reviewing and comparing the existing research data can improve
our understanding of anticancer mechanisms of natural small molecule compounds. Fur-
thermore, the knowledge of the mechanistic action of natural compounds will provide
insights in designing combinatorial medication among these molecules or with other
anticancer drugs to improve the effectiveness of cancer therapies.

2. Natural Polyphenols Directly Inhibiting Transmembrane Glucose Transport

Compared to normal cells, malignant cells require more glucose as both an energy
supply and a resource for biosynthesis. To keep a constant and sufficient supply, glucose
transporters, especially GLUT1 (Figure 1), are frequently overexpressed in different types
of cancer cells [4,15]. Therefore, targeting glucose transporters represents an effective
approach to cancer therapies [16].

2.1. Green Tea Extracts with Inhibitory Effects on Glucose Uptake and Output

Catechins, including epicatechin gallate (ECG) and epigallocatechin gallate (EGCG),
are major active green tea polyphenols with remarkable inhibitory activity against GLUT1
in cancer cells (Table 1) [17,18].
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Figure 1. Metabolic pathways active in cancer cells are directly inhibited by naturally occurring compounds.

ECG and EGCG inhibit GLUT1 activity through direct binding to the transporter [31,32].
Araujo et al. reported that green tea catechins could significantly reduce the enzymatic
efficiency of GLUT1 in human choriocarcinoma BeWo cells [55]. Using three-dimensional
topological analysis, Naftalin et al. discovered a putative binding site of the green tea
catechins on the intracellular side of the transmembrane protein GLUT1 [31]. This binding
site consists of amino acids Arg126-Thr30-Asn288 and Arg126-Thr30-Asn29 that are close
to each other in the three-dimensional structure of GLUT1. A more recent study further
revealed that the binding region of the three green tea catechins has a hydrophobic cavity
consisting of residues Ile164, Val165, Ile168, Phe291, Phe379 and Glu380 [56].

The binding of green tea polyphenols to GLUT1 could alter its substrate recognition in
either a competitive or non-competitive manner. For the inward transport, the association
of ECG, EGCG and quercetin (Figure 2) with the extracellular side of GLUT1 could com-
petitively block glucose binding to GLUT1; thus, these catechins are competitive inhibitors
of glucose uptake [56–58]. In contrast, for the outward transport of glucose, the green
tea polyphenols quercetin was demonstrated to exert non-competitive inhibition through
attaching to GLUT1, overlapping with the binding cavity of cytochalasin B (CB), another
GLUT1 inhibitor [56]. Kinetic analysis also showed that green tea polyphenols decreased
both the Km and Vmax values of GLUT1 [55], implicating that its modulation was unlikely
through simple competitive or non-competitive inhibition.
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Table 1. Naturally occurring compounds reported as metabolic antagonists in cancer glucose utilization and lipogenesis.
Discussed in this review.

Compounds Targets Biological Models Solvent Dosage References

Alpha-mangostin FASN

Breast cancer MCF-7
cells - IC50:3.57

[19]

Breast cancer
MDA-MB-231 cells IC50:3.35

Betulinic acid

Stearoyl-CoA
desaturase 1

HeLa cells DMSO 5–10 µg/mL [20]

Colon cancer stem
cells - - [21]

AMP-activated kinase
pathway

WS-1, A549, MCF-7,
H1299, H460 and

MDA-MB-231 cells
DMSO 0–50 µg/mL [22]

Caffeic acid

Glucose-6-phosphate
dehydrogenase

6-phosphogluconate
dehydrogenase

In vitro Tris·HCl buffer IC50:0.481,
0.486 mM [23]

Glucose-6-phosphate
dehydrogenase

Cultured rainbow
trout gill cells - 0–0.1 mM [24]

Cerulenin
FASN (cysteine in
β-ketoacyl synthase

domain)
In vitro Potassium

phosphate buffer 0–80 µM [25]

Curcumin AMP-activated kinase
pathway

Ovarian cancer CaOV3
cells - 10–50 µM [26]

Ellagic acid

Glucose-6-phosphate
dehydrogenase

6-phosphogluconate
dehydrogenase

In vitro Tris/HCl buffer IC50:0.072,
0.188 mM [23]

Emodin

FASN Colon cancer HCT116
and SW480 cells -

Emodin (10–50
µM) and/or

cerulenin (100 µM)
[27]

Glucose transporter 1
Hexokinase II

Phosphofructokinase 1

Pancreatic cancer
MiaPaCa2 cells,

Athymic mice carrying
pancreatic cancer cells

- 0–200 µM [28]

Epigallocatechin-3-
gallate

FASN

In vitro - 0.1–0.35 mM [29]

Hepatocellular
carcinoma HepG2 and

Hep3B cells
DMSO 0–160 µM [30]

Acetyl-CoA
carboxylase

Hepatocellular
carcinoma HepG2 and

Hep3B cells
DMSO 0–160 µM [30]

Glucose transporter
family

Breast cancer MCF-7
and MDA-MB-231

cells
DMSO 0–100 µM [17]

Human intestinal
Caco-2/TC7 cells DMSO IC50:0.091 mg/mL [18]

Human erythrocytes - KiEGCG: 0.977 µM [31]

Choriocarcinoma
BeWo cells - 0–100 µM [32]
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Table 1. Cont.

Compounds Targets Biological Models Solvent Dosage References

Phosphofructokinase 1 HCC-LM3 and HepG2
cells

Phosphate buffer
saline 0–400 µM [33]

Phosphoglycerate
mutase 1

NCI-H1299 and
MDA-MB-231 cells - 0–100 µM [34]

AMP-activated kinase
pathway

Hepatocellular
carcinoma HepG2 and

Hep3B cells
DMSO 0–160 µM [30]

Genistein

Glucose transporter 1
Hexokinase II

Hepatocellular
carcinoma HCC-LM3

and Bel-7402 cells
Mouse subcutaneously

injected HCC-LM3
cells

DMSO 0–80 µM [35]

PI3K/AKT/mTOR
signaling pathway

Human intrahepatic
CCA HuCCA-1 and

RMCCA-1 cells
DMSO 50–200 µM [36]

Human lung
adenocarcinoma H460

cells
DMSO 100 µM [37]

Kaempferol FASN In vitro DMSO IC50:10.38 µM [38]

Luteolin FASN

In vitro DMSO IC50:2.52 µM [38]

Breast cancer
MDA-MB-231 cells
and prostate cancer

LNCaP cells

DMSO 0–50 µM [39]

Morin FASN In vitro DMSO IC50:2.33 µM [38]

Oleuropein Tyrosine kinase
signaling pathway

Breast cancer MCF-7
and SKBR3 cells - 50 µM [40]

Pachymic acid Pyruvate kinase M2
Hexokinase II

Breast cancer SKBR-3
cells DMSO 0–100 µM [41]

Physcion

6-phosphogluconate
dehydrogenase

Lung cancer H1299
and leukemia K562
cells, leukemia cells

isolated from PB
samples from a

representative B-ALL
patient.

DMSO 0–40 µM [42]

Breast cancer MCF-7
and MDA-MB-231

cells
DMSO 0–40 µM [43]

AMP-activated kinase
pathway

Breast cancer MCF-7
and MDA-MB-231

cells
DMSO 0–40 µM [43]

Platyphylloside
FASN

Stearoyl-CoA
desaturase 1

Mouse 3T3-L1
preadipocytes DMSO 0–100 µM [44]

Quercetin
Glucose transporter

family

Breast cancer MCF-7
and MDA-MB-231

cells
DMSO 10–100 µM [17]

Choriocarcinoma
BeWo cells - 0–100 µM [32]
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Table 1. Cont.

Compounds Targets Biological Models Solvent Dosage References

FASN

In vitro DMSO IC50:4.29 µM [38]

Breast cancer
MDA-MB-231 cells
and prostate cancer

LNCaP cells

DMSO 0–50 µM [39]

Acetyl-CoA
carboxylase Rat hepatocytes DMSO 0–50 µM [45]

AMP-activated kinase
pathway

Mouse 3T3-L1
preadipocytes DMSO 0–100 µM [46]

Resveratrol

FASN Breast cancer SKBR-3
cells DMSO 0–150 µM [47]

Pyruvate kinase M2

Cervical cancer HeLa
cells, Breast cancer

MCF-7 cells,
Hepatocellular

carcinoma HepG2 cells

DMSO 50 µM [48]

Phosphofructokinase 1 Breast cancer MCF-7
cells DMSO 0–100 µM [49]

Glucose transporter 1

Ovarian cancer PA-1,
OVCAR3, MDAH2774,

and SKOV3 cells
DMSO 50 µM [50]

Leukemic U-937 and
HL-60 cells DMSO IC50:30 µM [51]

PI3K/AKT/mTOR
signaling pathway

Ovarian cancer SKOV3
and CaOV3 cells DMSO 0–100 µM [52]

Ovarian cancer PA-1,
OVCAR3, MDAH2774,

and SKOV3 cells
DMSO 50 µM [50]

Breast cancer SKBR-3
cells DMSO 0–150 µM [47]

Rhein
Glucose transporter 1

Hexokinase II
Phosphofructokinase 1

Pancreatic cancer
MiaPaCa2 cells,

Athymic mice carrying
pancreatic cancer cells

- 0–200 µM [28]

Soraphen A Acetyl-CoA
carboxylase 1 In vitro Methanol 0–54.5 µg/mL [53]

Xanthohumol
PI3K/AKT-GSK3beta-

FBW7 signaling
pathway

Human glioblastoma
U87-MG, T98G and

LN229 cells
DMSO 0–10 µM [54]
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2.2. Other Natural Polyphenols with Direct GLUT1-Binding Activities

Besides the well-studied green tea extracts, several other compounds have also been
reported to show inhibitory effects on GLUT1. Genistein, a soybean-derived isoflavonoid
compound with well-known preventive activity against breast and prostate cancers, can
block GLUT1 activity by attaching to its external glucose-binding site [57]. Like green
tea polyphenols, genistein behaved as a competitive inhibitor of uptake transport and
a non-competitive inhibitor of net sugar output of human red cells, as demonstrated by
kinetic analyses [57]. Interestingly, genistein and green tea polyphenols could bind to
GLUT1 in different conformations. While genistein attached to GLUT1 with its external
surface associating with glucose, green tea polyphenols could bind to this transporter with
its cytoplasmic side bound by glucose [57].

Resveratrol is a kind of stilbene extracted from grapes and has attracted strikingly
increased attention due to its potent antioxidant, radical scavenging, chemopreventive
and anticancer activities [59]. Resveratrol has been considered as a bona fide inhibitor of
GLUT1 in multiple studies [60]. Salas et al. reported that resveratrol could block GLUT1-
mediated glucose transport through directly binding to one of its internal domains in a
non-competitive manner to reduce glucose uptake in human leukemic cells [51]. In human
red blood cells, nordihydroguaiaretic acid (NDGA), a natural compound with structural
similarity to resveratrol, could also inhibit glucose uptake in a non-competitive manner by
attaching to the non-substrate binding site of GLUT1 [13].

3. Natural Compounds Inhibiting De Novo Fatty Acid Synthesis and Modification

FASN and acetyl-CoA carboxylase (ACC) are the major enzymes in de novo lipogene-
sis. Both are overexpressed in multiple types of human cancers and recognized as potential
targets in developing novel cancer therapeutic agents [7,61].
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3.1. Green Tea Extracts with a Galloyl Moiety Inhibit FASN by Competing with NADPH

FASN is a multifunctional enzyme with seven catalytic activities. Among them, the
β-ketoacyl reductase (KR) domain and enoyl reductase (ER) domain catalyze NADPH oxi-
dation [62]. EGCG could inhibit the enzymatic activity of FASN in vitro through competing
with NADPH to bind the KR domain [29,63]. Based on structural similarity, EGCG likely
exerted this function as a competitive inhibitor of NADPH. Importantly, unlike EGCG,
other green tea extracts without the galloyl moiety exhibited much-reduced activity in
inhibiting FASN, suggesting that this structural feature of EGCG played a critical role in its
inhibitory activity [64].

Several well-known FASN inhibitors also can bind to the KR domain of FASN, such
as cerulenin and a synthetic inhibitor C75. However, they have been demonstrated to act
as non-competitive inhibitors due to their covalent inhibition of the ketoacyl synthase [25].
Thus, the effects of this type of irreversible inhibitor are different from the reversible
inhibition of FASN by green tea extracts. Actually, the reversible inhibition of EGCG
may be one of the major reasons for its lack of adverse effects when exerting its activities,
including modulation of fatty acid synthesis, maintenance of lipid metabolism balance,
and prevention of metabolic disorders.

3.2. Other Natural Compounds with Inhibitory Activities against FASN

Mechanistic studies of the cancer-preventive effects of flavonoids suggested their
activities in blocking fatty acid synthesis [39,65]. An in vitro study using 15 types of
flavonoids revealed that 9 compounds, including quercetin and other similar flavonoids
such as morin, luteolin and kaempferol, could efficiently inhibit FASN [38]. Another
study by Chen et al. also demonstrated that flavonoid extracts from four plants showed
significant inhibition of FASN activity when tested in different cancer cell lines [66].

Emodin, a naturally occurring anthraquinone, could inhibit FASN activity [67]. Con-
sistently, this compound also exhibited antiproliferative and proapoptotic activities in cells
of different malignancies, including breast cancer, liver cancer, prostate cancer, leukemia
and colon cancer [68–72]. A recent study linked the anticancer activity of emodin to its
inhibition of FASN [27]. The authors demonstrated that emodin could concurrently sup-
press FASN activity, downregulate its protein expression, and induce apoptosis of colon
cancer cells.

α-mangostin, a natural xanthone extracted from mangosteen pericarp, has a variety
of biological functions, including anticancer activity [73,74]. Quan et al. demonstrated that,
unlike EGCG, α-mangostin inhibits FASN in a competitive manner regarding acetyl-CoA
and a non-competitive manner regarding malonyl-CoA [75]. An intracellular study also
demonstrated that α-mangostin could act as a potent inhibitor to downregulate FASN
expression and block its activity, leading to reduced levels of intracellular fatty acid and
eventually cancer cell apoptosis [19].

3.3. Natural Compounds as Acetyl-CoA Carboxylase (ACC) Inhibitors

ACC catalyzes the production of malonyl-CoA, an essential substrate in fatty acid
synthesis. Two ACC isoforms have been reported in mammals, i.e., ACC1 and ACC2
(also known as ACCα and ACCβ). In the past decades, ACC inhibitors have been used in
various clinical treatments of human diseases, including microbial infections, metabolic
syndrome, diabetes and cancers [76,77].

Soraphen A, a polyketide isolated from the myxobacterium Sorangium cellulosum,
was first identified as a natural molecule with inhibitory activity against ACC1, which
is overexpressed in human cancer cells [53,78]. Further studies revealed that Soraphen
A could allosterically promote the catalytically inactive conformation of ACC1 through
binding to its biotin carboxylase domain with high affinity [79,80]. Quercetin also showed
selective inhibition to ACC without any detectable effect on FASN in rat hepatocytes
and could reduce the synthesis of both fatty acid and triacylglycerol [45]; however, the
underlying mechanism remained unclear.
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3.4. Betulinic Acid-Mediated Inhibition of Fatty Acid Desaturation

As a lupane-type triterpenoid produced in birch plants, betulinic acid and its deriva-
tives have been demonstrated to have potent anticancer and anti-HIV activities in numerous
studies. To date, the biosynthetic pathway of betulinic acid has been completely mapped,
and its commercial production is through phytochemical extraction and semi-synthesis
from its precursor, betulin [81]. Natural plant-derived betulinic acid exhibited tumor-
selective inhibitory activity and could induce apoptosis of a wide variety of cancer cells,
mostly through a mitochondrion-dependent mechanism [82–85].

In the fatty acid synthesis network, stearoyl-CoA desaturase (SCD) is an enzyme cat-
alyzing the rate-limiting step in the production of monounsaturated fatty acids, and its over-
expression is reportedly associated with poor clinical outcomes of cancer patients [86,87].
Remarkably, inhibition of SCD could more efficiently block cancer cell proliferation than
targeting other enzymes in the de novo lipogenesis pathway, such as ACC and FASN [88].
Potze et al. reported that betulinic acid could inhibit SCD activity and increase the satura-
tion level of mitochondrial lipid cardiolipin. The change of cardiolipin spatial structure
could further enhance mitochondrial permeability and consequently led to cytochrome c
release and mitochondrion-dependent cell death [20]. Later on, these authors also reported
that betulinic acid could induce rapid death of colon cancer stem cells through inhibiting
SCD1, an isoform highly expressed in multiple malignancies [21].

4. Phenolic Acids and Physcion as Inhibitors of the Pentose Phosphate Pathway (PPP)

The PPP is an important pathway of glucose utilization in addition to glycolysis. This
pathway is especially critical to cancer cells because it not only generates R5P to supply
high rates of de novo nucleotide synthesis but also provides NADPH required for both
fatty acid synthesis and cell survival [89]. Consistently, aberrant activation of PPP was
frequently observed in various types of cancer cells [90–92].

Phenolic acids are organic chemicals containing phenolic rings extracted from plants.
Multiple phenolic acid compounds, including caffeic acid, ellagic acid, ferulic acid and
sinapic acid, have been reported to inhibit glucose-6-phosphate dehydrogenase (G6PD) and
6-phosphogluconate dehydrogenase (6PGD), the latter of which is a rate-limiting enzyme
of the PPP [23]. Caffeic acid could cause accumulation of the G6PD mRNA in cultured
rainbow trout gill cells [24], although the molecular mechanism underlying this inhibition
has not been resolved.

As a key enzyme of the PPP, 6PGD plays a key role in the oncogenic process and has
been recognized as an effective target in cancer therapies [42]. Physcion was identified as
a 6PGD inhibitor from a library of 2000 Food and Drug Administration (FDA)-approved
small molecule compounds [42,93]. A recent study by Yang et al. showed that physcion
could inhibit 6PGD, but not G6PD, leading to reduced proliferation of human lung cancer
and breast cancer cells [43]. Based on the crystal structure of 6PGD, physcion could fit in a
pocket near the binding site of glucose-6-phosphate (G6P) and dampen lipogenesis, leading
to reduced growth in xenograft tumors of nude mice without causing any detectable side
effect [42]. Multiple recent studies verified physcion as a bona fide inhibitor of 6PGD [94–96].

5. Natural Compounds Modulating Key Enzymes in Aerobic Glycolysis

Glucose transported to the cytoplasm can be phosphorylated by hexokinases (HK)
with ATP as a phospho donor. Among the four isoforms of HK, HKII is frequently highly
expressed in malignant cells and plays an important role in tumor initiation and pro-
gression [97]. Bao et al. [98] extracted a natural steroid from Ganoderma sinense (NSGS)
and identified it as the first natural inhibitor of HKII. In their study, a natural product,
(22E,24R)-6β-methoxyergosta-7,9(11),22-triene-3β,5α-diol, exhibited high binding affinity
to HKII in vitro. Consistently, this compound showed clear inhibitory effects on human
pancreatic cancer cells with 4-fold selectivity versus normal cells, suggesting its potential
as a candidate drug in the therapies of pancreatic cancer [98].



Appl. Sci. 2021, 11, 1259 10 of 17

Pyruvate kinase (PK) catalyzes the final step of glycolysis by converting phospho-
enolpyruvate and ADP to pyruvate and ATP [99]. The pyruvate kinase M2 (PKM2) is the
major isoform of PK and overexpressed in many types of cancer cells [100]. Pachymic
acid, a lanostane-type triterpenoid from Poria cocos, could bind PKM2 in the pocket of its
natural activator, fructose-1,6-bisphosphate and block the glycolysis of breast cancer cells.
Additionally, pachymic acid is also an inhibitor of HKII [41].

The 6-phosphofructo-1-kinase (PFK) is a rate-limiting enzyme of glycolysis, and
its inhibition can lead to breast cancer cell death [101]. Thus, PFK is a potential target
in developing novel anticancer therapeutics. Gómez et al. [49] first demonstrated that
resveratrol could directly inhibit PFK activity in both breast cancer cells and an in vitro
assay by promoting its dissociation from fully active tetramers to low active dimers.
Similarly, a study by Li et al. demonstrated that EGCG could also attenuate PFK activity
through modulating its oligomeric structure [33].

Phosphoglycerate mutase 1 (PGAM1) is a mutase catalyzing the reversible conversion of
3-phosphoglycerate to 2-phosphoglycerate in the glycolytic pathway and thus coordinates
glycolysis and biosynthesis to support tumor growth [102]. EGCG was identified as a PGAM1
inhibitor with remarkably stronger potency than previously reported inhibitors, such as PGMI-
004A. A mechanistic study showed that the inhibition of PGAM1 by EGCG was caused by
conformational change upon their binding rather than competitive inhibition of the substrate.
Through inhibiting PGAM1, EGCG decreased 2-phosphoglycerate production and further
inhibited glycolysis and PPP, leading to reduced cancer cell proliferation [34].

6. Natural Compounds Inhibiting Protein Expression of Metabolic Enzymes
6.1. Downregulation of De Novo Lipogenesis by Activating AMPK

The AMP-activated kinase (AMPK) pathway is one of the most important signaling
pathways regulating biological energy metabolism. Activated AMPK represses its down-
stream target ACC through promoting its phosphorylation and downregulates the genes
of multiple lipogenic enzymes [103,104]. Curcumin was reported as an activator of AMPK
in a p38-dependent manner and thus could increase the phosphorylation of both AMPK
and ACC in cancer cells [26]. EGCG, quercetin and physcion could also promote AMPK-
induced ACC phosphorylation and FASN downregulation, leading to markedly reduced
endogenous lipogenesis in cancer cells [30,42,43,46]. Additionally, betulinic acid could
also activate AMPK and subsequently reduce ACC activity with concomitant inhibition of
glucose-mediated lipogenesis [22,105].

6.2. Inhibition of Glucose Utilization and Lipogenesis through the PI3K/AKT/mTOR Signaling
Pathway

The AKT (also known as protein kinase B, PKB) pathway is an important signaling
pathway regulating glucose utilization and lipogenesis. Phosphatidylinositol 3-kinase (PI3K)
catalyzes the formation of the second messenger phosphatidyl-inositol-1,4,5-trisphosphate
(PIP3) on the plasma membrane, while PIP3 binds to AKT and phosphoroside dependent
kinase-1 (PDK1) to promote AKT activation through its phosphorylation at T308. Activated
AKT regulates cellular function by phosphorylating downstream effectors, including
various enzymes, kinases and transcription factors. Therefore, AKT has been considered as
a bona fide target in cancer therapies [106]. As a mammalian target of rapamycin, mTOR
plays a key role in metabolic regulation through responding to upstream signals from
AKT, sensing cellular material and energy reserves, and mediating the balance of sugar
and lipid metabolism. Over the past decade, several studies demonstrated that resveratrol
exerted its anticancer activity through attenuating AKT and mTOR regulation [52,107,108].
AKT and mTOR phosphorylation are important signals for increased glucose uptake and
glycolysis. Kueck et al. reported that resveratrol could block the phosphorylation of the
two proteins, leading to reduced glucose uptake and lactate production, and eventually,
the autophagocytosis of ovarian cancer cells [52]. Interestingly, another study indicated
that resveratrol could interrupt intracellular GLUT1 trafficking to the plasma membrane,
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reduce glucose uptake and eventually induce apoptosis of ovarian cancer cells without
altering GLUT1 expression at the mRNA or protein levels [50]. Additionally, resveratrol
could also downregulate FASN and HER2 genes to synergistically induce apoptosis of
breast cancer cells [47]. The anticancer activity of resveratrol could also take place through
PI3K/AKT/mTOR signaling by upregulating PTEN and attenuating AKT activation [47].
Similarly, resveratrol could also inhibit PKM2 expression through dampening mTOR
activity in various cancer cells [48]. As a phytochemical compound, genistein has been
reported to exhibit a series of anticancer activities, including antagonizing estrogen receptor,
blocking epidermal growth factor receptor, and inhibiting AKT [36]. Consistent with its
negative regulation in AKT activation, genistein was shown to repress the activities of
several lipogenesis-related enzymes activated by AKT, including FASN and SCD-1 [37,109].

In a recent study, xanthohumol, a natural product extracted from hop plant
Humulus lupulus L., was demonstrated to inhibit HK2 expression by antagonizing the
PI3K/AKT-GSK3β-FBW7 signaling axis [54]. Xanthohumol could also inhibit glucose
uptake of cells, and its inhibitory activity was remarkably higher than that of resveratrol
and green tea polyphenols [110]. These studies implicated great prospects of xanthohumol
in both basic research and therapeutic application.

6.3. Downregulation of FASN through Activating Tyrosine Kinase Receptor

Oleuropein is present in both the pulp and leaf extracts of olive and is a major phenolic
component in the Mediterranean diet. A recent study demonstrated that oleuropein
could significantly reduce the viability of breast cancer cells, suggesting its potential as a
promising herbal medication to treat cancers [111]. Another report revealed the activity
of oleuropein in reducing the expression of GLUT1 and PKM2 in the glycolysis pathway,
although the mechanism underlying this regulation was not elucidated [112]. Menendez
et al. reported that polyphenols, flavonoids and secoiridoids extracted from olive oil could
significantly suppress FASN protein levels in HER2-overexpressing breast cancer cells,
including HER2 gene-amplified SKBR3 cells and engineered HER2-overexpressing MCF-7
cells. Their research revealed a novel mechanism that phenolics in olive oil regulated FASN
expression through modulating a tyrosine kinase receptor network [40].

6.4. Inhibition of FASN through Suppressing SREBP1

As upstream regulators in lipid metabolism signaling pathways, sterol regulatory
element-binding proteins (SREBPs) play a key role in FASN gene expression [113]. Quercetin
is a natural molecule produced in apples, onions, teas and berries, and possesses antihis-
tamine and anti-inflammatory activities. Seo et al. reported that quercetin could remarkably
reduce SREBP1 and FASN expression at both mRNA and protein levels in mouse stromal
cells [114]. Similarly, platyphylloside, a diarylheptanoid isolated from Betula platyphylla, also
inhibited the expression of SREBP1, and its downstream targets FASN and SCD-1, leading
to attenuated adipocyte differentiation in mouse embryonic fibroblasts (preadipocytes) [44].
Furthermore, the lipid portion extracted from a special blue-green alga could also decrease
FASN and SCD-1 expression through targeting SREBP1 [115].

6.5. Inhibition of Glycolysis through Downregulating HIF-1α

As an important anticancer compound, genistein could both sensitize liver cancer cells
to apoptosis through downregulating hypoxia-inducible factor-1α (HIF-1α) and suppress
aerobic glycolysis through inactivating critical regulators of glucose uptake and activation,
including GLUT1 and HKII [35]. Two additional natural compounds, emodin and rhein
extracted from Rheum palmatum could also downregulate HIF-1α expression to inhibit
glycolysis in the studies using both human pancreatic cancer cells and animal models [28].

6.6. Inhibition of Histone Deacetylases

For decades, targeting or inhibiting histone deacetylases has been extensively used
as an effective strategy in cancer therapies [116]. On the other hand, multiple compounds
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could also dampen cancer cell metabolic activities through activating Sirtuin 1 (SIRT1) [117],
a histone deacetylase that deacetylates both histones and non-histone proteins, includ-
ing a number of transcription factors, and thereby regulate a variety of physiological
processes, including glucose metabolism and adipogenesis [118]. Polyphenols, includ-
ing resveratrol, curcumin, quercetin and catechins, have been shown to activate SIRT1
directly or indirectly in different model systems [119]. In hepatocellular carcinoma cells,
resveratrol attenuated fat deposition through inhibiting SREBP1 expression via the SIRT1–
FOXO1 pathway. Resveratrol could also promote glucose transportation in insulin-resistant
adipocytes through the SIRT1–AMPK pathway [120]. A clinical study of diabetic patients
revealed that resveratrol treatment induced upregulation of glucose transporters through
the SIRT1–AMPK pathway in skeletal muscle [121].

7. Resveratrol-Mediated PKM2 Nuclear Translocation

As a key enzyme regulating the final step of glycolysis, PKM2 can stay in two different
oligomer statuses in the cytoplasm. When forming dimers with relatively low activity,
PKM2 can promote aerobic glycolysis towards anabolism; however, in a tetramer form
with high activity, PKM2 facilitates oxidative phosphorylation for ATP production [100].
Additionally, dimeric PKM2 in the nucleus could also mediate the activities of transcription
regulators, such as STAT3 and HIF-1α. Under hypoxic conditions, PKM2 could directly in-
teract with HIF-1α to promote its binding and p300 recruitment to its binding elements and
transactivate the expression of its target genes, including GLUT1, LDHA and PDK1 [122].
Wu et al. demonstrated that resveratrol could block PKM2 nuclear translocation in human
endothelial cells and thus inhibit the expression of GLUT1, HKII and PFK, leading to
reduced aerobic glycolysis [123].

8. Combinations of Compounds in Cancer Treatments

Different compounds may exert anticancer effects through distant mechanisms. Thus,
their combinatorial uses represent promising therapeutic strategies. Numerous studies
evaluated the combinations among the compounds in Table 1 or their combinations with
other molecules in cancer treatments. For example, the cotreatment of curcumin and
emodin could cause synergistic effects in inhibiting the proliferation and invasion of breast
cancer cells [124]. In addition, emodin also synergistically enhanced the antitumor effects
of paclitaxel against lung cancer both in vitro and in vivo [125]. However, compounds
targeting the same or tightly related pathways are generally unable to cause synergistic
effects when used together. For example, the combination of emodin and cerulenin, both
reported as inhibitors of FASN could only generate additive effects on FASN inhibition in
colon cancer cells [27]. Therefore, whether the combination of two or more compounds can
achieve highly increased anticancer effects depends on the targeted genes or pathways of
individual molecules and requires experimental validation.

9. Conclusions

Studies on cell-autonomous reprogramming of cancer metabolism uncovered new
principles in metabolic regulation and crosstalk among different cell signaling pathways
and the metabolic network [126]. Highly proliferative cells require both energy and biosyn-
thesis to replicate the entire cellular contents. Therefore, metabolic activity is increasingly
appreciated as a major determinant of cell proliferation [8,9]. Aberrant metabolism of
neoplastic cells provides opportunities in developing cancer therapeutics; thus, increasing
efforts have been devoted to investigating how to effectively target cancer metabolism [127].
In addition to cancers, several other diseases, such as diabetes, are also associated with
metabolic disorders. Altered metabolism can be exploited to identify new targets to im-
prove patient treatments. As we summarized above, many natural compounds can correct
or adjust metabolic abnormalities of human diseases. Therefore, it is of great significance
to explore the remedying effects of natural compounds to relieve symptoms and provide
insightful supports in cancer therapies.
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