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Abstract: Microgrids constitute complex systems that integrate distributed generation (DG) and
feature different operational modes. The optimal coordination of directional over-current relays
(DOCRs) in microgrids is a challenging task, especially if topology changes are taken into account.
This paper proposes an adaptive protection approach that takes advantage of multiple setting groups
that are available in commercial DOCRs to account for network topology changes in microgrids.
Because the number of possible topologies is greater than the available setting groups, unsupervised
learning techniques are explored to classify network topologies into a number of clusters that is equal
to the number of setting groups. Subsequently, optimal settings are calculated for every topology
cluster. Every setting is saved in the DOCRs as a different setting group that would be activated when
a corresponding topology takes place. Several tests are performed on a benchmark IEC (International
Electrotechnical Commission) microgrid, evidencing the applicability of the proposed approach.

Keywords: distributed generation; distribution networks; microgrids; power system protection;
over-current relay coordination; unsupervised learning techniques

1. Introduction

Modern societies are highly dependent on the supply of electrical energy for their daily
functioning. The per capita energy consumption has steadily grown, due to the increasing
of industrialization and world population; so, fossil fuel and conventional energy resources
might not be sufficient for meeting humanity’s energy needs in the medium term [1]; in
other words, the traditional electrical network will not be enough to meet the growing
energy demand. For overcoming this issue, the massive implementation of renewable
energy resources and efficient energy storage systems have been thought as the future of
power generation [2,3]. Microgrids play a key role in this solution, since they facilitate
the integration of renewable energy resources in distribution systems through distributed
generation (DG) [4]; nevertheless, such integration brings new issues regarding their control
and operation [5].

The fact that microgrids may exhibit different operational modes that are associated
with the presence of DG units has become one of the main challenges in their protection
coordination [6]. DG units generate bi-directional power flows and variable short-circuit
levels that modify the traditional behavior of distribution networks. According to [7,8],
protection systems in microgrids must face two remarkable challenges: the first one cor-
responds to their inherent dynamic behavior, due to intermittent loads and generators,
and the second one is related to their operating characteristics (grid connected or islanded).
These two aspects tangle the problem of microgrid protection coordination; therefore,
finding a protection scheme that guarantees speed, selectivity, and reliability has become
one of the most challenging tasks in planning microgrid operation [9].
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Directional over-current relays (DOCRs) are widely used in distribution networks
(DNs) and they are recognized as the main protection device due to their simplicity and
low implementation cost [10]. Nevertheless, non-radial flexible systems such as microgrids
complicate the setting of DOCRs [11–13]. Recently, researchers have focused their efforts on
the implementation of optimization techniques for reducing the protection times of DOCRs,
guaranteeing selectivity and reliability resorting to non-standard characteristics [14,15] and
machine learning techniques [16–18].

In [14], an alternative approach to conventional protection coordination modeling was
proposed. This is achieved by adding a new constraint to the coordination problem that
takes into account the Plug Setting Multiplier (PSM), which is the ratio of the fault current
that is seen by the relay to the pickup current. The tripping characteristic of over-current
relays is limited by the PSM value. The approach of [14] takes the limitation of conventional
IEC tripping characteristics used nowadays in numerical relays into consideration.

The authors in [10] proposed a setting group-based adaptive protection scheme to take
different configurations of a microgrid that result from the connection and disconnection of
DG into account. The work proposes different setting groups, limiting its number according
to the capabilities of commercial relays; additionally, a new method based on integer linear
programming and particle swarm optimization (PSO) is used to specify the adjustments of
DOCRs. A similar approach to the one that was proposed in [10] is implemented in [16]
and [17] while using unsupervised machine learning techniques. In [16], the authors exploit
the facility to save multiple setting groups within digital DOCRs to adapt the setting of
the relays to the current topology of the network. Because the number of setting groups
is much lower than that of possible network topologies, a K-means algorithm is used to
classify topologies into a number of clusters equal to the number of setting groups. Based
on this work, the authors in [17] proposed a technique for DOCRs coordination while using
the Self-Organizing Map (SOM) clustering algorithm.

In [18], the protection settings and network topology of a microgrid are modified
through a rule-based adaptive protection scheme to enhance network reliability. The pro-
tection coordination is achieved by means of a machine-learning methodology that is
based on a hybrid artificial neural network and a support vector machine model. In [19],
the authors proposed a protection coordination index to measure the impact of DG on
DOCRs coordination. The index is determined by a two-phase non-linear programming
optimization problem that considers variations of the maximum DG penetration level with
changes in the protection coordination time interval. Authors in [20] proposed a method-
ology for coordinating DOCRs that considers topology changes due to single outages of
lines or generators. The optimal relay settings when considering the N-1 security criterion
are achieved through the solution of a mixed integer nonlinear programming problem.
In [21], a multi-objective swarm optimization algorithm combined with a fuzzy decision-
making tool is developed for the coordination of DOCRs in microgrids. The proposed
approach aims to overcome the limitations of single-objective optimization algorithms that
are applied to minimize the operation time of DOCRs coordination. In [22], the authors
proposed an online adaptive coordination protection scheme for DOCRs using intelligent
electronic devices and a communication channel to obtain real-time information to update
the configuration of the relays.

This paper proposes a new protection coordination approach of DOCRs in microgrids
that integrates and complements the characteristics of the models that are presented
in [10,14,16,17]. The proposed coordination model is applicable to adaptive protection
schemes that use different settings groups and considers the current capabilities and
limitations of DOCRs. The coordination problem is solved by a genetic algorithm, while
several machine learning techniques carry out the clustering of operational scenarios. The
contributions of this work are twofold: (1) it adopts the constraint that was proposed in [14]
regarding the PSM while taking into account the limitation of conventional IEC tripping
characteristics currently used in numerical relays, and (2) it limits the number of clusters to
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that of the setting groups according to the capabilities of commercially available relays, as
proposed in [10,16,17].

These two features are available in normal operation of commercial relays; nonetheless,
they are traditionally not considered in the optimization models of DOCRs. It is a fact
that the number of relay setting groups is far less than the possible operating scenarios
of a microgrid. Therefore, the proposed approach adopts machine learning techniques
to intelligently group the operation scenarios according to the number of setting groups
available in the relay. Additionally, a comparison of the performance of different machine
learning techniques, which includes K-means and SOM techniques that were adopted
in [16,17] is presented. Table 1 shows the features of related research works in the field,
evidencing the knowlege dgap in the existing literature that is filled by the proposed
approach.

Table 1. Optimal coordination of Directional over-current relays (DOCRs) in microgrids (knowledge gap).

Reference Adaptive PSM Constraint Limits Setting Groups K-Means SOM Hierarchical

[15,23,24] X
[14] X X
[10] X X
[16] X X X
[17] X X X

[Proposed] X X X X X X

It is worth mentioning that these features are available in commercial relays, but are
not considered in traditional protection coordination schemes of DOCRs. It is also a fact
that the number of relay setting groups is far less than the possible operating scenarios
of a microgrid. Therefore, the proposed approach adopts machine learning techniques
to intelligently group operation scenarios, according to the number of setting groups
available in the relay. Apart from the aforementioned contributions, this paper compares
the performance of several Machine Learning techniques, as detailed in the results section.
To summarize, a methodology is proposed for the coordination of DOCRs that jointly uses
the K-means, self-Organizing Map, and hierarchical techniques to improve the operating
times of the coordination scheme while guaranteeing network security.

2. Coordination Protection Problem Formulation
2.1. Objective Function

Equation (1) represents the objective function (OF) of the protection coordination
problem that aims at minimizing the total operation time of the DOCRs. In this case,
ti f corresponds to the operation time of relay i when fault f occurs, while m and n are
the number of relays and faults in the system, respectively. It is worth to mention that,
according to the specialized literature, the most common objective function of the protection
coordination problem is the minimization of the total operation time. Regarding reliability,
this one is taken into account within the constraints of the optimization problem. as
described in Section 2.2.

Min
m

∑
i=1

n

∑
f=1

ti f (1)

2.2. Constraints

The constraints of the optimal DOCRs coordination problem are given by
Equations (2)–(9).

tj f − ti f ≥ CTI (2)

ti f =
A.TMSi

PSMB
i f − 1

(3)
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PSMi f =
I f i

ipickupi
(4)

timin ≤ ti f ≤ timax (5)

TMSimin ≤ TMSi ≤ TMSimax (6)

ipickupimin ≤ ipickupi ≤ ipickupimax (7)

PSMimin ≤ PSMi f ≤ PSMimax (8)

SGimin ≤ SGi ≤ SGimax (9)

Equation (2) illustrates the coordination time between backup and primary DOCRs.
In this case, tj f is the operation time of the backup relay j when fault f occurs, and ti f is
the operation time of the primary relay i, for the same fault. The coordination time interval
CTI is the period of time that is allowed for the backup protection to operate. When a fault
takes place, both the backup and primary DOCRs identify the fault occurrence. The backup
DOCR is in charge of tripping the fault in case the primary DOCR misses to isolate the
fault. The ORCs that are considered in this study present a normal inverse characteristic,
as indicated by Equation (3). In this case, A and B are constant parameters of the curve,
TMSi is the time multiplying setting of relay i, and PSMi f is the ratio between the fault
current I f i and the pick up current ipickupi given by Equation (4). Equation (5) indicates
the operating time limits of the DOCRs. In this case, timin and timax are the minimum and
maximum operating time of relay i, respectively. Equation (6) represents the minimum and
maximum limits of TMS for relay i that is given by TMSimin and TMSimax, respectively.
Similarly, Equation (7) represents lower and upper limits of the pickup current ipickupi,
denoted as ipickupimin and ipickupimax, respectively.

Equation (8) represents the lower and upper limits of the PSM denoted as PSMimin
and PSMimax, respectively. PSM is the ratio between the fault current seen by the relay and
the pickup current. The standard characteristic curves of commercial relays are generally
defined in a region where the minimum and maximum values are 1.1 and 20 times the
PSM, respectively. Nonetheless, the presence of DG units in microgrids considerably
increases the short circuit levels. Consequently, for different faults, the maximum value
that is defined for the PSM might be exceeded, affecting the sensitivity of the protections
and causing a loss of the coordination protection scheme. In order to avoid this, a new
constraint regarding the PSM was introduced in [14]. In this case, the maximum value of
the PSM is the highest current level of the IEC normally inverse curve programmed in the
industrial protective relay before the definite time region of the curve.

Equation (9) represents the lower and upper limits of setting groups (SG), denoted as
SGimin and SGimax, respectively. This consideration is not taken into account in traditional
protection coordination approaches. In this case, SGimax corresponds to the highest number
of SG programmed in the industrial protective relay, which may range from two up to
eight, depending on the manufacturer.

3. Unsupervised Learning Techniques

Machine learning can be defined as the study of computer algorithms that automati-
cally improve through experience and provide computers with the ability to learn. Machine
learning algorithms are generally classified in supervised and unsupervised. In the for-
mer, the computer is presented with sample inputs and their corresponding or desired
outputs and the goal is to learn the general rule that maps inputs to outputs, while, in the
later, the data set is not labeled; this means that the algorithm must find the labels and
define them. Accordingly, these algorithms need to learn the structure of the data set and
the relationship between the characteristics for creating groups of objects [25]. A group
is a set of data objects that are similar to each other, but different from objects in other
groups. Unsupervised algorithms make inferences from data sets while only using input
vectors without referring to known, or labeled outcomes. In this work, unsupervised
learning algorithms are used for grouping microgrid operation scenarios and then for
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proposing adjustments to the DOCRs for each of the groups that are found. The K-means
and SOM techniques used in [16,17] are implemented for comparative purposes, along
with hierarchical techniques for improving results.

3.1. K-Means Clustering Algorithm

K-means is a well known unsupervised machine learning algorithm that is used for
clustering [25]. The objective of K-means is basically to group similar data points together
and discover underlying patterns. It consists on determining a set of k points in a dataset,
called centroids (every centroid is associated to a cluster). Subsequently, each data point is
allocated to each cluster minimizing the distance dij from each object within the dataset
to its closest centroid [16]. To summarize, K-means algorithm identifies the k number of
centroids and then allocates every data point to the nearest cluster, keeping the centroids
as small as possible. Figure 1 illustrates the K-means clustering for five clusters within a
three-dimensional space. It is worth mentioning that the number of clusters in the proposed
application is limited by the number of setting groups available in commercial DOCRs.

Cluster 3

Element xi

Cluster 4

Centroid Cj Euclidean

Distance

Cluster 2

Cluster 1

Cluster 5

Figure 1. Illustration of K-means clustering algorithm.

The K-means algorithm features the following procedure of five steps: (1) k points are
selected as the number of groups desired to create initial centroids, (2) every data point is
associated with the closest centroid to create temporal groups from the distance dij, (3) new
centroids are calculated for each temporary group, (4) each data point is reassigned to the
group with the closest centroid from the distance dij, and (5) the procedure is repeated until
convergence is achieved. For calculating dij, the Euclidean distance is commonly used, as
shown in Equation (10), where xi is the object, cj is the center of the group, and m is the
number of objects in the group gj.

dij =

√
m

∑
i=1

(xi − ci)2 (10)

3.2. SOM Clustering Algorithm

The SOM clustering algorithm is a type of competitive artificial neural network that
is designed to facilitate the visualization of high-dimensional data structure. Kohonen
introduced SOM in [26]. The neurons in this method are generally distributed on a two-
dimensional rectangular or hexagonal grid, which is called map. In this sense, SOM can be
seen as a method for performing dimensionality reduction. Each neuron in SOM has an
associated n-dimensional weight vector that can be considered as its position within an
n-dimensional space. The training consists of reducing a distance metric by moving weight
vectors towards the input data without spoiling the topology that is induced from the map
space. Figure 2 illustrates the topology of the SOM network.



Appl. Sci. 2021, 11, 1241 6 of 18

Output layer

Weights

matrix

Input layer

Figure 2. Topology of the Self-Organizing Map (SOM) network.

This algorithm features the following procedure of five steps: (1) randomize the
node weight vectors in a map, (2) randomly pick an input data vector D(t), (3) use the
Euclidean distance to find the similarity between the input vector D(t) and the map’s
node’s weight vector, then track the node that gives the smallest distance (best matching
unit), (4) update the weight vectors W(s + 1) of the nodes in the neighborhood of the
best matching unit by pulling them closer to the input vector, and (5) increase the current
iteration s and repeat from step 2, while current iteration s is less than the iteration limit.
Equation (11) is commonly used for updating the weight vectors W(s + 1), where f (u, v, s)
is the neighborhood function that provides the distance between neurons u and v in
iteration s, a is a monotonically decreasing learning coefficient, u is the index of the best
matching unit in the map, v is the index of the node in the map, and s is the current iteration.

W(s + 1)v = W(s)v + f (u, v, s) ∗ a(s) ∗ (D(t)−W(s + 1)v) (11)

3.3. Hierarchical Clustering Algorithm

Hierarchical clustering algorithms allow for identifying homogeneous groups of
data location, from a similarity matrix [27]. Finding the hierarchical structure involves
calculating the distance between each pair of points and then using these distances to join
pairs of points. Hierarchical algorithms group from bottom to top. Each sample starts in
its own group; the two most similar groups are combined into a new larger group until
all of the samples are joined into a single large group. The result of this procedure can be
graphically represented using a dendrogram or binary tree.

Figure 3 illustrates an example of hierarchical clustering. In this case, six elements
are allocated in a square. X and Y are the first two elements that are combined to form a
cluster. This is done by computing the distance based on the length of a straight line drawn
from one element to another. The closest element to the new set formed by X and Y is W;
and then elements X, Y, and W form a new cluster. The process continues until all of the
elements are grouped together, as indicated in the dendogram.

The distances between new groups formed and each of the old groups can be calcu-
lated following different procedures [28]. In this research, we used the single, complete,
average, and Ward method for calculating the distances between groups, as detailed below.
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A F

C

W

X
Y

Dendogram

A F C W X Y

Figure 3. Illustration of hierarchical clustering.

3.3.1. Single Method

In this case, the distance dij between groups gi and gj corresponds to the minimum
distance between two points x and y. Point x belongs to group gi, while point y belongs to
group gj.

dij = minx∈gi ,y∈gj d(x, y) (12)

3.3.2. Complete Method

In the Complete method, the distance dij between groups gi and gj corresponds to the
maximum distance between two points x and y. Point x belongs to group gi, while point y
belongs to group gj.

dij = maxx∈gi ,y∈gj d(x, y) (13)

3.3.3. Average Method

In this case, the distance dij between groups gi and gj corresponds to the average of
the distance between two points x and y. Point x belongs to group gi, while y belongs to
group gj. Where ni is the number of elements in group gi and nj is the number of elements
in group gj.

dij = sumx∈gi ,y∈gj

d(x, y)
ninj

(14)

3.3.4. Ward Method

In the Ward method, the total variance within the group is minimized. At each step
groups gi and gj with a minimum distance dij merge. A pair of groups is found that yields
a minimal increase of total variance within the group after fusion.

dij = ||xi − yj||2 (15)

4. Methodology

Initially, the microgrid under study is modeled and several simulations are carried
out in order to characterize its behavior. In this step, information regarding short-circuit
currents that are seen by the relays for a set of operative scenarios and faults is obtained. In
this case, three-phase faults were considered in the middle of the lines. However, other
types of faults and locations can be considered, which may result in different settings
of the DOCRs. It is worth mentioning that every system operator determines the type
of faults and locations to be evaluated beforehand in order to establish the protection
coordination scheme. From the results of the aforementioned simulations, a cluster analysis
is performed when considering several operative scenarios using the machine learning
algorithms described in Section 3. Subsequently, the optimal coordination of DOCRs is
performed for each cluster that was obtained by the machine learning algorithms. A genetic
algorithm (GA) is used in this step. Nonetheless, is worth mentioning that any other
metaheuristic technique can be implemented in this step. Finally, while taking the results
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of the DOCRs coordination and the defined clusters into account, a heuristic is applied for
improving the coordination. Figure 4 depicts the flowchart of the proposed methodology.
Each of the steps is described in detail below.

Simulation process

Clustering operating
scenarios with

unsupervised learning
techniques

Coordination protection
problem solution

Heuristic adjustment

Start  number of cluster
 (NC)

NC= 2

Start

CG < maximum CG?

END

Is stopping criteria met?

Is stopping criteria met?

Increase NC
NC=NC+1

YES

NO

YES

YES

NO

NO

Figure 4. Flowchart of the proposed methodology.

A short-circuit analysis is first performed in all operative scenarios to perform the
clustering. In each operative scenario, each fault current that is seen by each relay of the
system is taken, according to the established faults. Once it is established, the database with
all of the fault currents that are seen by the relays, the clustering is carried out with each
of the automatic learning techniques described in the document. In all of the automatic
learning methods implemented, clustering is carried out from the fault currents that are
seen by the relays in all operating scenarios. In the particular case of the K-means technique,
the clustering is carried out, taking, as a starting point, a centroid that essentially depends
on the fault currents seen by the relays.

Once the clusters are defined, in order to identify the coordination of each one, the pre-
viously established fault currents are considered and the coordination is evaluated while
taking into account the fault current seen by each relay in all the scenarios found in the
cluster, while using the GA. The above process is repeated for each cluster.

As already mentioned, the GA is in charge of coordinating each cluster based on the
fault currents that are seen by each relay in the operating scenarios present in the cluster.
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In order to carry out this coordination, the initial individuals of the population are defined
randomly, while considering the constraints of the decision variables. In this problem,
the individuals are the variables that are to be adjusted in each relay of the system. The GA
considers the operating times of all relays as the objective function. What is sought in this
case is to reduce operating times, ensuring that the constraints that are presented in the
formulation are met.

There are different stopping criteria in the steps of the methodology. In the general
methodology, the first one is that there are no coordination violations between relays.
The second one is that the maximum number of clusters allowed is reached (this is defined
according to the characteristics of the commercial relay that is being used, depending on
the maximum number of groups of settings that it has enabled). In the case of the GA,
a maximum number of iterations was defined as the stopping criterion (2000 iterations for
the test system used).

4.1. Simulation Process

The test microgrid is modeled using the Digsilent Power Factory software [29], where a
set of possible operating scenarios are configured. The configuration of scenarios is carried
out taking into account combinations of different generation outputs and topological
alternatives. Once each operation scenario is configured, short-circuit current calculations
are performed for different fault locations and for each operating scenario. The output data
of the simulation process are the short-circuit current values that are seen by each relay for
each fault. Figure 5 presents the flowchart of this stage of the methodology.

Microgrid modeling in
commercial software

Operating scenarios
configuration

Start

END

Short circuit calculation

Figure 5. Simulation process.

4.2. Clustering of Operating Scenarios

The proposed methodology seeks to identify different setting groups, limiting its
number to the capabilities of commercial relays. The number of relay setting groups is far
less than the possible operating scenarios of a microgrid; therefore, an intelligent grouping
of scenarios that meets the limitations of commercial relays is necessary. The data regarding
short-circuit currents of the set of operating scenarios is the characteristic evaluated to
perform the clustering. The number of sets in which the operation scenarios are grouped
is defined. Subsequently, the short-circuit currents obtained in Step 2 are used as input
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data for the machine learning algorithms. The clustering is performed according to the
defined number of groups and short circuit results, while using the unsupervised learning
technique that is described in Section 3, as shown in Figure 6. Each of these methods
provides a possible distribution of the groups of operating scenarios.

K-means
clustering
algorithm

Start

END

SOM
clustering
algorithm

Single Complete Average Ward

GA based
protection

coordination
scheme

Hierarchical
clustering
algorithm

Figure 6. Clustering and DOCRs solution.

4.3. Solution of the Protection Coordination Problem

The protection coordination problem is solved by means of a GA, as previously men-
tioned. It is worth to mention that in this step any other metaheuristic can be implemented;
nonetheless, GAs have proven to be effective in addressing the coordination problem of
DOCRs as outlined in [24,30,31]. The short-circuit currents obtained in Step 1 and the
groups obtained by the machine learning algorithms in Step 2 are used as input data of
the GA. The DOCR coordination model presented in Equations (1) to (9) is solved for each
group of settings provided by the machine learning algorithms (see Figure 6).

The clustering carried out using the machine learning algorithms gives possible
distributions of operative scenarios in the groups. The characteristics of each distribution
must be evaluated in order to define which one guarantees the safest operating condition.
The GA solves the DOCR coordination problem for each distribution corresponding to the
operating scenarios. Once this process is carried out, the performance of each distribution
is evaluated, verifying the coordination times between main and back up relays, as well as
the operating times for each relay. Finally, if the performance of any of the distributions of
the operating scenarios guarantees the enforcement of the coordination constraints, the
process is finished; otherwise, it it proceed to step 4.

4.4. Heuristic Adjustment

An adjustment of the distributions is made using one of the techniques summarized
in Section if the performance of the distributions of the operating scenarios does not
comply with the constraints of the protection coordination problem 3. Each method
provides a possible distribution of the operating scenarios. For performing such adjustment,
the performance of each of the methods is analyzed.

The heuristic process is as follows: (1) the method with the best performance is
selected, (2) the groups that present coordination problems are identified, (3) the group
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distributions of other methods with great similarity to groups of step 1 are detected; the
coordination of such methods must be adequate, (4) the differences between the members
of the selected groups in steps 2 and 3 are analyzed, (5) small modifications are made
in the group that is selected in step 2, taking some elements form another group, (6) the
DOCR coordination problem is solved for the groups of step 5, and (7) it is verified if the
coordination performance of the new distributions complies with the selectivity constraint;
if it is so, the process is terminated; otherwise, the second best performing method is
selected and the procedure is repeated repeated through step 2. Figure 7 shows an example
of one of the proposed heuristic.

Microgrid with 10 operation scenarios

Best Solution

      K-means       Violation

G1       1 2 3 5                   0
G2       8 9 10                    1
G3       4 5 6                      0

Best Solution

      K-means       Violation

G1       1 2 3 5                   0
G2       8 9 10                    1
G3       4 5 6                      0

Stage 1

Other Solution

        Ward           Violation

G1       1 2 3                      0
G2       5 8 9                      2
G3       4 5 6 10                0

Other Solution

        Ward           Violation

G1       1 2 3                      0
G2       5 8 9                      2
G3       4 5 6 10                0

Stage 2

Stage 3

Stage 4 and 5

 New Solution

G1       1 2 3 5
G2       8 9
G3       4 5 6 10

 New Solution

G1       1 2 3 5
G2       8 9
G3       4 5 6 10

OCRs solution
with GA

Stage 6

 New Solution    Violation

G1       1 2 3 5                   
G2       8 9                         
G3       4 5 6 10                

Stage 7

0
0
0

Figure 7. Illustrative example of the heuristic adjustment.

5. Tests and Results

The proposed approach was tested with a benchmark IEC microgrid that integrates
DG. Figure 8 depicts the test microgrid and its parameters can be consulted in [32]. Also,
the characteristics of the protection scheme can be found in [14]. Table 2 presents the 16
operative scenarios (OSs) taken into account for this microgrid. Such OSs are generated by
considering different generation and topological conditions. Note that the topology of the
microgrid is modified while considering the operational states of switches CB-1 and CB-2;
apart from this, the microgrid is able to operate connected or disconnected from the main
network (grid-connected and islanded modes).

Table 2. Microgrid operational scenarios.

OS Grid CB-1 CB-2 DG1 DG2 DG3 DG4

OS1 on open open off off off off
OS2 on open open on on on on
OS3 on open open on on off off
OS4 off open open on on on on
OS5 on close close off off off off
OS6 on close close on on on on
OS7 on close close on on off off
OS8 off close close on on on on
OS9 on close open off off off off

OS10 on close open on on on on
OS11 on close open on on off off
OS12 off close open on on on on
OS13 on open close off off off off
OS14 on open close on on on on
OS15 on open close on on off off
OS16 off open close on on on on
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For the sake of clarity, all of the relays were labeled with numbers ranging from
one to 15, preceded by the letter R located, as illustrated in Figure 8. Standard IEEE
242 recommends that the coordination time between main relay and backup relays CTI
should be equal to or greater than 0.2 s [33]. In this case, a CTI of 0.3 s is considered
for ensuring a greater margin of safety. A standard inverse IEC characteristic curve was
adopted for the operating characteristic of the DOCRs, with parameters A and B of 0.14
and 0.02, respectively. This type of curve was adopted, since it is the most widely used in
protection coordination schemes; nonetheless, any other characteristic curve may be used.
It was also assumed that the relays of the microgrid are able to configure a maximum of
four setting groups. The test system was implemented in DIgSILENT Power Factory and
several faults were considered in the lines of the test network.

Utility

Bus Utility

Bus DG2

Bus DG1
Bus 1R7

R12 R6

DL-1

R11Bus 3 R8

R5 R15
Bus 2

CB LOOP 1

R9

DL-3

R10 R4

DL-4

R3Bus 5

Bus 4

DL-5

R2

R1Bus 6

R13

R14

Bus DG3

CB LOOP 2

Figure 8. Benchmark IEC micro-grid.

5.1. Results with No Clustering

The coordination problem was initially solved when considering a single set of pa-
rameters for the 16 operative scenarios described in Table 2. The problem was solved
using a GA. Results are summarized in Table 3 that shows the total operating times and
the number of cases where coordination is not guaranteed; that is, where the constraint
given by Equation (2) is not met. It is evident that coordination cannot be guaranteed in all
cases since constraint (2) is not fulfilled 13 times. From this test, it is concluded that it is
extremely difficult (if not impossible) to guarantee security when considering a single set
of parameters due to the high number of operating alternatives.
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Table 3. Results for all scenarios with a single set of parameters (no clustering).

Execution Execution Time [s] Operation Time [s] Violations
1 59.32 724.80 13
2 60.49 774.50 14
3 61.04 775.56 14
4 60.02 774.50 14
5 63.98 737.54 13
6 59.69 724.86 14

5.2. Results with Two Clusters

In this section, the DOCR coordination problem is solved by using the proposed
methodology. The initial number of relay setting groups is defined. In this case, it starts
with two clusters and the grouping of the OS that is presented in Table 2 is carried out.

Table 4 details the OS belonging to each cluster, the operation time and number of
violations of the coordination problem that was obtained with different methodologies.

In this case, all of the clustering methods provided the same distribution of OS. In clus-
ter 1, there are no coordination problems; that is to say that selectivity is guaranteed;
nonetheless, in cluster 2, there are four cases where coordination is not guaranteed. When
comparing with the results that are presented in Table 3, a reduction of the operating time
and number of violations in the selectivity constraint is evident. Nonetheless, the adjust-
ment with the heuristic technique does not present any additional improvement in this
case. Therefore, it is proceeded to increase the number of clusters.

Table 4. Results considering two clusters.

Clusters OS Distribution Operation Time [s] Violation
1 4 8 12 16 109.1561 0
2 1 2 3 5 6 7 9 10 11 13 14 15 498.7185 4

total 607.8746 4

5.3. Results Considering Three Clusters

In this case, three clusters are considered and the OS presented in Table 2 are grouped
using the described methods. The distribution of the clusters and the obtained results are
presented in Table 5. Note that the Hierarchical single and average methods provide the
same clustering, while the other methods result in different distributions of OS. When
comparing with Table 4, a reduction of the violations is evident; however, some cases still do
not achieve coordination, since up to four violations are presented in some clusters. In this
case, the method that obtained the best performance was K-means, while the ones with
the worst performance were the hierarchical single and average methods. The adjustment
using the heuristic technique did not present any additional improvement, so it is expected
to increase the number of clusters.

5.4. Results Considering Four Clusters

Table 6 presents the results of the methodology considering four clusters. In this
case, the hierarchical single and average methods provided the same distribution of OS,
while the other methods found different clusters. When comparing with Table 5, there
is an improvement in all of the methods, except for K-means, which presents the worst
performance, while the hierarchical Ward presents the best performance.
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Table 5. Results considering three clusters.

Method Clusters OS Distribution Operation Time [s] Violations

K-means

1 4 8 12 16 109.1561 0
2 1 2 3 13 15 82.3264 0
3 5 6 7 9 10 11 14 314.8834 1

total 506.3659 1

SOM

1 4 8 12 16 109.1561 0
2 1 3 9 13 15 113.5926 1
3 2 5 6 7 10 11 14 383.7345 1

total 606,4832 2

Hierarchical Clustering 1 4 8 12 16 109.1561 0
2 1 2 3 5 7 9 10 11 13 14 15 425.0224 4

Single and Average 3 6 30.6478 0
total 564.8263 4

Hierarchical Clustering 1 4 8 12 16 109.1561 0
2 1 2 3 5 7 9 11 13 14 15 354.4381 4

Complete 3 6 10 63.7431 0
total 527.3373 4

Hierarchical Clustering 1 4 8 12 16 109.1561 0
2 1 3 13 15 58.0175 0

Ward 3 2 5 6 7 9 10 11 14 359.8398 2
total 527.0334 2

Table 6. The results considering four clusters.

Method Clusters OS Distribution Operation Time [s] Violation

K-means

1 4 8 12 16 109.1561 0
2 1 5 9 13 15 113.7333 2
3 6 7 10 11 14 214.3163 0
4 2 3 34.2872 0

total 471,4969 2

SOM

1 4 8 12 16 109.1561 0
2 1 3 9 13 15 113.5926 1
3 5 6 7 10 11 266.9944 0
4 2 14 49.2850 0

total 539.0284 1

Hierarchical Clustering
1 4 8 12 16 109.1561 0
2 1 2 3 13 14 15 127.4997 1
3 5 7 9 10 11 202.0690 1

Single and Average 4 6 30.6478 0
total 469.3726 2

Hierarchical Clustering
1 4 8 12 16 109.1561 0
2 1 2 3 13 14 15 127.4997 1
3 5 7 9 11 145.1465 1

Complete 4 6 10 63.7431 0
total 445.5447 2

Hierarchical Clustering
1 4 8 12 16 109.1561 0
2 1 3 13 15 58.0175 0
3 5 7 9 11 145.1465 1

Ward 4 2 6 10 14 161.9506 0
total 474.2702 1
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An adjustment of the clustering was made while using the heuristic that was proposed
in Section 4.4. The main idea with this heuristic is to improve the results of the clustering
methods. Table 7 and Figure 9 present the adjustment results. It can be seen that the
coordination is guaranteed, since constraint (2) does not present any violation in any of the
clusters. In this case, the optimal coordination is finally achieved and, therefore, no further
clustering is required.

Table 7. The final results considering four clusters.

Method Clusters OS Distribution Operation Time [s] Violation

Heuristic Adjustment

1 4 8 12 16 109.1561 0
2 1 2 3 13 15 82.3264 0
3 5 6 7 10 11 266.9944 0
4 9 14 38.93 0

total 497.4069 0

Figure 9. Illustration of final clusters.

Table 8 presents the protection coordination settings for the test system. For each relay,
ipickup and TMS in each group are presented; furthermore, backup relay information is
also presented.
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Table 8. Coordination parameters.

Relay ipickup TMS C1 TMS C2 TMS C3 TMS C4 Backup Reley
R1 200 0.3042 0.1871 0.2104 0.4287 R10 R11 R12 R13 R14
R2 200 0.1000 0.1762 0.1422 0.4124 R4
R3 200 0.2171 0.1000 0.1298 0.3244 R1
R4 200 0.2071 0.3085 0.2745 0.5447 R6 R9 R15
R5 200 0.2052 0.1515 0.1000 0.1000 R3 R9 R15
R6 200 0.1789 0.4408 0.4068 0.6770 R7 R8
R7 1200 0.4874 0.3678 0.3602 0.5441
R8 200 0.2454 0.2883 0.1000 0.4985 R2 R10 R11 R13 R14
R9 200 0.2329 0.1000 0.2750 0.5644 R2 R11 R12 R13 R14

R10 200 0.1000 0.2633 0.1903 0.4996 R3 R6 R15
R11 260 0.2628 0.2986 0.1416 0.3205
R12 200 0.1000 0.1000 0.3762 0.6195 R5 R7
R13 352 0.2886 0.2033 0.2085 0.4659
R14 260 0.2523 0.1415 0.1710 0.2664
R15 220 0.1757 0.2074 0.1911 0.3180

For illustrative purposes, Figure 10 depicts the coordination between a main and a
backup relay in OS12 for the IEC microgrid when fault in line DL-5 takes place. In this case,
the main and back up relays are RP2 and RB4, respectively. Note that the coordination
between these two relays is evident.

Figure 10. Coordination between the main and back up relays in the IEC microgrid OS12.

6. Conclusions

The optimal coordination of protection schemes in modern distribution networks
that incorporate microgrids has became a challenging task, due to the presence of DG.
Furthermore, microgrids may feature multiple operational scenarios and topologies, which
renders traditional approaches for DOCR coordination unreliable. In this context, adapt-
able protection schemes are required. This paper proposes a flexible approach for the



Appl. Sci. 2021, 11, 1241 17 of 18

optimal coordination of DOCRs in microgrids that host DG and feature several operational
scenarios or topologies. The proposed coordination approach is applicable to adaptive
DOCR schemes that use different setting groups and considers the current capabilities
and limitations of commercial relays. The proposed model considers the unsupervised
learning techniques to intelligently group operation scenarios according to the number of
setting groups available for each relay. A comparison of the performance of three unsuper-
vised learning techniques is performed (K-means, SOM, and Hierarchical clustering with
four variants). Furthermore, a new methodology for mixing characteristics of different
machine learning algorithms is proposed by means of a heuristic adjustment that allows
for improving the performance of the protection scheme. A genetic algorithm was used
for solving the proposed coordination model. The applicability and effectiveness of the
proposed approach was tested with a benchmark IEC microgrid that features 16 opera-
tional scenarios. The tests show that an adequate coordination is guaranteed when four
setting groups are considered. In this sense, the heuristic adjustment played a key role in
ensuring the selectivity of the proposed coordination. Future research may include other
machine learning techniques as well as non-conventional characteristics of commercially
available DOCRs.
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