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Featured Application: Uses Model-Based Systems Engineering, Set-Based Design, and decision
analysis to perform a tradespace exploration on an UAV illustrative case study to show the poten-
tial benefits of set-based design.

Abstract: System designers, analysts, and engineers use various techniques to develop complex
systems. A traditional design approach, point-based design (PBD), uses system decomposition and
modeling, simulation, optimization, and analysis to find and compare discrete design alternatives.
Set-based design (SBD) is a concurrent engineering technique that compares a large number of
design alternatives grouped into sets. The existing SBD literature discusses the qualitative team-
based characteristics of SBD, but lacks insights into how to quantitatively perform SBD in a team
environment. This paper proposes a qualitative SBD conceptual framework for system design,
proposes a team-based, quantitative SBD approach for early system design and analysis, and uses
an unmanned aerial vehicle case study with an integrated model-based engineering framework to
demonstrate the potential benefits of SBD. We found that quantitative SBD tradespace exploration
can identify potential designs, assess design feasibility, inform system requirement analysis, and
evaluate feasible designs. Additionally, SBD helps designers and analysts assess design decisions
by providing an understanding of how each design decision affects the feasible design space. We
conclude that SBD provides a more holistic tradespace exploration process since it provides an
integrated examination of system requirements and design decisions.

Keywords: decision analysis; tradespace exploration; set-based design; team-based methods; systems
engineering; model-based engineering

1. Introduction

The design of complex engineered systems requires detailed analyses performed by a
large number of experts over a specific period. A traditional design approach, point-based
design (PBD), uses system decomposition, modeling, simulation, optimization, and analysis
to find and compare discrete design alternatives. PBD is a well-researched area [1–11]. An
alternative to PBD is set-based design (SBD), which explores a large number of design
alternatives grouped into sets and uses uncertainty resolution to select the most promising
sets. SBD research dates back to the early 1990s [12,13].

Recent advances in SBD research have increased the adoption of SBD by several orga-
nizations. For example, in 2008 the then Commander of the Naval Sea Systems Command
sent a memo entitled “Ship Design and Analysis Tool Goals”, which required the use of
SBD and the use of new tools for trade-off analysis [14]. In 2018, the United States Air
Force in their Capability Development Guidance mandated that “Development planners
should use a set-based design modeling, simulation, and analysis approach, which sup-
ports the thorough exploration of alternative solutions while maintaining maximum design
trade space”.

The purpose of this paper is to show how tradespace exploration in early system
design using an integrated model-based engineering (MBE), SBD, and trade-off analysis
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method can help develop requirements and identify high-performing design alternatives
that have an affordable cost. We propose a qualitative SBD conceptual framework and
quantitative SBD approach to inform decision-making by design teams. The quantitative
SBD approach fills a gap in the literature on how to implement quantitative SBD. We use
an unmanned aerial vehicle (UAV) case study with an integrated model-based engineering
framework to demonstrate the benefits of SBD. Specifically, we demonstrate how SBD
helps to (1) analyze requirements to inform requirement developers and (2) assess design
decisions using design sets to better inform design teams when selecting design options.

We organize the rest of this paper in the following manner. Section 2, entitled Set-Based
Design, provides insight into SBD as a design process and an overview of the recent SBD
literature. Additionally, it contains the proposed quantitative SBD implementation method-
ology, which informs design teams. We then describe the UAV case study in Section 3
(Unmanned Aerial Vehicle Case Study). Section 4 (Insights from Quantitative Set-Based
Design) uses this case study to describe and demonstrate how to use SBD to inform require-
ment analysis and select design options. Finally, Section 5 (Summary and Future Work)
concludes with a summary and discussion of future research.

2. Set-Based Design
2.1. Point-Based versus Set-Based Design

The design of complex systems is challenging and very time-consuming. Traditionally,
designers and engineers use point-based design (PBD) methods that decompose the system
into subsystems or components and use subsystem design expertise to begin preliminary
design. In this process, a team of designers concurrently use techniques from their field
of expertise to perform analyses. Additionally, subsystems and systems engineers use
modeling, simulation, and optimization tools to find good solutions throughout the PBD
decomposition process. Optimizing PBD decomposition to solve engineering design
problems is not a new research field [1–11]. These methods use system design variables
or incorporate value to reflect stakeholder needs for decision making [15]. No matter the
optimization method, the end result may be a few good solutions or several “optimal”
solutions to investigate in further analyses. Of course, real-world complex systems often
have a non-linear design space, which makes it difficult to find the true efficient frontier.
These methods find “good” solutions but not necessarily solutions on the design space’s
actual Pareto Frontier. This occurs throughout the system design process until the decision-
maker selects a single PBD solution for further development.

Set-based design (SBD) builds upon the best practices of PBD. One key difference is
that SBD considers a large number of alternatives grouped into sets and reduces the number
of these sets by increasing the detail and analyses to determine feasibility. Wade et al. [16]
illustrate this difference between PBD and SBD to provide a motivation to use SBD. The
illustration, seen in Figure 1, shows how SBD has a greater potential to find sets of solutions
on the Paetro Frontier based upon its use of a larger number of alternatives.
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In 1993, Ward and Seering [13] published two SBD articles, which discussed a method
to find the optimal design of a mechanical system by using sets of specifications. In 1995,
Ward et al. [17] used the phrase “set-based concurrent engineering” to describe Toyota’s
design approach, which included delaying decisions, communicating “ambiguously,” and
producing a large number of alternatives. Ward et al. [17] found from analyzing Toyota’s
processes that SBD increases communication, collaborators’ trust, and parallelism, while
reducing the number of meetings and enabling an improved search for a “globally optimal
design”. They further provided a five-step process to perform SBD: (1) define sets of alter-
natives at the system level; (2) define sets of alternatives at the subsystem level; (3) look at
subsystems to find parallels to categorize the sets; (4) converge slowly to a single solution
by using step 3 to determine subsystem specifications, and (5) maintain all decisions once
they are made [17]. Later, Singer et al. [18] provided three SBD tenets: (1) “considers large
number of designs”, (2) “allows specialist to consider a design from their own perspective
and use the intersection between individual sets to optimize a design”, and (3) “establish
feasibility before commitment”. The third tenet uses a slow set-narrowing process that
includes increasing detail, a commitment to the selected set, and an uncertainty manage-
ment process that uses process gates as elements to “establish feasibility”. These steps
and characteristics are consistent with the work of other researchers [18–35]. However,
Specking et al. [36] performed a SBD literature search that demonstrated a lack of quantita-
tive techniques in the previous SBD literature. Additionally, they introduced the need to
use decision analysis to capture value and the concepts of set drivers and set modifiers to
add greater meaning to the design set definition. Set drivers “are the fundamental design
decisions that define the platform characteristics that enable current and future missions”,
while set modifiers “are design decisions that are ‘added on’ to the platform and can be
modified to adapt to new missions and scenarios” [16].

A major gap in the literature is the lack of specific techniques to perform SBD in a
team environment. Many papers discuss using teams to develop sets, but none of them
describe a methodology for how the teams should collaborate to perform SBD. For example,
Diaz [37] uses a team of stakeholders and morphological matrices to develop concept sets.
This provides conceptual insight into a qualitative set creation method, but it does not
provide techniques for those teams to analyze the sets to converge to set selection. One of
the most common illustrations is by Ward et al. [17], which depicts Toyota’s parallel set-
narrowing process. This diagram simply illustrates that all teams should work in parallel
and converge to a single set.

2.2. Set-Based Design Conceptual Framework

Figure 2 provides a conceptual framework to illustrate the use of SBD system design
and system analysis techniques throughout the system design lifecycle. The process starts
with determining the system needs/requirements. These requirements drive all design
stages. The framework flows from these requirements to the exploratory, concept, and
development phases through time. Each phase uses design and analysis techniques that
provide additional information about the system. The key is that design and analysis can
occur concurrently. Subsystem design teams develop models that system analysts use
to assess system performance and provide insights back to subsystem designers about
the system feasibility and performance. These insights allow subsystem designers to
improve their design concepts. Another key feature is the framework’s ability to update
requirements throughout the design process. Additional information about feasibility,
performance, and cost from models and simulations informs requirement refinement. This
information is available due to the large set of designs being considered, which helps to
explore the entire design space and show how each requirement affects the feasible design
space. As design uncertainties are resolved by models, simulations, and prototypes, the
initial numbers of sets slowly converge to a single point solution at the end of the process.
The production phase uses this solution. This paper focuses on tradespace exploration with
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SBD and trade-off analysis during early design stages (i.e., pre-milestone A or exploratory
and concept life cycle stages).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 19 
 

with determining the system needs/requirements. These requirements drive all design 

stages. The framework flows from these requirements to the exploratory, concept, and 

development phases through time. Each phase uses design and analysis techniques that 

provide additional information about the system. The key is that design and analysis can 

occur concurrently. Subsystem design teams develop models that system analysts use to 

assess system performance and provide insights back to subsystem designers about the 

system feasibility and performance. These insights allow subsystem designers to improve 

their design concepts. Another key feature is the framework’s ability to update require-

ments throughout the design process. Additional information about feasibility, perfor-

mance, and cost from models and simulations informs requirement refinement. This in-

formation is available due to the large set of designs being considered, which helps to 

explore the entire design space and show how each requirement affects the feasible design 

space. As design uncertainties are resolved by models, simulations, and prototypes, the 

initial numbers of sets slowly converge to a single point solution at the end of the process. 

The production phase uses this solution. This paper focuses on tradespace exploration 

with SBD and trade-off analysis during early design stages (i.e., pre-milestone A or ex-

ploratory and concept life cycle stages).  

 

Figure 2. SBD Conceptual Framework for System Design. 

2.3. Quantitative Set-Based Design with System Design Teams 

Quantitative SBD implementation methodologies are an emerging area of research. 

Rapp et al. [38] provided an SBD scheme for product development that “minimizes the 

impacts, by proactively considering the possibility of changes in the external factors and 

the implication of mid-course design changes.” Specking et al. [39] introduced and 

demonstrated an SBD tradespace exploration implementation process for early system 

design, as shown in Figure 3. They also demonstrated that SBD requires the use of MBE 

and an integrated framework in an early design to adequately explore the tradespace. 

Figure 2. SBD Conceptual Framework for System Design.

2.3. Quantitative Set-Based Design with System Design Teams

Quantitative SBD implementation methodologies are an emerging area of research.
Rapp et al. [38] provided an SBD scheme for product development that “minimizes the
impacts, by proactively considering the possibility of changes in the external factors
and the implication of mid-course design changes.” Specking et al. [39] introduced and
demonstrated an SBD tradespace exploration implementation process for early system
design, as shown in Figure 3. They also demonstrated that SBD requires the use of MBE
and an integrated framework in an early design to adequately explore the tradespace.
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Figure 3 starts by determining the mission needs and system requirements. It then
requires the creation of an integrated model that connects these requirements to design
decisions, and ultimately, to an affordability analysis. Instead of using optimization, the
SBD process uses Monte Carlo simulation to uniformly develop the alternatives and
evaluate the alternatives using desired response variables, such as system performance
or cost, as illustrated in Figure 4 as an affordability analysis (system performance versus
system cost). The integrated model assesses the feasibility of each alternative based on
the requirements. If the number of feasible designs is unacceptable, the mission needs
and system requirements are reevaluated, and the model is updated. The feasible points
in the tradespace can be grouped into sets once the number of feasible designs is found
to be acceptable by the decision authority. SBD’s use of sets enables additional analyses,
such as the one illustrated in Figure 5. These sets are evaluated to provide insights into
the tradespace and system requirements. Analysts use dominance to eliminate sets. For
example, Figure 5 demonstrates that engine type P dominates engine type E. Analysts then
present the remaining sets of alternatives to the decision authority to carry forward to the
next design phase.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 19 
 

 

Figure 4. SBD Feasible Tradespace Created by Monte Carlo Simulation. 

 

Figure 5. Tradespace Classified by Engine Type as Sets. 

The process in Figure 3 provides an “analyst” perspective or the technical aspect of 

SBD, but it does not describe how to use that analysis to encourage interactions between 

subsystem design teams, i.e., the social aspect of SBD, to inform design decisions. The 

qualitative SBD literature uses a parallel approach, which requires interaction with sub-

system design teams. This research uses the early design set-based design tradespace ex-

ploration process found in Figure 3 by using quantitative analysis to provide design teams 

with the ability to assess the impact of their proposed subsystem design on the system.  

Figure 6 depicts our proposed quantitative SBD implementation methodology with 

the roles and responsibilities described in Table 1. Many organizations might not have all 

of these roles or may have other names for them. The engineering manager or systems 

engineer may be expected to fill many of these roles. The implementation of this method 

requires technical and social skills. Implementers must be able to perform the required 

analysis, while managing the overall process and communicating with the right stake-

holders at the right time in the most effective manner. 

Figure 4. SBD Feasible Tradespace Created by Monte Carlo Simulation.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 19 
 

 

Figure 4. SBD Feasible Tradespace Created by Monte Carlo Simulation. 

 

Figure 5. Tradespace Classified by Engine Type as Sets. 

The process in Figure 3 provides an “analyst” perspective or the technical aspect of 

SBD, but it does not describe how to use that analysis to encourage interactions between 

subsystem design teams, i.e., the social aspect of SBD, to inform design decisions. The 

qualitative SBD literature uses a parallel approach, which requires interaction with sub-

system design teams. This research uses the early design set-based design tradespace ex-

ploration process found in Figure 3 by using quantitative analysis to provide design teams 

with the ability to assess the impact of their proposed subsystem design on the system.  

Figure 6 depicts our proposed quantitative SBD implementation methodology with 

the roles and responsibilities described in Table 1. Many organizations might not have all 

of these roles or may have other names for them. The engineering manager or systems 

engineer may be expected to fill many of these roles. The implementation of this method 

requires technical and social skills. Implementers must be able to perform the required 

analysis, while managing the overall process and communicating with the right stake-

holders at the right time in the most effective manner. 

Figure 5. Tradespace Classified by Engine Type as Sets.

The process in Figure 3 provides an “analyst” perspective or the technical aspect of
SBD, but it does not describe how to use that analysis to encourage interactions between
subsystem design teams, i.e., the social aspect of SBD, to inform design decisions. The qual-
itative SBD literature uses a parallel approach, which requires interaction with subsystem
design teams. This research uses the early design set-based design tradespace exploration
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process found in Figure 3 by using quantitative analysis to provide design teams with the
ability to assess the impact of their proposed subsystem design on the system.

Figure 6 depicts our proposed quantitative SBD implementation methodology with
the roles and responsibilities described in Table 1. Many organizations might not have all
of these roles or may have other names for them. The engineering manager or systems
engineer may be expected to fill many of these roles. The implementation of this method
requires technical and social skills. Implementers must be able to perform the required anal-
ysis, while managing the overall process and communicating with the right stakeholders
at the right time in the most effective manner.
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Table 1. Roles and Responsibilities of Team-Based Set-Based Design Process.

Role Responsibilities

Decision Authority/Project Manager Make decisions, answer for the successes or failures
of the project, and communicate with stakeholders

Stakeholders Provide insight into project needs and requirements

System Analysts

Work with system designers and engineers to gather
relevant models to develop and analyze the

integrated model to provide information to the
decision authority

System Architects Develop overall system architecture, concepts,
and models

Subsystem Designers Develop subsystem designs and models

As with any system design, the process begins with mission analysis. This opportunity
or capability shortfall results in a need for a new system design. Following need validation
and use case development, systems engineers define design concepts and request design
models from the various system architects and subsystem design teams. Analysts then
construct an integrated system model from these subsystem and system models, as well as
other analytical models and simulations, which are consolidated in an MBE environment.
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Systems analysts use this integrated model to uniformly generate alternatives based upon
the desired decision variables in the order of hundreds of thousands of alternatives by
using Monte Carlo simulation.

Based on the generated alternatives and the integrated models, the systems analysts
identify and define the set-drivers which define design sets in the cost vs. value tradespace.
As new information is provided, the designers and analysts refine the decision options
and the models. All feasible sets should be retained in the model in case uncertainty
resolution determines that the previous most promising sets are infeasible, which allows
analysts to return to these sets. This process is continued until the system architects,
subsystem designers and systems analysts agree with the tradespace, which is sent to the
decision authorities to obtain approval prior to design selection. If the tradespace is not
approved, the decision authority informs the stakeholders of issues, such as requirements
issues, who then may update the requirements. System analysts then repeat the integrated
model refinement through tradespace evaluation processes until the tradespace is resent
to the decision authority for approval. Once approved, system analysts evaluate and
identify the most promising sets for uncertainty resolution. At this point, the system
architects and subsystem designers provide higher fidelity models and develop prototypes
to resolve uncertainty and inform set selection. Resolving uncertainty is key for any SBD
process. These higher fidelity models and prototypes help increase the detail of the system
as development continues. This aligns with Singer et al.’s [18] elements to “establish
feasibility”. Any changes require an update to the integrated model to repeat the integrated
model refinement through set evaluation/selection processes. Ultimately, this process
converges to a few points, which are presented to the decision authority in a tradespace.
The decision authority selects a final design to move to production.

A key aspect of this process is the ability to efficiently revise and integrate updated
design information from designers, results from models and simulations, and requirements
from stakeholders, without incurring significant added delays or costs in the design
process. Our process accomplishes this through the use of integrated MBE methodologies,
maintaining numerous potential design alternatives, and delaying design decisions until
uncertainty is adequately resolved. The result of this quantitative SBD process is the
development of a Pareto optimal set of alternatives, presented to the decision authority for
final selection and approval.

3. Unmanned Aerial Vehicle Case Study
3.1. Overview

We use the UAV case study developed by Small [40] to demonstrate our SBD tech-
niques. This notional case study used an integrated trade-off analytics framework, shown
in Figure 7. The case study uses seven design decisions (engine type, wingspan, operating
altitude, electro-optical (EO) sensor width choice, EO field of view (FOV), infrared (IR)
sensor width choice, and IR FOV) that propagate through eleven performance measures
and several parametric physics models to calculate value and life-cycle cost.

The UAV case study uses value curves for each performance measure to scale from a
minimum acceptable performance level to an ideal performance level. Parametric physics
models score the alternative on its corresponding value curve for each alternative. The UAV
model classifies an alternative as infeasible if it does not meet the required performance
level for any performance measure. If an alternative meets the required performance level
for all performance measures, the model automatically calculates an aggregated total value
for the alternative by using an additive value model [41].

The UAV model uses the design decisions to automatically calculate each alternative’s
life-cycle cost in parallel with value. The seven design decisions are inputs to the calculation
of hardware development costs, operation and maintenance costs, support costs, and
indirect support costs.

The model presents all results in a cost versus value tradespace, such as the one seen
in Figure 4. This helps decision makers converge upon high-performing design alternatives
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with an affordable cost.
The UAV case study uses the method illustrated in Figure 3. Using Monte Carlo

simulation to uniformly explore the tradespace, we create 100,000 unique alternatives by
uniformly selecting an option for each design decision. For example, if you only consider
two engine types, approximately 50% of the 100,000 alternatives will have one engine type,
while the other 50% will have the other engine type. All alternatives propagate through
the integrated model to determine their feasibility and associated value and cost.
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3.2. SBD Method Verification

Specking et al. [42] verified the UAV’s tradespace exploration process. They hypoth-
esized that optimization could be used to verify the SBD tradespace exploration process
by determining if SBD found the model’s Pareto Frontier. They used a genetic algorithm
coded in a custom Excel-based visual basic macro to find Pareto points. A genetic algorithm
was used since the UAV model contained a highly nonlinear (nonconvex) tradespace. The
UAV SBD implementation found 189 design points that dominated the points found by the
genetic algorithm.

4. Insights from Quantitative Set-Based Design

Singer et al.’s [18] three tenets of SBD, described in Section 2.1, are the features that
separate SBD from PBD. These tenets, when used with our proposed implementation
methodology, enable several benefits for system designers, systems engineers, the decision
authority, and other stakeholders. These benefits include informing requirement analysis
and assessing design decisions through sets and/or using a team of experts.

4.1. Informing Requirement Analysis

Requirement analysis is an important part of systems engineering. Sometimes, the
requirements result in no feasible alternatives. This is why it is important for analysts to
have an understanding of how requirements affect the tradespace. SBD with an integrated
model using MBE techniques enables analysts to assess the impact of a requirement’s
change on the feasible tradespace in near real-time. Parnell et al. [43] provide an example.
This section expands upon that example.

Figure 8 shows these feasible alternatives in yellow and provides a starting point to
help analyze requirements to inform requirement developers. The alternatives in orange
display all of the explored 100,000 designs. The blue points represent the alternatives that
are feasible based solely upon the UAV case study’s physics-based parametric models
(27,750). When requirements are added, the UAV model has only 2526 feasible design
alternatives. The number of feasible solutions increased to 4366 (black) from the UAV
model’s original number of feasible solutions when the requirements were relaxed. Con-
straining the requirements reduced the feasible space to 924 designs (red). Table 2 contains
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constrained, original, and relaxed requirements for the UAV case study.
Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 19 
 

 

Figure 8. Effects of Requirements on the UAV’s Feasible Tradespace [43]. 

Table 2. UAV Case Study with Relaxed, Original, and Constrained Requirements. 

Performance Measure Constrained UAV Case Study Relaxed 

UAS weight (lbs) 40 50 60 

Time required to fly 10 km (minutes) 10 15 20 

Time required to scan a 5 km × 5 km box during 

the day (minutes) 
180 200 220 

Time required to scan a 5 km × 5 km box during 

the night (minutes) 
180 200 220 

Dwell time (minutes) 90 60 30 

Perceived area of UAV at operating altitude (ft2) 14 16 18 

Difference between operating altitude and attack 

helicopter operating altitude of 1000 m 
250 0 0 

Detect human activity in daylight 0.7 0.6 0.5 

Detect vehicular activity in daylight 0.7 0.6 0.5 

Detect human activity at night 0.7 0.6 0.5 

Detect vehicular activity at night 0.7 0.6 0.5 

We also examine the number of feasible designs produced when each requirement is 

changed one by one. For this analysis, we only change the requirement of interest, while 

maintaining all other requirements at their original UAV case study values. Using an in-

tegrated model with MBE makes this an easy analysis to perform. The model updates in 

near-real time when we change each requirement. We then can record the number of fea-

sible designs. Figure 9 shows the results of a one-by-one analysis for the UAV case study 

that used the constrained, original, and relaxed values in Table 2. We display the results 

by using a tornado graph, which places the requirements with the greatest change in fea-

sible designs at the top and the requirements with the fewest changes or no change in 

feasible design at the bottom. Figure 9 shows that the “Detect Human Activity at Night” 

and “Detect Human Activity in Daylight” requirements have the greatest effect on the 

feasible tradespace, while “Detect Vehicular Activity at Night”, “Detect Vehicular Activ-

ity in Daylight”, and “UAS weight” did not affect the feasible tradespace at all, given the 

relaxed, original, and constrained values. 

Figure 8. Effects of Requirements on the UAV’s Feasible Tradespace [43].

Table 2. UAV Case Study with Relaxed, Original, and Constrained Requirements.

Performance Measure Constrained UAV Case Study Relaxed

UAS weight (lbs) 40 50 60

Time required to fly 10 km (minutes) 10 15 20

Time required to scan a 5 km × 5 km box during
the day (minutes) 180 200 220

Time required to scan a 5 km × 5 km box during
the night (minutes) 180 200 220

Dwell time (minutes) 90 60 30

Perceived area of UAV at operating altitude (ft2) 14 16 18

Difference between operating altitude and attack
helicopter operating altitude of 1000 m 250 0 0

Detect human activity in daylight 0.7 0.6 0.5

Detect vehicular activity in daylight 0.7 0.6 0.5

Detect human activity at night 0.7 0.6 0.5

Detect vehicular activity at night 0.7 0.6 0.5

We also examine the number of feasible designs produced when each requirement is
changed one by one. For this analysis, we only change the requirement of interest, while
maintaining all other requirements at their original UAV case study values. Using an
integrated model with MBE makes this an easy analysis to perform. The model updates
in near-real time when we change each requirement. We then can record the number of
feasible designs. Figure 9 shows the results of a one-by-one analysis for the UAV case
study that used the constrained, original, and relaxed values in Table 2. We display the
results by using a tornado graph, which places the requirements with the greatest change
in feasible designs at the top and the requirements with the fewest changes or no change in
feasible design at the bottom. Figure 9 shows that the “Detect Human Activity at Night”
and “Detect Human Activity in Daylight” requirements have the greatest effect on the
feasible tradespace, while “Detect Vehicular Activity at Night”, “Detect Vehicular Activity
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in Daylight”, and “UAS weight” did not affect the feasible tradespace at all, given the
relaxed, original, and constrained values.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 19 
 

 

Figure 9. UAV Case Study Results of One-By-One Requirement Analysis [43]. 

It is important to note that analysts should not focus only on the number of feasible 

designs. Instead, they should evaluate the model’s entire output. Knowing the change in 

the number of feasible designs provides useful information, but we find additional in-

sights by analyzing the entire set of results. These results can provide insights into the 

quality of the feasible designs produced by the requirement changes. We may find that 

the requirement changes produce Pareto points not found in the original model results. 

For example, Figure 10 shows the impact on the feasible tradespace when we analyze the 

results for the most sensitive requirement, “Detect Human Activity at Night”. It is evident 

from this figure that this requirement affects the number and quality of feasible designs. 

This is seen by the additional relaxed (black) and constrained (red) points on the Pareto 

Frontier when compared to the original UAV results (yellow). In fact, the Pareto Frontier 

is almost created by the new feasible designs. 

 

Figure 10. Effect on Feasible Tradepsace by Changing Most Sensitive UAV Requirement. 

Figure 9. UAV Case Study Results of One-By-One Requirement Analysis [43].

It is important to note that analysts should not focus only on the number of feasible
designs. Instead, they should evaluate the model’s entire output. Knowing the change
in the number of feasible designs provides useful information, but we find additional
insights by analyzing the entire set of results. These results can provide insights into the
quality of the feasible designs produced by the requirement changes. We may find that
the requirement changes produce Pareto points not found in the original model results.
For example, Figure 10 shows the impact on the feasible tradespace when we analyze the
results for the most sensitive requirement, “Detect Human Activity at Night”. It is evident
from this figure that this requirement affects the number and quality of feasible designs.
This is seen by the additional relaxed (black) and constrained (red) points on the Pareto
Frontier when compared to the original UAV results (yellow). In fact, the Pareto Frontier is
almost created by the new feasible designs.
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4.2. Assessing Design Decisions Using Sets

Using a refined UAV model with more realistic requirements, we investigate the
insights of using sets. This model produced 1165 feasible designs. One of the distinguishing
features of SBD is the grouping of design alternatives into sets of alternatives to provide
insights to designers.

Figures 11 and 12 illustrate four examples of using decision variables to classify design
decisions as set drivers for the refined UAV case study. Figure 11A uses engine type as
the set driver. This demonstrates that some decision options are better than others. The
piston engine type, P, produces more feasible alternatives when compared to the electric
engine type, E, but more importantly the piston engine’s alternatives dominate the electric
engine’s alternatives by providing greater value at an equal or lower cost. Less than 1%
(5 out of 50,000) of the electric engine alternatives created by the Monte Carlo simulation
are feasible. It is clear from this analysis that the selected design should use the piston
engine or consider adding a different or improved alternative engine.
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Figure 12. Tradespace Classified by (A) Wingspan (top) and (B) Engine Type and Wingspan (Bottom).

Figure 11B classifies the feasible tradespace with the IR FOV as the set driver. This
provides a significant contrast to Figure 11A, since all of the sets overlap. It is evident that
IR FOV 15 is dominated by other options, which means that it could be removed as an
option, but the remaining options’ values and cost ranges span the tradespace. This means
that IR FOV is probably a set modifier.

Figure 12A classifies the feasible tradespace by wingspan. In this illustration, the
labels for all design options for wingspan are grouped by rounding down to the nearest
whole number measured in feet. The illustration is interesting since the sets are column-like
groupings of points. These sets have some overlap. This means that wingspan may be a set
driver or a set modifier.

Figure 12B classifies the feasible tradespace using wingspan and engine type as set
drivers. When reviewing the tradespace by wingspan, it is not easy to determine which
sets to focus our analyses on. However, if we classify the tradespace by wingspan and
engine type, we see that we can disregard all of the feasible electric engines that use a
wingspan within the 11 feet range. The records of all feasible sets should be retained in
case uncertainty resolution changes the assessment of the most promising sets. This allows
designers to consider focusing and performing additional analysis on the most promising
sets for uncertainty resolution.
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4.3. Providing Design Decisions Insights to Design Teams

SBD requires greater initial analytical effort than traditional PBD methods. The added
effort is justified by the potential to more fully explore the tradespace and develop better
system designs. Performing quantitative SBD provides the opportunity to better inform
system and sub-system design teams and help them recommend better designs.

To illustrate this, consider the SBD implementation method found in Figure 6, and the
refined UAV model that produced 1165 feasible designs from 100,000 design alternatives
with an illustrative team. After developing an integrated model and uniformly developing
alternatives, system analysts can consider each individual design decision. They then
evaluate the tradespace and model output in order to present the results to the relevant
system architects, system engineers, and subsystem designers.

Figure 13 shows an example tradespace for the refined UAV case study, which uses
the EO sensor width choice as the set driver. The analyst presents this tradespace to the
corresponding concept architects and EO sensor designers. From the tradespace review,
the engineers decide to remove the EO sensor width choices 7, 8, and 9 since these EO
sensors contain zero feasible designs. Additionally, they decide to remove EO width choice
6 since its 13 feasible designs provide lower values at a higher cost compared with other
EO sensor width choices.
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The system analyst performs this analysis with each design decision and has a similar
conversation with the appropriate engineering teams. The analyst uses dominance and
infeasibility to provide insights to these teams. The outcomes of these conversations remove
the electric engine type, operating altitudes 600 to 1000, and infrared (IR) sensor width
choices 6, 7, 8, and 9, in addition to the EO sensor width options.

The system analyst then updates the integrated model by changing the decision op-
tions appropriately and uniformly redeveloping the alternatives. For example, this process
removes the 50,000 designs that use the electric engine and then creates 100,000 designs
that use the piston engine. The result of this process produces a new revised tradespace,
seen in Figure 14. System architects, systems engineers, and subsystem designers have
similar conversations as before. This time the EO sensor design team removes EO sensor
width choices 1 and 5 since EO sensor width choices 2, 3, and 4 provide equal to greater
value at an equal or lower cost. In addition to these EO sensor width options, the other
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engineering teams remove IR sensor width choices 1 and 5, EO sensor field of view 15, and
IR sensor field of view 15.
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The system analyst repeats this process of discussing, removing, and recreating alter-
natives until all teams agree with the final tradespace to propose to the decision authority.
Project managers and system analysts will need to balance this uncertainty resolution
technique with time.

We found the example UAV final tradespace after repeating this process three times,
shown in Figure 15 and summarized in Table 3. Table 4 summarizes the overall impact
on the tradespace by this SBD refinement process. This method of tradespace refinement
increased the number of feasible designs by 3626% (1165 to 43,414). This is due to the
removal of infeasible or dominated decision options, which allowed the exploration of
other combinations of feasible decision options. This creates denser sets, which provides
higher confidence for those decision options due to the increase in information.
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Table 3. Summary of Tradespace Refinement Results for All Design Teams.

Design Decision Original 1st Revised 2nd Revised Final

Wingspan 2–12 2–12 2–12 2–12
Engine Type E, P P P P

Operating Altitude 300–1000 300–599 300–599 300–599
EO Sensor Width Choice 1, 2, 3, 4, 5, 6, 7, 8, 9 1, 2, 3, 4, 5 2, 3, 4 2, 3, 4
IR Sensor Width Choice 1, 2, 3, 4, 5, 6, 7, 8, 9 1, 2, 3, 4, 5 2, 3, 4 2, 3, 4

EO Sensor FOV 15, 30, 45, 60, 75, 90 15, 30, 45, 60, 75, 90 30, 45, 60, 75, 90 45, 60, 75, 90
IR Sensor FOV 15, 30, 45, 60, 75, 90 15, 30, 45, 60, 75, 90 30, 45, 60, 75, 90 45, 60, 75, 90

Table 4. Impact of Tradespace Refinement.

Tradespace # of Considered
Alternatives

# of Feasible
Alternatives

# of Pareto
Points

% Feasible (of
Sampled)

Original 100,000 1165 12 1.2%
1st Revised 100,000 10,442 19 10.4%
2nd Revised 100,000 32,799 19 33%

Final 100,000 43,414 18 43%

An additional interesting analysis involves overlapping the four tradespaces, seen in
Figure 16. This shows that all of the UAV tradespaces produced a similar range in terms
of cost and value. The most interesting finding is that the tradespace refinement process
did not dramatically affect the Pareto Frontier. It is not safe to say that this demonstrates
that the 1st refinement with 10,442 feasible points is enough. The conversations with the
design teams should lead to more information and higher-fidelity models, which help with
uncertainty resolution. This helps increase the likelihood that the chosen sets of designs for
the next design phase remain feasible.
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5. Summary and Future Work

Subsystem designers, system designers, systems engineers, systems analysts, and
engineering managers seek high-performing design alternatives that have an affordable
cost. Traditional PBD methods use system decomposition and optimization to find these
design alternatives in the tradespace. Non-linear (i.e., non-convex) tradespaces require the
use of heuristic optimization techniques, which find “good” design alternatives but are
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not guaranteed to be globally optimum. SBD is an alternative to PBD and a concurrent
engineering design technique that compares a large number of design alternatives. SBD
classifies design alternatives into sets with common design decisions. Analysts explore the
tradespace by evaluating the various sets to identify the most promising sets for uncertainty
resolution or selection. Once one selects a set, all design alternatives in that set are available
in the next design phase. Our proposed SBD conceptual framework for system design
illustrates this process.

This paper provides a quantitative SBD approach for early system design and analysis
to demonstrate how tradespace exploration and trade-off analysis helps analysts identify
promising sets for uncertainty resolution, and eventually converge to high-performing
design alternatives that have an affordable cost. We show how quantitative SBD can inform
subsystem engineers, systems engineers, systems analysts, stakeholders, engineering
managers, and decision authorities.

We use an Unmanned Aerial Vehicle (UAV) case study with an integrated MBE
framework to illustrate how SBD helps to (1) analyze requirements to inform requirement
developers and (2) assess design decisions through the use of design sets to inform design
teams. SBD informs requirement analysis by analyzing each requirement’s effect on the
feasible tradespace by relaxing or constraining requirements. Additionally, SBD helps
designers and analysts assess design decisions by providing an understanding of how
each design decision affects the feasible tradespace. We conclude that SBD provides a
more holistic tradespace exploration process since it provides an integrated examination of
system requirements and design decisions. The exploration of a larger set of alternatives
enables a process to explore the design space more completely than traditional methods.
This integrated examination helps system analysts find high-performing design alternatives
that have an affordable cost to present to the decision authority.

SBD research has advanced greatly over the last several years, but SBD still provides
a great opportunity for additional research. SBD requires designers and engineers to
provide models and simulations instead of designs during early system design. This
requires a culture change to move from PBD to SBD. The models and simulations needed
to implement SBD during early design require access to data and other information. The
various levels of information lead to models with various levels of fidelity to resolve
uncertainty. These levels of fidelity affect the runtime of the SBD analyses and could
require an increase in computational power. More research is needed to expand our SBD
implementation process to better understand the effects of various levels of model fidelity
on the execution of the quantitative SBD process.
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