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Abstract: Background: We evaluated the performance of an automated algorithm available on a
clinical OCT (Canon-HS100) for macular volumetric measurements of eight individual retinal layers.
Methods and Analysis: Two consecutive three-dimensional scans were acquired on 29 subjects with
healthy retinas. Thickness measurements were obtained from eight individual retinal layers in
nine macular sectors based on Early Treatment Diabetic Retinopathy Study (ETDRS) protocol. The
repeatability was evaluated using the within-subject standard deviation from which the repeatability
limits (Rlimit) and coefficient of variation (CoV) were calculated. Results: The repeatability metrics
varied among different layers and sectors. The variation among the sectors was larger in two of the
outer layers (plexiform and nuclear layer) and the retinal nerve fiber layer. For the other five layers,
the repeatability limit was less than 5µm and CoV was less than 7.5% in all nine ETDRS sectors.
Conclusions: The repeatability of the OCT-HS100 to measure eight individual retinal layers is good
in general. Nevertheless, the repeatability is not homogeneous among different layers and sectors.
This needs to be taken into account while designing clinical measurement protocols.

Keywords: layer segmentation; macular layers; optical coherence tomography; repeatability; reti-
nal thickness

1. Introduction

Optical Coherence Tomography (OCT) is the only clinical equipment that allows the
in-vivo visualization of individual layers of the retina [1]. This plays an important role in
the diagnosis and monitoring of various ocular and neurological diseases [2–5]. Different
types of OCT are available commercially and each type comes with its own automated
segmentation algorithm [6]. The objective and quantitative information provided by the
OCT is valuable in the diagnosis and follow up of patients with glaucoma [7], macular
diseases [4,8], and neurological disorders [9,10]. The segmentation algorithms available for
the clinical OCT instruments provide data, mainly the total retinal thickness and individual
layer thickness of ganglion cell layer (GCL) and retinal nerve fiber layer (RNFL).

Recent developments in instrumentation and image analysis algorithms allow further
segmentation of individual layers, which is of great use in different areas in ophthalmology
and neurology. Changes in inner retinal layers such as the GCL and RNFL are shown to be
a hallmark in the diagnosis of glaucoma [2,11]. The thickness of the inner retinal layers
is reported to change in different neurologic disorders including multiple sclerosis [9,12]
and Parkinson’s disease [13,14]. There are other retinal disorders like central serous chori-
oretinopathy, age-related macular degeneration, and inherited retinal dystrophies that
cause changes in outer retinal layers [15–19]. Most clinical OCTs report volumetric infor-
mation of individual retinal layer thickness of specific layers like RNFL and GCL [20–22].
Due to the increased use of OCT in the clinical practice for the evaluation of the individual
layer thickness, it is important to have reliable inbuilt segmentation software.
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The reliability of the OCT’s inbuilt segmentation algorithms for retinal thickness
measurement and individual layer thickness measurement of RNFL and GCL have been
widely studied in the past [20–23]. The thickness measurement in these layers has been
shown to be clinically acceptable in general. The individual retinal layer thickness assessed
using external segmentation algorithms has also been reported to be reliable [24,25]. As the
field is developing, new OCT instruments with better imaging resolution and improved
segmentation algorithms are developed continuously, which allows assessing individual
layer thickness in a larger retinal area. As these instruments are made available for clinical
use, there is an on-going need to assess the precision of the new OCTs and the new
algorithms in both healthy eyes and in eyes with different pathologies. This study evaluates
the repeatability of the OCT-HS100 (Canon, Tokyo, Japan) for the macular volumetric
thickness measurements of eight different retinal layers.

2. Methods and Materials
2.1. Participants

Twenty-nine subjects participated in the study and all subjects underwent a compre-
hensive eye health evaluation including intraocular pressure measurement and retinal
examination. The mean age of the participants was 35 ± 13 years and had no media
opacities, retinal disorders, prior ocular surgeries or trauma. The study adhered to the
tenets of the Declaration of Helsinki and was approved by the Swedish Ethical Review
Authority. A written informed consent was obtained from the study participants after the
nature and purpose of the study had been clearly explained.

2.2. OCT Scans

Two OCT scans on macula were performed with Canon OCT-HS100 (version 4.00)
on the right eye of the participants without the use of any mydriatic drops. The Canon
OCT-HS100 has an A-scan velocity of 70,000 scans/sec with an axial resolution of 3 µm.
A three-dimensional scan protocol composed of 1024 A-scans for each of the horizontally
oriented 128 B-scans was used for macular thickness measurements. The scans were
centered on fovea and covered an area of 10 × 10 mm. The scans were repeated if there
was a blink during the measurement or if the signal strength was less than 7. The OCT
instrument uses retinal tracking for eye movements during the scanning procedure to
minimize artifacts.

The automated segmentation software of the instrument was used to delineate eight
different layers of the retina: Retinal Nerve Fiber Layer (RNFL), Ganglion Cell Layer (GCL),
Inner Plexiform Layer (IPL), Inner Nuclear Layer (INL), Outer Plexiform Layer (OPL),
Outer Nuclear Layer (ONL), Outer Segment (OS), and Retinal Pigment Epithelium (RPE).
No manual adjustment of the segmentation was performed. The thickness of each layer
specified above was evaluated in nine sectors based on Early Treatment Diabetic Retinopa-
thy Study (ETDRS) protocol with the central circle, inner ring (Superior, Nasal, Inferior
and temporal), and outer ring (Superior, Nasal, Inferior and temporal) with diameters of 1,
3, and 6 mm, respectively. Figure 1 shows an example of individual layer segmentation
(panel A) and the schematic representation of the ETDRS sectors (panel B).

2.3. Statistical Analysis

The metrics used to describe the repeatability of individual layer thickness measure-
ment were the within subject standard deviation (Sw), repeatability limits (Rlimit), and
coefficient of variation (CoV). The Sw, which represents the repeatability of the measure-
ments, was calculated with a one-way analysis of variance with the subject as a factor.
Rlimit was calculated as 1.96

√
2 Sw, and it represents the expected limits that 95% of the

measurements should be within [26]. CoV is calculated as Sw divided by average thickness
of that particular layer and was expressed in percentage. The sample size required to
estimate the individual retinal thickness with the precision as close to the axial resolution
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(3 µm) of the OCT for 2 repeated measurements was calculated to be 27 subjects [27]. This
calculation was based on an assumption that the individual layer can be as thin as 10 µm.
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Figure 1. Example of the individual layer segmentation on a single B-scan (panel A) and a schematic representation of the
ETDRS sector map (panel B). C: Central, IS: Inner Superior, OS: Outer Superior, IN: Inner Nasal, ON: Outer Nasal, II: Inner
Inferior, OI: Outer Inferior, IT: Inner Temporal, OT: Outer Temporal.

3. Results

The descriptive statistics of each retinal layer in the ETDRS sectors are shown in Table 1.
On average, the thickness in the central circle was more than that of the surrounding circles
for ONL, OS, and RPE. The opposite tendency was seen for the other five layers. Comparing
inner and outer circles, the RNFL was thicker in the outer circle than in the inner circle,
except for the temporal sector where no such tendency was seen. For all the other layers
except OS, the inner circle was thicker than the outer circle. The thickness was similar in
the inner and outer circle for OS.

Table 1. Thickness values of the eight retinal layers in the ETDRS macular sectors.

Central
Inner
Infe-
rior

Outer
Infe-
rior

Inner
Nasal

Outer
Nasal

Inner
Supe-
rior

Outer
Supe-
rior

Inner
Tem-
poral

Outer
Tem-
poral

RNFL 11 ± 6 27 ± 3 40 ± 5 23 ± 6 50 ±
4.9 25 ± 3 39 ± 5 19 ± 5 18 ± 1

GCL 17 ± 4 51 ± 5 27 ± 3 53 ± 5 32 ± 4 52 ± 4 30 ± 3 48 ± 5 32 ± 3

IPL 16 ± 3 42 ± 3 33 ± 3 41 ± 3 35 ± 4 41 ± 3 33 ± 3 38 ± 3 36 ± 3

INL 18 ± 3 44 ± 2 32 ± 3 44 ± 3 35 ± 3 43 ± 2 34 ± 3 39 ± 2 35 ± 2

OPL 10 ± 5 35 ± 8 27 ± 4 36 ± 9 30 ± 4 33 ± 5 26 ± 2 28 ± 3 25 ± 2

ONL 122 ±
10

83 ±
12 69 ± 6 89 ±

13 73 ± 8 91 ± 9 80 ± 7 98 ± 8 79 ± 6

OS 35 ± 1 29 ± 3 31 ± 3 29 ± 2 29 ± 3 29 ± 2 30 ± 4 29 ± 2 30 ± 4

RPE 37 ± 2 34 ± 3 28 ± 3 34 ± 3 31 ± 3 35 ± 3 31 ± 4 35 ± 2 32 ± 4
The values represent average ± 1 standard deviation. All values are expressed in microns. RNFL: Retinal nerve
fiber layer, GCL: Ganglion cell layer, IPL: Inner plexiform layer, INL: Inner nuclear layer, OPL: Outer plexiform
layer, ONL: Outer nuclear layer, OS: Outer segment, RPE: Retinal pigment epithelium.

Figure 2 shows the Rlimit values of the measurements for each retinal layer in each
sector of the macular ETDRS map. In five out of eight layers (GCL, IPL, INL, OS, and RPE),
the Rlimit was less than 5 µm in all the ETDRS sectors. For each of these five layers, the
maximum difference in Rlimit among the sectors was 4 µm. For OPL, the Rlimit was below
10 µm for all the sectors and the maximum difference among them was 7 µm. Both RNFL
and ONL had some sectors with Rlimit exceeding 10 µm (RNFL-inner nasal sector and
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ONL-Central, inner superior, and inner inferior sectors). The maximum difference in Rlimit
among the sectors for RNFL and ONL were 11 and 10 µm, respectively.
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Figure 2. Repeatability limit values of the measurements for each retinal layer in each sector of the
ETDRS map. Retinal Nerve Fiber Layer (RNFL), Ganglion Cell Layer (GCL), Inner Plexiform Layer
(IPL), Inner Nuclear Layer (INL), Outer Plexiform Layer (OPL), Outer Nuclear Layer (ONL), Outer
Segment (OS), and Retinal Pigment Epithelium (RPE).

The relationship between the Sw and the CoV for the eight individual layers is shown
in Figure 3. The Sw of the GCL, IPL, INL, OS, and RPE layers was under 2 µm and the
CoV was below 7.5%. In GCL, IPL, and INL, the central sector had the largest CoV though
the Sw was similar to the other sectors, whereas the central sector in OS and RPE showed
the best Sw (around 0.5 µm) and CoV (around 1%). For the other three layers (RNFL, OPL,
and ONL), the Sw values had a larger spread among the sectors, though the maximum Sw
value was about 4.5 µm. For these layers, the least variability in CoV among the sectors
was seen for ONL with the maximum CoV of 5%. For both OPL and ONL, the central and
inner sectors except the inner temporal sector had larger Sw compared to the outer sectors
(OS and RPE). The RNFL showed the largest variability in CoV among the sectors with
the maximum CoV of 21%. In RNFL, except for the inner nasal sector, the other sectors
showed smaller and similar Sw values (around 2.5 µm). However, the CoV of RNFL in
both the central and the inner nasal sector was almost three times larger compared to the
other sectors.
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4. Discussion

This study assessed the performance of the segmentation algorithm of the OCT-HS100
to measure the thickness of eight individual retinal layers. The thickness was measured
by automated layer segmentation software in nine ETDRS sectors. We show that there are
variations in the repeatability both among the different sectors and the different layers.
However, the repeatability was good in general for all eight retinal layers evaluated.

The average thickness values of the individual retinal layers and its variability among
the subjects reported in the present study are on a similar range to that of previously
reported values [28,29]. The repeatability of thickness measurements of RNFL and GCL-
IPL complexes have been reported extensively in many of the previous studies [6,20–23,28].
In the present study, we have evaluated the GCL and IPL layers separately and also
evaluated the other individual layers in different ETDRS sectors. In general, there was
some difference in the repeatability between the outer and inner sectors. One possible
reason for this difference could be that the area of the inner sectors is much smaller than
the outer sectors. When the segmentation software calculates the average thickness within
the sector, any segmentation error will have a bigger impact on inner sectors than outer
sectors. The present study used horizontal B-scans, and this could also have an impact on
the repeatability of the different sectors [22]. The presence of blood vessels in the superior
and inferior sectors can result in segmentation artefacts, and this could affect the mean
thickness value of these sectors. The effect can also be more for inner sectors than outer
sectors due to smaller area. In central sector, the repeatability varied between the different
retinal layers. The best Sw was seen for OS and RPE and the worst for ONL.

All of the inner retinal layers and OPL had a larger CoV in the central sector. The vari-
ability in the central sector is expected due to the thinner layers in that central sector. The
variability for OPL could be due to the angle of the OCT’s light beam. Oberwahrenbrock
et al. [28] also reported that OPL had the worst repeatability. The CoV is inversely related
to the actual thickness and hence, even if the Sw was smaller, the CoV can be larger. Larger
variations in the repeatability among the sectors are seen in RNFL, OPL, and ONL. For
RNFL, this variation can be due to the difference in the thickness among the sectors and
that it is also the thinnest layer. For OPL and ONL, the variation could be mainly due to
the difficulty in segmentation. The OPL contains both the photoreceptor synopses and
Henle fiber layer. Depending upon the angle of the incident light from OCT, Henle fiber
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layer can appear either as a hyper-reflective or as a hypo-reflective structure [28,30–33]. As
a consequence, the delineation of the OPL and ONL layers can be affected. Another report
also shows that the agreement in the measurement values between horizontal and vertical
scans are particularly bad for OPL and ONL layers [34].

The three most outer layers in the retina (RPE, OS and ONL) are thicker in the central
sector and uniformly thinner in the other sectors. This makes it easier for the segmentation
algorithm to identify and delineate these layers. The repeatability for RPE and OS is good
as expected, but, for the ONL, the repeatability varies among the sectors. As mentioned
earlier, the repeatability of ONL can be affected due to the difficulties of the segmentation
algorithm in identifying and delineating the OPL-ONL layer.

We can estimate the minimum number of measurements needed to ensure a mea-
surement tolerance (MT) that is the same as the instrument’s axial resolution, using the
expression for MT, (MT = (1.96·Sw)/√N ) for N number of measurements according to
the ISO standards [35,36]. Based on the present results, for the measurement of GCL, IPL,
INL, OS, and RPE in the ETDRS sectors, only one measurement is enough. Based on the
sector that had the worst repeatability, a larger number of measurements will be needed
for RNFL, OPL and ONL (9, 4, and 8, respectively). However, based on the sector with
second worst repeatability, the number of measurements needed for these layers reduce
significantly to 2, 2, and 6, respectively. The higher number of measurements needed for
ONL reflects the difficulties in segmenting this layer as discussed earlier. For pathologies
where the measurement of ONL is important, we need to take this factor into consideration
while planning the measurement protocol.

Reliability of the quantitative measurement from OCT is very important as these
measurements are used for the screening, diagnosis, and follow up of various retinal
and neural disorders. OCT has been shown to be useful in detecting and monitoring
changes in individual retinal layer thickness in diseases like Glaucoma [7], age related
macular degeneration [4,37], diabetic retinopathy [8], inherited retinal disorders [16,38],
and neurological disorders [5,10,13]. Knowledge on the repeatability of OCT for individual
retinal layer measurements is important for clinicians. This is needed to differentiate if the
observed changes in the retinal thickness are due to measurement fluctuations or actual
pathological changes. The limitation of the present study is that only healthy eyes were
analyzed. For disease follow up, we need to know the repeatability on pathologic eyes,
and further studies on individual layer thickness repeatability are recommended.

5. Conclusions

The repeatability of the OCT-HS100 to measure the eight different retinal layers is
good. In most of the ETDRS sectors, only one or two OCT 3-D scans are needed to get a
measurement tolerance, the same as the axial resolution of the instrument for the individual
retinal layers except for the outer nuclear layer.
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