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P.; Kepka, M.; Pitoňák, M. Calculation

of Agro-Climatic Factors from Global

Climatic Data. Appl. Sci. 2021, 11,

1245. https://doi.org/10.3390/

app11031245

Academic Editor: Tomáš Mildorf

Received: 12 January 2021

Accepted: 26 January 2021

Published: 29 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Geomatics, Faculty of Applied Sciences, University of West Bohemia in Pilsen, Univerzitní 8,
306 14 Pilsen, Czech Republic; jirkaval@students.zcu.cz (J.V.); gorin@kgm.zcu.cz (P.H.);
mkepka@kgm.zcu.cz (M.K.); pitonakm@ntis.zcu.cz (M.P.)

2 WIRELESSINFO, Cholinská 19, 784 01 Litovel, Czech Republic
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Featured Application: Expected application of the work presented in the manuscript is in infor-
mation support for fieldwork in agriculture. The calculated agro-climatic factors for a particular
area or place depict and describe current environmental conditions and the stability or trend of
such conditions in time. The agro-climatic factor calculation on a time series of climatic data
filter subjective bias a farmer could have from his/her experience. Such an analysis is also ben-
eficial for farmers or companies operating in a larger area, where the environmental conditions,
described by agro-climatic factors, vary. The authors design and develop a cloud-based service,
allowing a farmer such a calculation as a service.

Abstract: This manuscript aims to create large-scale calculations of agro-climatic factors from global
climatic data with high granularity-climatic ERA5-Land dataset from the Copernicus Climate Change
Service in particular. First, we analyze existing approaches used for agro-climatic factor calculation
and formulate a frame for our calculations. Then we describe the design of our methods for calculation
and visualization of certain agro-climatic factors. We then run two case studies. Firstly, the case
study of Kojčice validates the uncertainty of input data by in-situ sensors. Then, the case study of the
Pilsen region presents certain agro-climatic factors calculated for a representative point of the area
and visualizes their time-variability in graphs. Maps represent a spatial distribution of the chosen
factors for the Pilsen region. The calculated agro-climatic factors are frost dates, frost-free periods,
growing degree units, heat stress units, number of growing days, number of optimal growing days,
dates of fall nitrogen application, precipitation, evapotranspiration, and runoff sums together as
water balance and solar radiation. The algorithms are usable anywhere in the world, especially in
temperate and subtropical zones.

Keywords: agro-climatic factors; ERA5-Land; agriculture; frost-free period; water balance; solar
radiation; nitrogen application; temperature; growing period; Pilsen region

1. Introduction

There is a growing need in agriculture to analyze data and, following this, synthesize
as much relevant information as possible to support decision making. Such information is
essential in current situations, where climate change is discussed. Calculations on hard
data provide objective outputs and help agriculture experts understand what changes they
are facing in their region.

Therefore, agriculturally oriented IT experts work on the utilization of Earth Observa-
tion data (both multi and hyperspectral), climatic data, in-situ sensor data (connected to
IoT), crowdsourced and linked data together with traditional geographic data. They search
for innovative methods of data processing and analysis to enable evidence-based decision
making in agriculture.

This manuscript analyses global climate data (open big data by its nature) and its value
for agriculture, particularly for the calculation of so-called agro-climatic factors (climatic
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factors influencing crop growth). Based on the knowledge of agro-climatic factors and their
variability in time, a farmer can select appropriate crops, proper cultivation methods, and
also optimize field works.

2. Related Works

Several relevant studies and projects are dealing with the calculation of agro-climatic
factors from climatic quantities. The factors are typically calculated from temperature,
water cycle, and solar radiation measurements. Two types of studies can be found in the
literature: (i) Comprehensive studies elaborating with multiple agro-climatic factors, and
(ii) studies focused on just one factor.

2.1. Temperature-Related Agro-Climatic Factors

The majority of studies or projects use temperature as the climatic quantity to calculate
some type of agro-climatic factor-the first group of studies focuses on freeze and heat stress risk.

Meteoblue company [1] focuses on the assessment of freeze and heat stress risk by
calculation of probabilities of a lower (or a higher) temperature than the temperature
specified by the user. Data is calculated from 30 years since 1985.

The National Centers for Environmental Information of National Oceanic and At-
mospheric Administration (NOAA) created a map of the last spring frost from American
climate standards from 1981–2010. The map covers mainland US (excluding Alaska) rep-
resenting temperatures between 16 ◦F and 36 ◦F (with the step of 4 ◦F) and probabilities
between 10% and 90% (with the step of 10%) [2]. Many US servers use freeze data from
NOAA for calculations, allowing farmers to view the last spring and first fall freeze date
for their location, see Almanac.com sites as an example of such a service [3].

Ustrnul et al. [4] use the averaging approach to calculate late spring freezes in Poland,
taking atmospheric circulation into account, combining the data to data from Polish
weather stations.

The next group of studies aims to calculate the number and sometimes also the
distribution of days with temperatures suitable for crop growth-(optimal) growing degree
days (GDD).

Degree-Day Data and Maps of USA site [5] shows growing degree units calculated
using three thresholds: 32 ◦F, 41 ◦F, and 50 ◦F for years 1971–2000.

A website Isle of Grain Weather [6] provides a calculation of GDD for the United
Kingdom as annual averages of GDD-1981–2010, 1961–1990, and 1971–2000.

New Zealand’s Environmental Reporting Series Website [7] offers interactive visual-
izations showing weather stations and their GDD graphs (10 ◦C threshold) and trends for
the 1971 to 2015 period.

The GEO Data Portal (described in [8]), and consequently the UNEP Environmental
Data Explorer [9], provide a length of the growing period in days worldwide. Its calcula-
tion combines temperature and moisture considerations and shows the number of days
under rainfed conditions with temperatures above 5 ◦C (minimum temperature for wheat
to grow).

Whereas the works mentioned above dealt with air temperature, studies focusing on
soil temperature can also be found, e.g., [10]. Wet soils during the spring period play an
important role in determining how many days are suitable for fieldwork. Excessive soil
moisture during late spring/early summer can cause loss of nitrogen through denitrifi-
cation and leaching and may lead to the development of seed, root, and crown diseases.
Dry soil during planting may result in poor stand establishment and also may cause plant
stress during dryness occurs in the periods of flowering and spreading seeds.

Holinger and Angel [10] searched for the average last fall date with soil temperatures
above 15.6 ◦C and 10 ◦C in their Illinois Agronomy Handbook: Weather and Crops between
the years 1971–2000.

Also, a Guide for Planting Agronomic and Horticulture Crops in Nebraska [11]
created many soil temperature date maps. The maps captured data when the five-day
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running average soil temperature reached selected temperatures between 40 ◦F and 70 ◦F
(2000–2009). The data were obtained from the High Plains Regional Climate Center’s
Automated Weather Data Network (AWDN) stations.

2.2. Solar Radiation-Related Agro-Climatic Factors

Another essential input for plant growth is solar radiation. The amount of solar energy
affects the production of the plant. Therefore, it is advisable to have an overview of the
amount of incident solar radiation during the year. Moreover, using solar energy available
for a crop, we can estimate the efficiency of solar radiation use by crop.

Illinois Agronomy Handbook [10] also deals with calculated daily solar energy re-
ceived on clear days throughout the year for four regions in Illinois. Solar energy is
displayed using a graph with displayed values for each day in units MJ/m2/day.

Global Solar Atlas [12] contains a global interactive map. This map portrays infor-
mation about the different types of sunlight falling on the surface for a year or a day in
kWh/m2. The data source is the ERA5 dataset [13]. The website also contains information
about accuracy based on validation from meteorological station data. Although the portal
focuses mainly on data for solar power plants, the data can also be used for agricultural
purposes.

The Interactive Agricultural Ecological Atlas of Russia and Neighboring Countries [14]
contains maps of averaged mean annual total solar radiation (yearly maps, maps for each
month). Pixel has a resolution of 10 km × 10 km, and solar radiation is in kcal/(cm2 * year),
and the average is calculated from the period 1984 to 1991. Data are from the Surface Solar
Irradiance database [15].

2.3. Water-Cycle Related Agro-Climatic Factors

The intensity, timing, and amount of precipitation received during the year play critical
roles in crop productivity. Therefore, we are interested in monthly/weekly precipitation
totals or the intensity of the rains [10]. In particular, rainfalls with higher intensity are less
efficient than lighter showers, as they usually cause higher and faster runoff. In addition,
evapotranspiration has an impact on the amount of water in the landscape [10]. It consists
of evaporation (i.e., movement of water to the air from sources such as the soil and water
bodies) and transpiration (i.e., movement of water within a plant and the subsequent
loss of water as vapor through its leaves). If we want to calculate water balance, water
deficits, we need precipitation, evapotranspiration, and runoff; for details, see [16,17].
Furthermore, wet soils during the spring period play an important role in determining
how many days are suitable for fieldwork. Excessive soil moisture during late spring/early
summer can cause loss of nitrogen through denitrification and leaching and may lead to
the development of seed, root, and crown diseases. Dry soil during planting may result
in poor stand establishment and also may cause plant stress during dryness occurs in the
periods of flowering and spreading seeds [10].

However, there are sites like the Australian Site El Dorado Weather [18], which provide
maps about rainfall averages, e.g., Australia Yearly Rainfall Averages (annual precipitation
totals from the years 1961–1990 visualized by isopleths). The water-related agro-climatic
factors are usually calculated in comprehensive studies-see details in the next section.

2.4. Comprehensive Studies

Talking about comprehensive studies, the Agroclimatic Atlas of Canada [19] is an
excellent example to start with. It contains maps of Spring Freeze Dates (for 0 ◦C and −2 ◦C,
10% and 50% probability), Fall Freeze Dates (for 0 ◦C and −2 ◦C, 10% and 50% probability),
Freeze-Free Dates (of 0 ◦C and −2 ◦C); Annual Potential EvapoTranspiration and Seasonal
EvapoTranspiration maps for 50% probability, seasonal water deficits are calculated for
100 or 25 mm storage depth with a 50% or 10% probability. All maps are calculated for the
area of Canada from averaged data (1931–1961) of meteorological stations’ records and are
visualized using isopleths.
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Next, the Global Change Research Institute of the Czech Academy of Science runs a
comprehensive project on the topic and has developed the following maps [20]:

• The average number of frost days from the years 1981–2010 (number of days with the
minimum daily temperature below 0 ◦C) and the average number of ice days (number
of days with the maximum daily temperature below 0 ◦C).

• The late frost risk (the map shows the occurrence of a minimum daily temperature
below 0 ◦C for five consecutive days with an average daily temperature above 10 ◦C
in a row) and the late significant frost risk (daily temperatures below 0 ◦C for five
consecutive days with an average daily temperature above 15 ◦C in a row expressed
as a percentage of years in the reference period when this condition occurred for 1 or
more days).

• Also, maps focused on high temperatures are produced: Extremes—temperature
above 35 ◦C in July, tropical days (average annual number of days with the maximum
daily air temperature above 30 ◦C), risk of temperature stress—degree of alertness
(the map shows the average number of days with temperature index > = 27 ◦C), risk
of hot or/and dry periods.

• Next, a map of the length of the growing summer season demonstrates the average
length of the growing summer (continuous period with an average daily temperature
above 15 ◦C). A map of the length of the growing season shows the length of the
growing season (continuous period with an average daily temperature above 5 ◦C).

• Also, precipitation data are processed, and average annual precipitation, daily total
precipitation over 5 mm, daily total precipitation over 10 mm, average total pre-
cipitation in summer maps are created. The Institute has developed many maps
focused on deficits and changes in water storage, for example, changes in a landscape
water regime, changes in a landscape water regime during the growing period (April-
September). These changes were calculated as the difference between precipitation
and reference evapotranspiration during the whole year or season.

Except for the very first bullet, where the data source was a set of Czech weather
stations, data for all the other maps were taken from 5 global models for the years
1981–2010 [20]. The phenomena in all the maps are visualized by coloring the pixels
with gradation created by interpolation.

Adisa et al. [21] used the multivariate linear regression analysis of the precipitation,
evaporation, maximal and minimal temperatures, and crop yield anomalies to analyze
maize production in South Africa.

A quantitative evaluation of agro-climatic conditions under present and projected
climate-change conditions over most of Europe and neighboring countries has been pre-
sented by Trnka et al. [22].

2.5. Common Grounds for Agro-Climatic Factors Calculation

Our work started with a deep study of the sources mentioned above. The following
are significant findings from the related works, which are essential for our study:

• The previous works calculate agro-climatic factors mostly from data of local weather
stations-the used input climate data are usually not global. Therefore, our approach
aims to evaluate global climatic data suitability.

• The inverse distance weighted interpolation (IDW) is generally used as an interpola-
tion method. Therefore it is used in our study as well.

• The calculations are often just briefly indicated, not described in detail. Therefore we
aim to describe each agro-climatic factor in detail (see the link to GitHub provided in
Supplementary Materials).

• Isopleths are commonly used to visualize the calculated agro-climatic factors. Thus
we follow the same approach.

• Calculated for a set of the year but hard to repeat as it is not running as an on-demand
service. On the contrary, algorithms that we publish allow everybody to recalculate
the factors on demand.
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Our goal was to gather as comprehensive overview of agro-climatic factors as pos-
sible. Then we synthesized a set of agro-climatic factors that describe an area of interest
exhaustively. Therefore, we designed and developed algorithms for all the following
agro-climatic factors (such a work is an integral part of the projects mentioned in the
acknowledgments section.):

• From air temperature: Frost-free periods, growing degree units, heat stress units,
number of (optimal) growing degree days,

• From soil temperature: The nitrogen application window,
• From incident sunlight: Accumulated solar radiation,
• From precipitation, evapotranspiration, and runoff data: Water balance.

We selected the global climatic data as a data source for agro-climatic factors calcula-
tion because nowadays, very detailed global meteorological models are being developed
and reanalyzed backward in time to describe climate information over the last decades.
Such data can complement data from regional meteorological stations, which are used
traditionally. In such a case, a crucial question about the uncertainty and accuracy of the
climatic data is raised and then examined.

For a reasonable length of the manuscript, only Agro-climatic factors calculated from
air temperature are described further.

3. Materials and Methods
3.1. Materials

As particular agro-climatic factors were described in the previous section, demand for
relevant information about soil and air temperatures, precipitation, evapotranspiration,
and sunlight was settled. Fortunately, such information can be found in a worldwide
coverage dataset with hourly-series of data providing an enormous amount of relevant
data-ERA5-Land dataset (of Copernicus Climate Change Service [23]). Such data can
be related to another dataset containing information about the uncertainty of data used-
Ensemble of Data Assimilations model (of Copernicus Climate Change Service). Finally, for
the evaluation of the input data from the global data, we also obtained information from
in-situ sensors to compare the values for calculated agro-climatic factors. The description
of the mentioned sets of data is in the following sections.

3.1.1. ERA5-Land Hourly Data from 1981 to Present

ERA5-Land is a replay of the land component of the ERA5 climate reanalysis [13], but
with a series of improvements making it more accurate for all types of land applications.
ERA5-Land is a reanalysis dataset providing a consistent view of the evolution of land
climatic variables over several decades. Horizontal coverage is global with resolution
0.1◦ × 0.1◦ (arc-deg). Vertical coverage is from 2 m above the surface level to a soil depth
of 289 cm. Temporal coverage is now from January 1981 to present with hourly resolution.
The data format is GRIB or NetCDF [24].

ERA5-Land is still under development and should be completed during 2020 and
incorporates data from 1950 to 2–3 months before the present [25]. During the calculation
of agro-climatic factors presented in this manuscript, the data were available first for
the period 1990–2019, later for 1981–2019 (the year 1981 was incomplete). Therefore, the
calculations of individual agro-climatic factors are based on these periods. Occasionally,
faulty units appeared for some variables. For example, a runoff was supposed to be in
meters, but it was in units of m * 0.0001, the appropriate constants corrected such errors in
the algorithm.

The climatic model used in the production of ERA5-Land is the tiled ECMWF Scheme
for Surface Exchanges over Land incorporating land surface hydrology (HTESSEL). More
information about the used climatic model CY45R1 can be found in its documentation
(how individual variables are calculated, spatial interpolations, and so on) [26].

Note that before the numerical experiment, we checked the normality of the ERA5-
Land hourly data. We performed two statistical tests (namely Chi-squared goodness-of-
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fit test and the Kolmogorov-Smirnov test), and the results were a rejection of the null
hypothesis of both tests at the 1% and 5% significance level, i.e., data did not come from a
standard normal distribution.

3.1.2. ERA5 Ensemble of Data Assimilations (ERA5 EDA)

To know how precise the data from the ERA5-Land dataset are, we need to reach
for such information elsewhere, because, for the time being, ERA5-Land in Copernicus
Climate Change Service does not allow the download of information about uncertainties
of an associated EDA (Ensemble of Data Assimilations) model for specific ERA5-Land
places. In case of an attempt to download the associated uncertainties based on the
EDA, it is necessary to go through the download of EDA information connected with the
ERA5 dataset.

ERA5 climate data contain some uncertainty provided by the EDA system. Uncertainty
estimation helps to understand the relative accuracy of the ERA5 (or ERA5-Land) system to
identify areas/periods where the products are thought to be less or more reliable. However,
the uncertainty values provided by the EDA system should not be taken at face value.
The EDA system addresses uncertainties related to the observing system, sea surface
temperature, and the model (through its physical parametrizations) [27].

The uncertainty of ERA5-Land does not represent a classical measure of error. Un-
certainties of Ensemble Data Assimilations (EDA) model related to ERA5-Land takes into
account mostly random errors in observations (such as a sea surface temperature, physical
parametrizations of the model, uncertainties related to the observing system, etcetera). If
we assume that these uncertainties are described properly, and there are no additional
sources of uncertainties in the model’s input values, then EDA represents uncertainties
in ERA5-Land correctly. Moreover, systematic model errors are not taken into account by
the EDA, and the uncertainties, as defined by the EDA, are uncorrelated. On the other
hand, the EDA model related to ERA5-Land in Copernicus Climate Change Service is
available neither in the same spatial resolution nor in the same time interval. ERA5-Land
is provided in a regular equiangular grid with the spatial resolution of 0.1◦ × 0.1◦ (arc-
deg) (10 km × 10 km), while the spatial resolution of its uncertainty is five-time larger,
i.e., 0.5◦ × 0.5◦ (arc-deg) (50 km × 50 km). Further, the time interval of data available
in ERA5-Land is one hour, while EDA provides the uncertainty in the interval with the
regular time step of three hours. For more details about EDA, please see [28].

3.1.3. Case Study Area in Kojčice

Observations used for the evaluation of global ERA5 data to compare physical vari-
ables were produced during the air and soil monitoring campaign in the year 2018 in the
location of Kojčice village (15.22 E, 49.46 N) near Pelhřimov in the Czech Republic (see
Figure 1). There was a set of sensor nodes deployed in the pilot locality in the fields. Most
of the deployed nodes were equipped with sensors for soil monitoring, and one node was
equipped with soil and air monitoring sensors. The air temperature in 2-m height above
the ground was selected as the phenomena for comparing with the global ERA5-Land
data set. The air temperature was measured by the combined multisensor VP-3 from the
Decagon(R) Devices company. This sensor was measuring air temperature, humidity, and
vapor pressure every 2 h from 21 March 2018 to 29 December 2018. Specifications of the
used VP-3 multisensor for air temperature phenomenon are resolution 0.1 ◦C, range from
−40 ◦C to +80 ◦C, and accuracy is defined by the continuous function where the maximum
error is the function of the temperature. The maximum error for the measured range in
the pilot locality is ±0.75 ◦C, but for most observations is ±0.5 ◦C and less. The distance
between the sensor node position and the ERA5-Land reference point is approximately
350 m.
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Republic (overview map).

3.1.4. Case Study Area in the Pilsen Region

The Pilsen region (location of such a region is shown in Figure 2) was chosen as a case
study for calculation of all agro-climatic factors mentioned in Section 3.2 because this area
of interest is being investigated in various research projects supporting this contribution
(see part Funding stated after Section 6. Conclusions).

It is worth stressing, even though the area of interest was chosen, the calculation of
agro-climatic factors using hourly ERA5-Land data can be done for almost any particular
place or area on the Earth, where the coverage of such a dataset is provided. Furthermore,
thanks to the interactivity of scripts created, they have an area or place of interest as an
input parameter. Methods, which are implemented for the area of interest, while respective
outputs are provided here for each of such factors in basically two forms. In the form of
graphs representing time-dependent manners of the particular factor for a specific place in
the area of interest (geographical center of the Pilsen region) and the form of maps of such
a region enable to see a spatial (or spatial-temporal) distribution of the calculated factor
in the area. Examples of such maps are placed in Appendix A, whereby all the maps and
graphs created for this area are available in [29]. The web page on GitHub was created to
keep all of the Supplementary Materials in one place.

3.2. Methods

This section describes methods designed and developed for the calculation of certain
agro-climatic factors. As a description of each method used is quite extensive, there is the
first method described in full detail, and the rest of the method is outlined, stressing the
critical parts of the process described by a flowchart of a particular method. In contrast, the
comprehensive description of all the methods, together with the developed source code,
is available as Supplementary Materials at https://github.com/JiriVales/agroclimatic-
factors/wiki [29]. It is also worth mentioning that the algorithms are deployed at the https:
//test.euxdat.eu/ (The platform is being migrated to https://platform.euxdat.eu/) [30]—a
cloud platform allowing the calculation of the particular agro-climatic factors on demand
(for registered users only).

https://github.com/JiriVales/agroclimatic-factors/wiki
https://github.com/JiriVales/agroclimatic-factors/wiki
https://test.euxdat.eu/
https://test.euxdat.eu/
https://platform.euxdat.eu/
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3.2.1. Frost-Free Periods

The agricultural season is primarily determined by the period of suitable temperatures
for growing crops. Frost has a devastating effect on crops. In light frost (between 0 ◦C and
−1/−2 ◦C), the tender plants are killed. Moderate freeze (between −2 ◦C and −4 ◦C) is
widely destructive to most vegetation, and lower frost is already causing severe damage
to most plants [31,32]. It is just a general simplification; the effects also vary for different
growth stages (see [32] for details) and different crops. Therefore, farmers need to know the
frost-free period in their agricultural areas. Significantly, the last spring frost date for start-
ing agricultural work and the first fall frost date for the cessation of agricultural activities.
The likelihood of frost and frost trends over the years helps effective fieldwork planning.

The last spring date is usually called the last day during spring (more correctly from
winter to summer) when the minimum daytime temperature is less than 0 ◦C. The first fall
date is the first day in the second half of the year (during autumn) when the minimum
temperature is below zero. Usually, this date is given with a 50% or 10% probability
(statistically from several years) that it will freeze later (spring date) or sooner (fall date).
For farmers, knowledge of days with a low probability of frost is necessary for farming
planning and decision-making to avoid destructive effects, hence dates with a last/first
frost with a low probability (e.g., 10%) are desirable. The frost-free period is then a period
from the last spring frost to the first fall frost. It includes a period suitable for growing crops.

The minimum daily temperature is a necessary variable for determining frost dates.
The daily minimum is determined as the lowest value of the hourly temperatures each day.
We search for the days where the minimum is below 0 ◦C for at least one hour, see [33]
for detailed justification. Subsequently, the algorithm calculates the last freezing day of
each year for the spring period and the first freezing day for the autumn period. For the
sake of simplicity, the coldest month is designated as January for the northern hemisphere
and July for the southern hemisphere, which is the central month of the meteorologist
winter season [34,35]. The hemisphere is determined from latitude. The resulting last
spring frost date and first autumn frost date are calculated from the annual frost dates
with a corresponding probability. The frost-free period is calculated as the period between



Appl. Sci. 2021, 11, 1245 9 of 24

the last and the first frost date. Similarly, it is possible to calculate the dates for another
temperature threshold (e.g., for moderate freeze −2 ◦C).

By altering the input parameters, it is possible to calculate more days of frost in a row
as the last/first frost date. The last/first frost date with defined probability is calculated
from all selected years using the normal distribution, while the standard deviation and
mean for the normal distribution is calculated from the frost dates of each year. Frost-free
period with defined probability is calculated as the difference between these last and first
frost dates. The flowchart of the designed algorithm is shown in Figure 3.
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3.2.2. Crop Growth-Related Temperatures

There are four temperature thresholds, the cardinal temperatures, that define the
relationship between temperature and crop growth. These thresholds are the absolute min-
imum, the optimum minimum, the optimum maximum, and the absolute maximum [10].
Based on such thresholds, the following three factors are defined and briefly described.

Heat stress units (HSU) are used to detect high temperatures unsuitable for crop
growth. When the maximum daily temperature is higher than the absolute maximum
temperature for crop growth, HSU is accumulated [10]. For example, if the threshold is
exceeded by three degrees, three units are added.

Growing degree units (GDU) are used to relate temperature to crop development.
GDU is accumulated when the average daily temperature exceeds the absolute minimum
temperature threshold for the growth of a given crop. The difference between the daily
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temperature average and the temperature threshold of the plant is the accumulated GDU
value for a given day [10]. For example, when the temperature is two degrees higher than
the minimum for plant growth, two growing degree units are added.

The number of (optimal) growing days includes all growth days, days when the
average temperature is in the interval from the absolute minimum to the absolute maximum
of the selected crop. The number of days with optimal temperatures for growth is the sum
of days when the average daily temperature is at the best temperatures for crop growth,
between the optimal minimum and optimal maximum of the selected crop [10].

A flowchart of the designed algorithm for all three mentioned factors above is shown
in Figure 4.
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3.2.3. Uncertainty of Input Variables

Let us introduce how uncertainties of input variables for selected temperature-related
agro-climatic factors (frost-free periods, growing degree units, heat stress units, number
of (optimal) growing days, etc.) have been estimated. The data used for this section are
described in the previous text, particularly in Section 3.1.1. ERA5-Land hourly data from
1981 to present and Section 3.1.2. ERA5 Ensemble of Data Assimilations.

To unify EDA and ERA5-Land data in the spatial domain, we decided to interpolate
uncertainties for the test point in Kojčice, Czech Republic (see Section 3.1.3. Case study area
in Kojčice for further information) from EDA by inverse distance method (defined by [36],
with power parameter equal to 2). The computation of selected agro-climatic factors is
mostly based on the daily averages of temperatures. Thus, the uncertainty of the daily
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temperature average has been calculated from interpolated values related to EDA. An exact
formula was obtained by applying the error-propagation law to the average and has the
following form:

σ̂D =

√
σ2

T1
+ σ2

T2
+ · · ·+ σ2

T8

n

where D stands for the estimated uncertainty for a day D calculated from the interpolated
values of temperature uncertainties σ2

Ti
, i = 1, 2 . . . 8, for the test point for each time i and

n is equal to 8. The uncertainty of year temperature Y has been computed similarly to the
uncertainty of day temperature. The exact formula is in the form:

σ̂Y =

√
σ2

D1
+ σ2

D2
+ · · ·+ σ2

D365(366)

n
,

where n = 365 (366 for the leap year). The last two uncertainties dedicated to the tempera-
ture are uncertainties of daily maximum and minimum temperature denoted as σ̂Dmax and
σ̂Dmin , respectively. These have been computed by the following procedure. If the daily
maximum and/or minimum temperature have been achieved at the same time as being in
EDA, we took corresponding uncertainty from EDA. We remind readers that uncertainties
in EDA are provided with the regular time step of three hours (please see 3.1.2). Otherwise,
σ̂Dmax and σ̂Dmin have been interpolated by the linear interpolation from two uncertainties
with neighboring hours in EDA.

3.2.4. Uncertainty of Calculated Agro-Climatic Factors

Uncertainties defined above allow us to calculate uncertainties of temperature-related
agro-climatic factors, namely: (i) Annual number of frost days, (ii) annual number of
days with growing temperatures, (iii) annual number of days with optimal growing
temperatures, (iv) last spring frost date, (v) first fall frost date, (vi) frost-free periods,
(vii) growing degree units, and (viii) heat stress units. In what follows, we will explain
step by step how the uncertainty of all above mentioned temperature-related agro-climatic
factors have been estimated.

We used the minimum temperature over a day and its uncertainty for the estimation
of the uncertainty of (i) annual number of frost days, (iv) last spring frost date, and (v) first
fall frost date. The uncertainty of (i) has been calculated as follows. Firstly, we calculated
the number of frost days over a year as a summation of days in which the temperature
was below 0 ◦C. Then uncertainties have been applied and we determined the maximum
N_(f_max) and minimum number N_(f_min) of frost days by the following relation:

N fmax = ∑
i

Di, where Di =1 if (Dmini − σ̂Dmini
) ≤ 0 ◦C, else Di = 0,

N fmin
= ∑

i
Di, where Di = 1 if (Dmini + σ̂Dmini

) ≤ 0 ◦C, else Di = 0.

Note that the symbol Dmini represents the minimum temperature over an i-th day and
σ̂Dmini

is its uncertainty. Finally, we set the confidence interval for the point estimator in the
form (N fmin

, N fmax ).
If N fmin

> N fmax , the value N fmax has been replaced by N fmin
in the confidence interval.

Otherwise, i.e., if N fmin
< N fmax , we substituted N fmin

by N fmax . The confidence interval for
(iv) last spring frost date has been gained by the following procedure:

1. We found the latest date of the last spring frost date L fmax from the condition

(Dmini − σ̂Dmini
) ≤ 0 ◦C.
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2. Then we identified the earliest date of the last spring frost date L fmin
from the condition

(Dmini + σ̂Dmini
) ≤ 0 ◦C.

3. We put the values L fmin
and L fmax into the confidence interval (L fmin

, L fmax ).
The uncertainty of (v) first fall frost date has been estimated by applying the same

procedure as for (iv). The only change is that we have been searching for the latest Ffmax and
earliest date Ffmin

of the first fall frost date and the confidence interval was then (Ffmin
, Ffmax ).

The agro-climatic factor, (vi) frost-free periods, is based on the frost days. Its uncertainty
was estimated from the values of the earliest L fmin

and latest L fmax date of the last spring
frost date and the earliest Ffmin

and latest Ffmax date of the first fall frost date. Uncertainties
of frost-free period Fpmin and Fpmax have been calculated from:

Fpmin = Ffmin
− L fmax , Fpmax = Ffmax − L fmin

.

The average temperature over an i-th day Davei and its uncertainty σ̂Davei
have been

used for the determination of confidence intervals for (ii) annual number of days with
growing temperatures, (iii) annual number of days with optimal growing temperatures,
and (vii) growing degree units. The uncertainty of (ii) was obtained as:

Firstly, we calculated the minimal Ngmin and the maximal Ngmax number of growing
days over a year as a summation of days as follows:

Ngmax = ∑
i

Di, where Di =

{
Tabsmin

≤ Davei + σ̂Davei
Tabsmax ≥ Davei − σ̂Davei

,

Ngmin = ∑
i

Di, where Di =

{
Tabsmin

≤ Davei − σ̂Davei
Tabsmax ≥ Davei + σ̂Davei

.

Note that symbols Tabsmin
and Tabsmax represent the minimum and maximum tempera-

ture for crop growing.
Secondly, we have values of Ngmax and Ngmin in our pocket so we can define the confi-

dence interval (Ngmin , Ngmax ) for the annual number of days with growing temperatures.
The confidence interval of the annual number of days with optimal growing temper-

atures Nog has been calculated by the above-mentioned approach. The only difference
is the replacement of the minimum and maximum temperature for crop growing by the
minimum and maximum temperature for optimal crop growing. The uncertainty of (vii)
growing degree units was obtained by application of the following algorithm:

1. Calculation of minimal Dgdumin
and maximal Dgdumin

daily growing degree units
as follows

Dgdumax =


Davei + σ̂Davei

− Tabsmin
if Tabsmin

< Davei + σ̂Davei
Davei + σ̂Davei

− Tabsmin
if Tabsmax ≥ Davei − σ̂Davei

0 (otherwise)
,

Dgdumin
=


Davei − σ̂Davei

− Tabsmin
if Tabsmin

< Davei − σ̂Davei
Davei + σ̂Davei

− Tabsmin
if Tabsmax ≥ Davei + σ̂Davei

0 (otherwise)
.

2. To get confidence intervals for growing degree units over a year we calculated
minimal Agdumin

and maximal Agdumin
daily growing degree units by summation of Dgdumax

and Dgdumin
.



Appl. Sci. 2021, 11, 1245 13 of 24

The maximum temperature Dmaxi and its uncertainty σ̂Dmaxi
has been applied for calcu-

lation of confidence interval for (viii) heat stress units. In the first step, we calculated maximal
Dhsumax and minimal Dhsumin

values of heat stress units from the following condition:

Dhsumax =

{
Dmaxi + σ̂Dmaxi

− Tabsmax if Tabsmin
< Dmaxi + σ̂Dmaxi

0 (otherwise)
,

Dhsumin
=

{
Dmaxi − σ̂Dmaxi

− Tabsmax if Tabsmin
< Dmaxi − σ̂Dmaxi

0 (otherwise)
.

The maximal Ahsumax and minimal Ahsumin
values of heat stress units over a year has

been obtained as follows:

Ahsumax = ∑
i

Dhsumaxi
, Ahsumin

= ∑
i

Dhsumini
.

Finally, we got the confidence interval (Ahsumin
, Ahsumax ).

4. Results

Firstly, the input climatic data uncertainty and accuracy needed to be evaluated.
This evaluation was proceeded in the pilot locality near Kojčice village (see Section 3.1.3.
Case study area in Kojčice for further information). The village lies in a similar climatic
environment as the main area of interest (Pilsen region), and we were able to gain access to
at least a year-long time series of climatic measurements—which turned to be a complicated
task to gain the sensor data directly from the Pilsen region.

After the evaluation process, we calculated the agro-climatic factors mentioned in
Section 3.2. Methods, using data described in Section 3.1.1. ERA5-Land hourly data from
1981 to present for the case study areas (see Sections 3.1.3 and 3.1.4 for information about
such areas).

4.1. Uncertainty of Input Temperatures

Firstly, the annual temperature uncertainties were calculated according to the first two
formulas mentioned in Section 3.2.4, for the period 1982–2019 of the Kojčice area (depicted
in Figure 5).

As can be seen from the graph in Figure 5, the annual temperature uncertainties
provided by the EDA dataset are less than 0.5 ◦C, namely: min = 0.33 ◦C, max = 0.44 ◦C,
a standard deviation of uncertainties is 0.3 ◦C. A table of particular values in the graph of
Figure 5 is available in [29]. Similar tests can be run for other input data, using the same
methodology.

4.2. Accuracy of the Global Climatic Data Evaluated Using In-Situ Sensors

Next, the local in-situ sensor dataset was used for global model data accuracy evalua-
tion. Comparison of values calculated from the model and values measured by the sensor
directly in the field is useful for defining the reliability. Model data were provided hourly,
while the sensor node was measuring every 2 h. Thus, the daily average temperature was
selected as a value to be compared. A comparison of daily average temperatures calculated
from ERA5-Land data and in-situ observations is depicted in Figure 6 below.



Appl. Sci. 2021, 11, 1245 14 of 24Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 24 
 

 
Figure 5. Graph of average annual temperature with Ensemble Data Assimilations (EDA) uncertainties during the years 
1982–2019 in the Kojčice area. 

4.2. Accuracy of the Global Climatic Data Evaluated Using In-Situ Sensors 
Next, the local in-situ sensor dataset was used for global model data accuracy evalu-

ation. Comparison of values calculated from the model and values measured by the sensor 
directly in the field is useful for defining the reliability. Model data were provided hourly, 
while the sensor node was measuring every 2 h. Thus, the daily average temperature was 
selected as a value to be compared. A comparison of daily average temperatures calcu-
lated from ERA5-Land data and in-situ observations is depicted in Figure 6 below. 

 
Figure 6. Graph of daily average temperatures calculated from ERA5-Land data (blue line), in-situ observations (red line). 
The Pearson correlation coefficient is equal to 0.99. 

Figure 5. Graph of average annual temperature with Ensemble Data Assimilations (EDA) uncertainties during the years
1982–2019 in the Kojčice area.
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The Pearson correlation coefficient is equal to 0.99.

The difference chart depicted in Figure 7 clearly shows the differences between average
daily temperatures calculated from ERA5-Land data and in-situ sensors during the period
of observations. The differences are characterized by a standard deviation of 1.06 ◦C and
min = −3.06 ◦C and max = 3.8 ◦C. Tables of particular values illustrated in Figures 5 and 7
are available in [29].
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Figure 7. Graph showing the differences between ERA5-Land data and in-situ observations.

The comparison of the temperatures gathered from global climatic data to in-situ
sensor data, was possible to calculate from the limited period, but even that gives us a view
of the reliability of the EDA dataset, describing the global data uncertainties. Results can be
read in a way that the global data has (at least for our control measurements) approximately
3.5 times worse accuracy than the uncertainty described by the EDA (compare the 0.3 ◦C
standard deviation of uncertainty to 1.06 ◦C standard deviation of the accuracy). Even
with this disadvantage, the global data keep their value for the long time series provided.
The relation of uncertainty and accuracy can (and will be) studied further, see discussion
for details.

Also, it can be read from the above text and graphs, that the global temperature data
oscillate around the temperatures measured by the in-situ sensor, which is here taken
as a ground-truth for its inner accuracy of 0.1 ◦C. The oscillation is very problematic for
frost-free period calculation, however the cumulative aspect of crop growth-related factors
calculation (see Section 3.2.2) allows the use of global climatic data for the calculation of
these factors (see also more in the discussion section).

4.3. Uncertainty of Calculated Agro-Climatic Factors

As the accuracy estimation needs the comparison to sensor data, it is not available, for
the whole time series. Therefore, only the uncertainties of the input values were included
in the calculation of the agro-climatic factors. As a result, we have the factors calculated
together with information on the uncertainty of the calculation. All the factors were
calculated for the whole available time series (years 1982–2019) and all the output graphs
below portray the yearly values together with the uncertainty of the value.

The first group of graphs relates to frost temperatures. Graphs of last spring and first
fall frost dates are depicted in Figures 8 and 9. The graph in Figure 10 shows the length
of frost-free periods. Note that only if the uncertainty is large enough for the scale of the
following graphs, it is visible.
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The next group of graphs is related to a particular crop type. The graphs portray the
heat stress unit factor (Figure 11), growing degree unit factor (Figure 12), and the number
of days with growing temperatures (Figure 13). These factors were calculated for C3 plants
(such as wheat, soybean, and alfalfa) [10]. Crop temperature thresholds were therefore set
as the average of a given group threshold range. The absolute minimum was set to 3.5 ◦C,
the optimum minimum as 17.5 ◦C, the optimum maximum as 28 ◦C, and the absolute
maximum to 32.5 ◦C. Please note that the heat stress occurs only exceptionally in the area
of interest.
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In order to demonstrate the spatial variability of the agro-climatic factors, two maps
are attached as examples in Appendix A. The first map shows the average Growing Degree
Units for C3 Crops 2010–2019 in the Pilsen Region (Figure A1). The second map shows the
average Number of Growing Days for C3 Crops 2010–2019 in the Pilsen Region (Figure A2).
A complete set of maps of agro-climatic factors created by the team are available in [29].
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5. Findings and Discussion

The first significant output of this contribution lies in the evaluation of uncertainty and
accuracy of the input climatic data. The example of temperature, as the climatic quantity,
influencing the majority of agro-climatic factors, shows that even if the uncertainty in the
data are pretty small (less than 0.5 ◦C for the whole period, with the standard deviation of
0.3 ◦C), the comparison to real in-situ measured data shows more significant differences
(standard deviation of 1.06 ◦C and min = −3.06 ◦C and max = 3.8 ◦C). Such a difference
urges caution in relying just on climatic data for calculation agro-climatic factors describing
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extremes (such as heat stress or frost dates). Still, the risks calculated from global data can be
indicative, and a farmer naturally complements such information with a weather forecast.

The random character of the difference between climatic and sensor data ~ absence
of a systematic shift (see graph in Figure 7) allows a farmer to rely on the temperature
from climatic data for cumulative agro-climatic factors, such as the Number of growing
(optimal) degree days or Number of (optimal) degree units.

Therefore, such results allow us to rely on the climatic data for calculation of at least
temperature-dependent agro-climatic factors in the areas climatically similar to Kojčice
(which is the area of the Pilsen region as well).

The algorithms were applied to the area of interest of the Pilsen region in the manuscript.
However, they were also successfully deployed and tested in other areas during three
hackathons: Climatic services for Africa (https://www.plan4all.eu/2019/04/team-2-progress-
report-i/), leveraging of the algorithms by different teams in the San Juan hackathon (https:
//www.plan4all.eu/2019/10/san-juan-inspire-hackathon-2019/), and searching for Climate
Change trends for Africa (https://www.plan4all.eu/2020/03/challenge-6-climate-change-
trends-for-africa/).

Usage of the whole time series of the input data for calculation of the factors can
document a local impact of climate change in a place of interest. For example, enlargement
of the frost-free period in the Pilsen region can be interpreted from the time-dependent
manners of last freezing and first freezing days graphs available in [29].

All the algorithms of agro-climatic factors calculation—designed, developed, and
deployed in a cloud environment—can be widely re-used and evaluated by the scientific
community, as they are available as open-source. It is also worth mentioning that the
algorithms use the ERA5-Land dataset for now, but they can be easily applied to any other
climatic data available.

There are limitations of visualization of big and multidimensional data—such as
the agro-climatic factors calculated from the climatic data. Graphs perfectly describe the
changes in a factor of time, but they are locked at one location. On the contrary, maps
can describe the spatial distribution of a factor, but at one time, or its change during one
period of time. As future work, the Space-Time Cube [37] principle can be leveraged for
visualization of spatio-temporal aspects of a factor at once. Another limitation is related to
the input data uncertainty and accuracy. As demonstrated in the manuscript, the input
data uncertainty influences each agro-climatic factor differently. Therefore, we feel that it is
crucial to work not only with the data values, but also the uncertainties in order to keep a
final user of the algorithms informed.

We see several options to develop the work on this topic further. First, the rest of the
agro-climatic factors (related to soil temperature, solar radiation, and water cycle) can also
be calculated, including both input and output uncertainties. Moreover, we plan to compare
the climatic data to more in-situ sensors in the future, once we gain access to such a data
source, cooperation with the ISIDOR (http://www.emsbrno.cz/p.axd/en/Srážky.a.teploty.
ISIDOR.html) network just started. It is also worth to mention, that Copernicus Climate
Change Service continues in the reduction of the climatic data uncertainty, at least for
Europe, see details in Copernicus regional reanalysis for Europe (CERRA) (https://climate.
copernicus.eu/copernicus-regional-reanalysis-europe-cerra). Furthermore, last but not
least, Copernicus Climate Change Service just announced that the ERA5 dataset has been
reanalyzed and provides now time series going back to 1950.

6. Conclusions

The calculation of air temperature-related agro-climatic factors and their uncertainties
from the open ERA5-Land dataset has been investigated within this manuscript. We
designed algorithms for calculation of the most significant agro-climatic factors (frost-free
period, heat stress units, growing degree units, number of growing days, dates of nitrogen
application, water balance, and solar radiation), however only air temperature-related
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factors and their uncertainties (frost-free period, heat stress units, growing degree units,
and number of growing days) have been elaborated further in the manuscript.

The developed algorithms were employed in numerical experiments. The first nu-
merical experiment was validation of temperatures from the global ERA5-Land dataset
on the in-situ sensor located in the area of Kojčice in Czechia. The direct comparison of
temperature time series with the length of nine months showed an excellent fit between
these two counterparts with a standard deviation better than 1.1 ◦C and with a correlation
of 99%. This finding allowed us to estimate the frost-free period, heat stress units, growing
degree units, and the number of growing days and their uncertainties in the Pilsen region
from the ERA5-Land dataset over the period 1981–2019.

The conducted experiments showed that even global and relatively roughly dis-
tributed climate data are suitable for the calculation of agro-climatic factors on a regional
scale with good accuracy. In addition, one could eventually use them if in-situ time series
are not available or mix data from global models with terrestrial observations if time series
are not long enough for agro-climatic factors calculation and analysis.

Supplementary Materials: Main supplementary material is available at https://github.com/JiriVales/
agroclimatic-factors/wiki [29], containing a detailed description of agro-climatic factors for Section 3.2.
Methods, data for Section 4.1. Uncertainty of input temperatures and Section 4.2. Accuracy of the
global climatic data evaluated using in-situ sensors, together with maps for Section 3.1.4. Case study
area in the Pilsen region.
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