
applied
sciences

Article

Mobile Robot Path Optimization Technique Based on
Reinforcement Learning Algorithm in Warehouse Environment

HyeokSoo Lee and Jongpil Jeong *

����������
�������

Citation: Lee, H.; Jeong, J. Mobile

Robot Path Optimization Technique

Based on Reinforcement Learning

Algorithm in Warehouse

Environment. Appl. Sci. 2021, 11,

1209. https://doi.org/10.3390/

app11031209

Academic Editor: Marina Paolanti

Received: 30 December 2020

Accepted: 26 January 2021

Published: 28 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Smart Factory Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu,
Suwon 16419, Korea; huxlee@g.skku.edu
* Correspondence: jpjeong@skku.edu; Tel.: +82-31-299-4260

Abstract: This paper reports on the use of reinforcement learning technology for optimizing mobile
robot paths in a warehouse environment with automated logistics. First, we compared the results of
experiments conducted using two basic algorithms to identify the fundamentals required for planning
the path of a mobile robot and utilizing reinforcement learning techniques for path optimization. The
algorithms were tested using a path optimization simulation of a mobile robot in same experimental
environment and conditions. Thereafter, we attempted to improve the previous experiment and
conducted additional experiments to confirm the improvement. The experimental results helped us
understand the characteristics and differences in the reinforcement learning algorithm. The findings
of this study will facilitate our understanding of the basic concepts of reinforcement learning for
further studies on more complex and realistic path optimization algorithm development.

Keywords: warehouse environment; mobile robot path optimization; reinforcement learning

1. Introduction

The fourth industrial revolution and digital innovation have led to the increased
interest in the use of robots across industries; thus, robots are being used in various
industrial sites. Robots can be broadly categorized as industrial or service robots. Industrial
robots are automated equipment and machines used in industrial sites such as factory lines
and are used for assembly, machining, inspection, and measurement as well as pressing
and welding [1]. The use of service robots is expanding in manufacturing environments
and other areas such as industrial sites, homes, and institutions. Service robots can be
broadly divided into personal service robots and professional service robots. In particular,
professional service robots are robots used by workers to perform tasks, and mobile robots
are one of the professional service robots [2].

A mobile robot needs the following elements to perform tasks: localization, mapping,
and path planning. First, the location of the robot must be known in relation to the
surrounding environment. Second, a map is needed to identify the environment and move
accordingly. Third, path planning is necessary to find the best path to perform a given
task [3]. Path planning has two types: point-to-point and complete coverage. A complete
coverage path planning is performed when all positions must be checked, such as for a
cleaning robot. A point-to-point path planning is performed for moving from the start
position to the target position [4].

To review the use of reinforcement learning as a path optimization technique for
mobile robots in a warehouse environment, the following points must be understood. First,
it is necessary to understand the warehouse environment and the movement of mobile
robots. To do this, we must check the configuration and layout of the warehouse in which
the mobile robot is used as well as the tasks and actions that the mobile robot performs
in this environment. Second, it is necessary to understand the recommended research
steps for the path planning and optimization of mobile robots. Third, it is necessary to
understand the connections between layers and modules as well as their working when

Appl. Sci. 2021, 11, 1209. https://doi.org/10.3390/app11031209 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4061-9532
https://doi.org/10.3390/app11031209
https://doi.org/10.3390/app11031209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11031209
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/1209?type=check_update&version=3

Appl. Sci. 2021, 11, 1209 2 of 16

they are integrated with mobile robots, environments, hardware, and software. With this
basic information, a simulation program for real experiments can be implemented. Because
reinforcement learning can be tested only when a specific experimental environment
is prepared in advance, substantial preparation of the environment is required early in
the study but the researcher must prepare it. Subsequently, the reinforcement learning
algorithm to be tested is integrated with the simulation environment for the experiment.

This paper discusses an experiment performed using a reinforcement learning algo-
rithm as a path optimization technique in a warehouse environment. Section 2 briefly
describes the warehouse environment, the concept of path planning for mobile robots,
the concept of reinforcement learning, and the algorithms to be tested. Section 3 briefly
describes the structure of the mobile robot path-optimization system, the main logic of
path search, and the idea of dynamically adjusting the reward value according to the
moving action. Section 4 describes the construction of the simulation environment for the
experiments, the parameters and reward values to be used for the experiments, and the
experimental results. Section 5 presents the conclusions and directions for future research.

2. Related Work
2.1. Warehouse Environment
2.1.1. Warehouse Layout and Components

The major components for automated warehouse with mobile robots are as follows [5–10].

• Robot drive device: It instructs the robot from the center to pick or load goods between
the workstation and the inventory pod.

• Inventory pod: This is a shelf rack that includes storage boxes. There are two standard
sizes: a small pod can hold up to 450 kg, and a large pod can load up to 1300 kg.

• Workstation: This is the work area in which the worker operates and performs tasks
such as replenishment, picking, and packaging.

Figure 1 shows an example of a warehouse layout with inventory pods and workstations.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 17

for the path planning and optimization of mobile robots. Third, it is necessary to under-
stand the connections between layers and modules as well as their working when they are
integrated with mobile robots, environments, hardware, and software. With this basic in-
formation, a simulation program for real experiments can be implemented. Because rein-
forcement learning can be tested only when a specific experimental environment is pre-
pared in advance, substantial preparation of the environment is required early in the
study but the researcher must prepare it. Subsequently, the reinforcement learning algo-
rithm to be tested is integrated with the simulation environment for the experiment.

This paper discusses an experiment performed using a reinforcement learning algo-
rithm as a path optimization technique in a warehouse environment. Section 2 briefly de-
scribes the warehouse environment, the concept of path planning for mobile robots, the
concept of reinforcement learning, and the algorithms to be tested. Section 3 briefly de-
scribes the structure of the mobile robot path-optimization system, the main logic of path
search, and the idea of dynamically adjusting the reward value according to the moving
action. Section 4 describes the construction of the simulation environment for the experi-
ments, the parameters and reward values to be used for the experiments, and the experi-
mental results. Section 5 presents the conclusions and directions for future research.

2. Related Work
2.1. Warehouse Environment
2.1.1. Warehouse Layout and Components

The major components for automated warehouse with mobile robots are as follows
[5–10].
• Robot drive device: It instructs the robot from the center to pick or load goods be-

tween the workstation and the inventory pod.
• Inventory pod: This is a shelf rack that includes storage boxes. There are two stand-

ard sizes: a small pod can hold up to 450 kg, and a large pod can load up to 1300 kg.
• Workstation: This is the work area in which the worker operates and performs tasks

such as replenishment, picking, and packaging.
Figure 1 shows an example of a warehouse layout with inventory pods and work-

stations.

Figure 1. Sample Layout of Warehouse Environment.

Figure 1. Sample Layout of Warehouse Environment.

2.1.2. Mobile Robot’s Movement Type

In the robotic mobile fulfillment system, a robot performs a storage trip, in which it
transports goods, and a retrieval trip, in which it moves to pick up goods. After dropping
the goods into the inventory pod, additional goods can be picked up or returned to the
workstation [11].

Appl. Sci. 2021, 11, 1209 3 of 16

The main movements of the mobile robot in the warehouse are to perform the follow-
ing tasks [12].

1. move goods from the workstation to the inventory pod;
2. move from one inventory pod to another to pick up goods;
3. move goods from the inventory pod to the workstation

2.2. Path Planning for Mobile Robot

For path planning in a given work environment, a mobile robot searches for an optimal
path from the starting point to the target point according to specific performance criteria.
In general, path planning is performed for two path types, global and local, depending
on whether the mobile robot has environmental information. In the case of global path
planning, all information about the environment is provided to the mobile robot before it
starts moving. Based on local path planning, the robot does not know most information
about the environment before it moves [13,14].

The path planning development process for mobile robots usually follows the steps
below in Figure 2 [13].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 17

2.1.2. Mobile Robot’s Movement Type
In the robotic mobile fulfillment system, a robot performs a storage trip, in which it

transports goods, and a retrieval trip, in which it moves to pick up goods. After dropping
the goods into the inventory pod, additional goods can be picked up or returned to the
workstation [11].

The main movements of the mobile robot in the warehouse are to perform the fol-
lowing tasks [12].
1. move goods from the workstation to the inventory pod;
2. move from one inventory pod to another to pick up goods;
3. move goods from the inventory pod to the workstation

2.2. Path Planning for Mobile Robot
For path planning in a given work environment, a mobile robot searches for an opti-

mal path from the starting point to the target point according to specific performance cri-
teria. In general, path planning is performed for two path types, global and local, depend-
ing on whether the mobile robot has environmental information. In the case of global path
planning, all information about the environment is provided to the mobile robot before it
starts moving. Based on local path planning, the robot does not know most information
about the environment before it moves [13,14].

The path planning development process for mobile robots usually follows the steps
below in Figure 2 [13].
• Environmental modeling
• Optimization criteria
• Path finding algorithm

Figure 2. Development steps for global/local path optimization [13].

The classification of the path planning of the mobile robot is illustrated in Figure 3.

Figure 3. Classification of path planning and global path search algorithm [13].

Figure 2. Development steps for global/local path optimization [13].

• Environmental modeling
• Optimization criteria
• Path finding algorithm

The classification of the path planning of the mobile robot is illustrated in Figure 3.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 17

2.1.2. Mobile Robot’s Movement Type
In the robotic mobile fulfillment system, a robot performs a storage trip, in which it

transports goods, and a retrieval trip, in which it moves to pick up goods. After dropping
the goods into the inventory pod, additional goods can be picked up or returned to the
workstation [11].

The main movements of the mobile robot in the warehouse are to perform the fol-
lowing tasks [12].
1. move goods from the workstation to the inventory pod;
2. move from one inventory pod to another to pick up goods;
3. move goods from the inventory pod to the workstation

2.2. Path Planning for Mobile Robot
For path planning in a given work environment, a mobile robot searches for an opti-

mal path from the starting point to the target point according to specific performance cri-
teria. In general, path planning is performed for two path types, global and local, depend-
ing on whether the mobile robot has environmental information. In the case of global path
planning, all information about the environment is provided to the mobile robot before it
starts moving. Based on local path planning, the robot does not know most information
about the environment before it moves [13,14].

The path planning development process for mobile robots usually follows the steps
below in Figure 2 [13].
• Environmental modeling
• Optimization criteria
• Path finding algorithm

Figure 2. Development steps for global/local path optimization [13].

The classification of the path planning of the mobile robot is illustrated in Figure 3.

Figure 3. Classification of path planning and global path search algorithm [13]. Figure 3. Classification of path planning and global path search algorithm [13].

Dijkstra, A*, and D* algorithms for the heuristic method are the most commonly
used algorithms for path search in global path planning [13,15]. Traditionally, warehouse
path planning has been optimized using heuristics and meta heuristics. Most of these
methods work without additional learning and require significant computation time as
the problem becomes complex. In addition, it is challenging to design and understand

Appl. Sci. 2021, 11, 1209 4 of 16

heuristic algorithms, making it difficult to maintain and scale the path. Therefore, interest
in artificial intelligence technology for path planning is increasing [16].

2.3. Reinforcement Learning Algorithm

Reinforcement learning is a method that uses trial and error to find a policy to reach
a goal by learning through failure and reward. Deep neural networks learn weights and
biases from labeled data, and reinforcement learning learns weights and biases using the
concept of rewards [17].

The essential elements of reinforcement learning are as follows, and see Figure 4 for
how to interact.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 17

Dijkstra, A*, and D* algorithms for the heuristic method are the most commonly used
algorithms for path search in global path planning [13,15]. Traditionally, warehouse path
planning has been optimized using heuristics and meta heuristics. Most of these methods
work without additional learning and require significant computation time as the prob-
lem becomes complex. In addition, it is challenging to design and understand heuristic
algorithms, making it difficult to maintain and scale the path. Therefore, interest in artifi-
cial intelligence technology for path planning is increasing [16].

2.3. Reinforcement Learning Algorithm
Reinforcement learning is a method that uses trial and error to find a policy to reach

a goal by learning through failure and reward. Deep neural networks learn weights and
biases from labeled data, and reinforcement learning learns weights and biases using the
concept of rewards [17].

The essential elements of reinforcement learning are as follows, and see Figure 4 for
how to interact.

First, agents are the subjects of learning and decision making. Second, the environ-
ment refers to the external world recognized by the agent and interacts with the agent.
Third is policy. The agent finds actions to be performed from the state of the surrounding
environment. The fourth element is a reward, an information that tells you if an agent has
done good or bad behavior. In reinforcement learning, positive rewards are given for ac-
tions that help agents reach their goals, and negative rewards are given for actions that
prevent them from reaching their goals. The fifth element is a value function. The value
function tells you what’s good in the long term. Value is the total amount of reward an
agent can expect. Sixth is the environmental model. Environmental models predicts the
next state and the reward that changes according to the current state. Planning is a way to
decide what to do before experiencing future situations. Reinforcement learning using
models and plans is called a model-based method, and reinforcement learning using trial
and error is called a model free method [18].

Figure 4. The essential elements and interactions of Reinforcement Learning [18].

The basic concept of reinforcement learning modeling aims to find the optimal policy
for problem solving and can be defined on the basis of the Markov Decision Process
(MDP). If the state and action pair is finite, this is called a finite MDP [18]. The most basic
Markov process concept in MDP, consists of a state s, a state transition probability p, and
an action a performed. The p is the probability that when performing an action a in state
s, it will change to s’ [18].

The Formula (1) that defines the relationship between state, action and probability is
as follows [18,19]. ݏ)݌ᇱ ∣ ,ݏ ܽ) = Pr ሼܵ௧ = ᇱݏ ∣ ܵ௧ିଵ = ,ݏ ௧ିଵܣ = ܽሽ (1)

Figure 4. The essential elements and interactions of Reinforcement Learning [18].

First, agents are the subjects of learning and decision making. Second, the environment
refers to the external world recognized by the agent and interacts with the agent. Third
is policy. The agent finds actions to be performed from the state of the surrounding
environment. The fourth element is a reward, an information that tells you if an agent
has done good or bad behavior. In reinforcement learning, positive rewards are given for
actions that help agents reach their goals, and negative rewards are given for actions that
prevent them from reaching their goals. The fifth element is a value function. The value
function tells you what’s good in the long term. Value is the total amount of reward an
agent can expect. Sixth is the environmental model. Environmental models predicts the
next state and the reward that changes according to the current state. Planning is a way
to decide what to do before experiencing future situations. Reinforcement learning using
models and plans is called a model-based method, and reinforcement learning using trial
and error is called a model free method [18].

The basic concept of reinforcement learning modeling aims to find the optimal policy
for problem solving and can be defined on the basis of the Markov Decision Process (MDP).
If the state and action pair is finite, this is called a finite MDP [18]. The most basic Markov
process concept in MDP, consists of a state s, a state transition probability p, and an action
a performed. The p is the probability that when performing an action a in state s, it will
change to s’ [18].

The Formula (1) that defines the relationship between state, action and probability is
as follows [18,19].

p
(
s′ | s, a

)
= Pr

{
St = s′ | St−1 = s, At−1 = a

}
(1)

The agent’s goal is to maximize the sum of regularly accumulated rewards, and the
expected return is the sum of rewards. In other words, using rewards to formalize the
concept of a goal is characteristic of reinforcement learning. In addition, the discount factor
is also important in the concept of reinforcement learning. The discount factor (γ) is a
coefficient that discounts the future expected reward and has a value between 0 and 1 [18].

Appl. Sci. 2021, 11, 1209 5 of 16

Discounted return obtained through reward and depreciation rate can be defined as the
following Formula (2) [18,19].

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞

∑
k=0

γkRt+k+1 (2)

The reinforcement learning algorithm has the concept of a value function, a function of
a state that estimates whether the environment given to an agent is good or bad. Moreover,
the value function is defined according to the behavioral method called policy. Policy is
the probability of choosing possible actions in a state [18].

If the value function was the consideration of the cumulative reward and the change
of state together, the state value function was also considered the policy [20]. The value
function is the expected value of the return if policy π is followed since starting at state s,
and the formulas are as follows [18,20].

vπ(s) = Eπ [Gt | St = s] = Eπ

[
∞

∑
k=0

γkRt+k+1 | St = s

]
(3)

Among the policies, the policy with the highest expected value of return is the optimal
policy, and the optimal policy has an optimal state value function and an optimal action
value function [18]. The optimal state value function can be found in equation (4), and the
optimal action value function can be found in Equations (5) and (6) [18,20].

v∗(s) = max
π

vπ(s) (4)

q∗(s, a) = max
π

qπ(s, a) (5)

= E[Rt+1 + γv∗(St+1) | St = s, At = a] (6)

The value of a state that follows an optimal policy is equal to the expected value of
the return from the best action that can be chosen in that state [18]. The formula is as
follows [18,20].

q∗(s, a) = E
[

Rt+1 + γmax
a′

q∗
(
St+1, a′

)
| St = s, At = a

]
(7)

= ∑
s′ ,r

p
(
s′, r | s, a

)[
r + γmax

a′
q∗
(
s′, a′

)]
(8)

2.3.1. Q-Learning

One of most basic algorithm among reinforcement learning algorithms is off-policy
temporal-difference control algorithm known as Q-Learning [18]. The Q-Learning algo-
rithm stores the state and action in the Q Table in the form of a Q Value; for action selection,
it selects a random value or a maximum value according to the epsilon-greedy value and
stores the reward values in the Q Table [18].

The algorithm stores the values in the Q Table using Equation (9) below [21].

Q(s, a) = r(s, a) + max
a

(
Q
(
s′, a

))
(9)

Equation (9) is generally converted into update—Equation (10) by considering a factor
of time [18,22,23].

Q(s, a)← Q(s, a) + α

(
r + γmax

a′
Q
(
s′, a′

)
−Q(s, a)

)
(10)

The procedure of the Q-Learning algorithm is as follows (Algorithm 1) [18].

Appl. Sci. 2021, 11, 1209 6 of 16

Algorithm 1: Q-Learning.

Initialize Q(s, a)
Loop for each episode:

Initialize s (state)
Loop for each step of episode until s (state) is destination:

Choose a (action) from s (state) using policy from Q values
Take a (action), find r (reward), s’ (next state)
Calculate Q value and Save it into Q Table
Change s’ (next state) to s (state)

In reinforcement learning algorithms, the process of exploration and exploitation plays
an important role. Initially, lower priority actions should be selected to investigate the
best possible environment, and then select and proceed with higher priority actions [23].
The Q-Learning algorithm has become the basis of the reinforcement learning algorithm
because it is simple and shows excellent learning ability in a single agent environment.
However, Q-Learning updates only once per action; it is thus difficult to solve complex
problems effectively when many states and actions have not yet been realized.

In addition, because the Q table for reward values is predefined, a considerable
amount of storage memory is required. For this reason, the Q-Learning algorithm is
disadvantageous in a complex and advanced multi-agent environment [24].

2.3.2. Dyna-Q

Dyna-Q is a combination of the Q-Learning and Q-Planning algorithms. The Q-
Learning algorithm changes a policy based on a real experience. The Q-Planning algorithm
obtains simulated experience through search control and changes the policy based on a
simulated experience [18]. Figure 5 illustrates the structure of the Dyna-Q model.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 17

,ݏ)ܳ ܽ) ← ,ݏ)ܳ ܽ) + ߙ ቀݎ + ௔ᇲݔܽ݉ߛ ,ᇱݏ)ܳ  ܽᇱ) − ,ݏ)ܳ ܽ)ቁ (10)

The procedure of the Q-Learning algorithm is as follows (Algorithm 1) [18].

Algorithm 1: Q-Learning.
Initialize Q(s, a)
Loop for each episode:
 Initialize s (state)
 Loop for each step of episode until s (state) is destination:
 Choose a (action) from s (state) using policy from Q values
 Take a (action), find r (reward), s’ (next state)
 Calculate Q value and Save it into Q Table
 Change s’ (next state) to s (state)

In reinforcement learning algorithms, the process of exploration and exploitation
plays an important role. Initially, lower priority actions should be selected to investigate
the best possible environment, and then select and proceed with higher priority actions
[23]. The Q-Learning algorithm has become the basis of the reinforcement learning algo-
rithm because it is simple and shows excellent learning ability in a single agent environ-
ment. However, Q-Learning updates only once per action; it is thus difficult to solve com-
plex problems effectively when many states and actions have not yet been realized.

In addition, because the Q table for reward values is predefined, a considerable
amount of storage memory is required. For this reason, the Q-Learning algorithm is dis-
advantageous in a complex and advanced multi-agent environment [24].

2.3.2. Dyna-Q
Dyna-Q is a combination of the Q-Learning and Q-Planning algorithms. The Q-

Learning algorithm changes a policy based on a real experience. The Q-Planning algo-
rithm obtains simulated experience through search control and changes the policy based
on a simulated experience [18]. Figure 5 illustrates the structure of the Dyna-Q model.

Figure 5. Dyna-Q model structure [18].

The Q-Planning algorithm randomly selects samples only from previously experi-
enced information, and the Dyna-Q model obtains information for simulated experience
through search control exactly as it obtains information through modeling learning based
on a real experience [18]. The Dyna-Q update-equation is the same as that for Q-Learning
(10) [22].

Figure 5. Dyna-Q model structure [18].

The Q-Planning algorithm randomly selects samples only from previously experienced
information, and the Dyna-Q model obtains information for simulated experience through
search control exactly as it obtains information through modeling learning based on a real
experience [18]. The Dyna-Q update-equation is the same as that for Q-Learning (10) [22].

The Dyna-Q algorithm is as follows (Algorithm 2) [18].

Appl. Sci. 2021, 11, 1209 7 of 16

Algorithm 2: Dyna-Q.

Initialize Q(s, a)
Loop forever:
(a) Get s (state)
(b) Choose a (action) from s (state) using policy from Q values
(c) Take a (action), find r (reward), s’ (next state)
(d) Calculate Q value and Save it into Q Table
(e) Save s (state), a (action), r (reward), s’ (next state) in memory
(f) Loop for n times

Take s(state), a (action), r (reward), s’ (next state)
Calculate Q value and Save it into Q Table

(g) Change s’ (next state) to s (state)

Steps (a) to (d) and, (g) are the same as in Q-Learning. Steps (e) and (f) added to the
Dyna-Q algorithm store past experiences in memory to generate the next state and a more
accurate reward value.

3. Reinforcement Learning-Based Mobile Robot Path Optimization
3.1. System Structure

In the mobile robot framework structure in Figure 6, the agent is controlled by the
supervisor controller, and the robot controller is executed by the agent, so that the robot
operates in the warehouse environment and the necessary information is observed and
collected [25–27].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 17

The Dyna-Q algorithm is as follows (Algorithm 2) [18].

Algorithm 2: Dyna-Q.
Initialize Q(s, a)
Loop forever:
(a) Get s (state)
(b) Choose a (action) from s (state) using policy from Q values
(c) Take a (action), find r (reward), s’ (next state)
(d) Calculate Q value and Save it into Q Table
(e) Save s (state), a (action), r (reward), s’ (next state) in memory
(f) Loop for n times
 Take s(state), a (action), r (reward), s’ (next state)
 Calculate Q value and Save it into Q Table
(g) Change s’ (next state) to s (state)

Steps (a) to (d) and, (g) are the same as in Q-Learning. Steps (e) and (f) added to the
Dyna-Q algorithm store past experiences in memory to generate the next state and a more
accurate reward value.

3. Reinforcement Learning-Based Mobile Robot Path Optimization
3.1. System Structure

In the mobile robot framework structure in Figure 6, the agent is controlled by the
supervisor controller, and the robot controller is executed by the agent, so that the robot
operates in the warehouse environment and the necessary information is observed and
collected [25–27].

Figure 6. Warehouse mobile robot framework structure.

Figure 6. Warehouse mobile robot framework structure.

3.2. Operation Procedure

The mobile robot framework works as follows. At the beginning, the simulator is set
to its initial state, and the mobile robot collects the first observation information and sends
it to the supervisor controller. The supervisor controller verifies the received information
and communicates the necessary action to the agent. At this stage, the supervisor controller
can obtain additional information if necessary. The supervisor controller can communicate
job information to the agent. The agent conveys the action to the mobile robot through the

Appl. Sci. 2021, 11, 1209 8 of 16

robot controller, and the mobile robot performs the received action using actuators. After
the action is performed by the robot controller, the changed position and status information
is transmitted to the agent and the supervisor controller, and the supervisor controller
calculates the reward value for the performed action. Subsequently, the action, reward
value, and status information are stored in memory. These procedures are repeated until
the mobile robot achieves the defined goal or the number of epochs/episodes or conditions
that satisfy the goal [25].

In Figure 7, we show an example class that is composed of the essential functions and
main logic required by the supervisor controller for path planning.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 17

3.2. Operation Procedure
The mobile robot framework works as follows. At the beginning, the simulator is set

to its initial state, and the mobile robot collects the first observation information and sends
it to the supervisor controller. The supervisor controller verifies the received information
and communicates the necessary action to the agent. At this stage, the supervisor control-
ler can obtain additional information if necessary. The supervisor controller can com-
municate job information to the agent. The agent conveys the action to the mobile robot
through the robot controller, and the mobile robot performs the received action using ac-
tuators. After the action is performed by the robot controller, the changed position and
status information is transmitted to the agent and the supervisor controller, and the su-
pervisor controller calculates the reward value for the performed action. Subsequently,
the action, reward value, and status information are stored in memory. These procedures
are repeated until the mobile robot achieves the defined goal or the number of epochs/ep-
isodes or conditions that satisfy the goal [25].

In Figure 7, we show an example class that is composed of the essential functions and
main logic required by the supervisor controller for path planning.

Figure 7. Required methods and logic of path finding [25].

3.3. Dynamic Reward Adjustment Based on Action
The simplest type of reward for the movement of a mobile robot in a grid-type ware-

house environment is achieved by specifying a negative reward value for an obstacle and
a positive reward value for the target location. The direction of the mobile robot is deter-
mined by its current and target positions. The path planning algorithm requires signifi-
cant time to find the best path by repeating many random path finding attempts. In the
case of the basic reward method introduced earlier, an agent searches randomly for a path,
regardless of whether it is located far from or close to the target position. To improve on
these vulnerabilities, we considered a reward method as shown in Figure 8.

Figure 7. Required methods and logic of path finding [25].

3.3. Dynamic Reward Adjustment Based on Action

The simplest type of reward for the movement of a mobile robot in a grid-type
warehouse environment is achieved by specifying a negative reward value for an obstacle
and a positive reward value for the target location. The direction of the mobile robot is
determined by its current and target positions. The path planning algorithm requires
significant time to find the best path by repeating many random path finding attempts. In
the case of the basic reward method introduced earlier, an agent searches randomly for a
path, regardless of whether it is located far from or close to the target position. To improve
on these vulnerabilities, we considered a reward method as shown in Figure 8.

The suggestions are as follows:
First, when the travel path and target position are determined, a partial area close to

the target position is selected. (Reward adjustment area close to the target position).
Second, a higher reward value than the basic reward method is assigned to the path

positions within the area selected in the previous step. Third, we propose a method to
select an area as above whenever the movement path changes and changes the position
of the movement path in the selected area to a high reward value. This is called dynamic
reward adjustment based on action, and the following (Algorithm 3) is an algorithm of
the process.

Appl. Sci. 2021, 11, 1209 9 of 16

Algorithm 3: Dynamic reward adjustment based on action.

1. Get new destination to move
2. Select a partial area near the target position.
3. A higher positive reward value is assigned to the selected area, excluding the target point and obstacles.
(Highest positive reward value to target position)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 17

Figure 8. Dynamic adjusting reward values for the moving action.

The suggestions are as follows:
First, when the travel path and target position are determined, a partial area close to

the target position is selected. (Reward adjustment area close to the target position)
Second, a higher reward value than the basic reward method is assigned to the path

positions within the area selected in the previous step. Third, we propose a method to
select an area as above whenever the movement path changes and changes the position
of the movement path in the selected area to a high reward value. This is called dynamic
reward adjustment based on action, and the following (Algorithm 3) is an algorithm of
the process.

Algorithm 3: Dynamic reward adjustment based on action.
1. Get new destination to move
2. Select a partial area near the target position.
3. A higher positive reward value is assigned to the selected area,
excluding the target point and obstacles.
(Highest positive reward value to target position)

4. Test and Results
4.1. Warehouse Simulation Environment

To create a simulation environment, we referred to the paper [23] and built a virtual
experiment environment based on the previously described warehouse environment. A
total of 15 inventory pods were included in a 25 × 25 grid layout. A storage trip of a mobile
robot from the workstation to the inventory pod was simulated. This experiment was con-
ducted to find the optimal path to the target position, avoiding inventory pods at the start-
ing position where a single mobile robot was defined.

The Figure 9 shows the target position for the experiments.

Figure 8. Dynamic adjusting reward values for the moving action.

4. Test and Results
4.1. Warehouse Simulation Environment

To create a simulation environment, we referred to the paper [23] and built a virtual
experiment environment based on the previously described warehouse environment. A
total of 15 inventory pods were included in a 25× 25 grid layout. A storage trip of a mobile
robot from the workstation to the inventory pod was simulated. This experiment was
conducted to find the optimal path to the target position, avoiding inventory pods at the
starting position where a single mobile robot was defined.

The Figure 9 shows the target position for the experiments.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 17

Figure 9. Target position of simulation experiment.

4.2. Test Parameter Values
Q-Learning and Dyna-Q algorithms were tested in a simulation environment.
Table 1 shows the parameter values used in the experiment.

Table 1. Parameter values for experiment.

Parameter Q-Learning Dyna-Q
Learning Rate (α) 0.01 0.01
Discount Rate (γ) 0.9 0.9

4.3. Test Reward Values
The experiment was conducted with the following reward methods.

• Basic method: The obstacle was set as -1, the target position as 1, and the other posi-
tions as 0.

• Dynamic reward adjustment based on action: To check the efficacy of the proposal,
an experiment was conducted designating set values that were similar to those in the
proposed method as shown in Figure 10 [28–30]. The obstacle was set as −1, the target
position as 10, the positions in the selected area (area close to target) as 0.3, and the
other positions as 0.

Figure 10. Selected area for dynamic reward adjustment based on action.

Figure 9. Target position of simulation experiment.

4.2. Test Parameter Values

Q-Learning and Dyna-Q algorithms were tested in a simulation environment.

Appl. Sci. 2021, 11, 1209 10 of 16

Table 1 shows the parameter values used in the experiment.

Table 1. Parameter values for experiment.

Parameter Q-Learning Dyna-Q

Learning Rate (α) 0.01 0.01
Discount Rate (γ) 0.9 0.9

4.3. Test Reward Values

The experiment was conducted with the following reward methods.

• Basic method: The obstacle was set as −1, the target position as 1, and the other
positions as 0.

• Dynamic reward adjustment based on action: To check the efficacy of the proposal,
an experiment was conducted designating set values that were similar to those in the
proposed method as shown in Figure 10 [28–30]. The obstacle was set as −1, the target
position as 10, the positions in the selected area (area close to target) as 0.3, and the
other positions as 0.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 17

Figure 9. Target position of simulation experiment.

4.2. Test Parameter Values
Q-Learning and Dyna-Q algorithms were tested in a simulation environment.
Table 1 shows the parameter values used in the experiment.

Table 1. Parameter values for experiment.

Parameter Q-Learning Dyna-Q
Learning Rate (α) 0.01 0.01
Discount Rate (γ) 0.9 0.9

4.3. Test Reward Values
The experiment was conducted with the following reward methods.

• Basic method: The obstacle was set as -1, the target position as 1, and the other posi-
tions as 0.

• Dynamic reward adjustment based on action: To check the efficacy of the proposal,
an experiment was conducted designating set values that were similar to those in the
proposed method as shown in Figure 10 [28–30]. The obstacle was set as −1, the target
position as 10, the positions in the selected area (area close to target) as 0.3, and the
other positions as 0.

Figure 10. Selected area for dynamic reward adjustment based on action.

Figure 10. Selected area for dynamic reward adjustment based on action.

4.4. Results

First, we tested two basic reinforcement learning algorithms: the Q-Learning algorithm
and the Dyna-Q algorithm. The experiment was performed five times for each algorithm,
and there may be deviations in the results for each experiment, so the experiment was
performed under the same condition and environment. The following points were verified
and compared using the experimental results. The optimization efficiency of each algorithm
was checked based on the length of the final path, and the path optimization performance
was confirmed by the path search time. We were also able to identify learning patterns by
the number of learning steps per episode.

The path search time of the Q-Learning algorithm was 19.18 min for the first test,
18.17 min for the second test, 24.28 min for the third test, 33.92 min for the fourth test, and
19.91 min for the fifth test. It took about 23.09 min on average. The path search time of the
Dyna-Q algorithm was 90.35 min for the first test, 108.04 min for the second test, 93.01 min
for the third test, 100.79 min for the fourth test, and 81.99 min for the fifth test. The overall
average took about 94.83 min.

The final path length of the Q-Learning algorithm was 65 steps for the first test, 34 steps
for the second test, 60 steps for the third test, 91 steps for the fourth test, 49 steps for the
fifth test, and the average was 59.8 steps. The final path length of the Dyna-Q algorithm
was 38 steps for the first test, 38 steps for the second test, 38 steps for the third test, 34 steps
for the fourth test, 38 steps for the fifth test, and the average was 37.2 steps.

The Q-Learning algorithm was faster than Dyna-Q in terms of path search time,
and Dyna-Q selected shorter and simpler final paths than those selected by Q-Learning.

Appl. Sci. 2021, 11, 1209 11 of 16

Figures 11 and 12 show the learning pattern through the number of training steps per
episode. Q-Learning found the path by repeating many steps for 5000 episodes. Dyna-Q,
stabilized after finding the optimal path between 1500 and 3000 episodes. In both algo-
rithms, the maximum number of steps rarely exceeded 800 steps. All tests ran 5000 episodes
for each test. In the case of Q-Learning algorithm, the second test exceeded 800 steps 5 times
(0.1%) and fourth test exceeded 800 steps 5 times (0.1%). So, Q-Learning algorithm test
exceeded 800 steps at a total level of 0.04% in the five tests. In the case of Dyna-Q algo-
rithm, the first test exceeded 800 steps once (0.02%), third test exceeded 800 steps 7 times
(0.14%), fifth test exceeded 800 steps 3 times (0.06%). So, Dyna-Q algorithm test exceeded
800 steps at a total level of 0.044 % in the five tests. To compare the path search time and
the learning pattern result, we compared the experiment (e) of the two algorithms. The
path search time was 19.9 s for Q-Learning algorithm and 81.98 s for Dyna-Q. Looking at
the learning patterns in Figures 11 and 12, the Q-Learning algorithm learned by executing
200 steps to 800 steps per each episode until the end of 5000 episodes, and the Dyna-Q
algorithm learned by executing 200 steps to 800 steps per each episode until the middle
of the 2000 episode. However, the time required for the Dyna-Q algorithm is more than
75% slower than the Q-Learning algorithm. In this perspective, it has been confirmed that
Dyna-Q takes longer to learn in a single episode than Q-Learning.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 17

4.4. Results
First, we tested two basic reinforcement learning algorithms: the Q-Learning algo-

rithm and the Dyna-Q algorithm. The experiment was performed five times for each al-
gorithm, and there may be deviations in the results for each experiment, so the experiment
was performed under the same condition and environment. The following points were
verified and compared using the experimental results. The optimization efficiency of each
algorithm was checked based on the length of the final path, and the path optimization
performance was confirmed by the path search time. We were also able to identify learn-
ing patterns by the number of learning steps per episode.

The path search time of the Q-Learning algorithm is 19.18 min for the first test, 18.17
min for the second test, 24.28 min for the third test, 33.92 min for the fourth test, and 19.91
min for the fifth test. It took about 23.09 min on average. The path search time of the Dyna-
Q algorithm was 90.35 min for the first test, 108.04 min for the second test, 93.01 min for
the third test, 100.79 min for the fourth test, and 81.99 min for the fifth test. The overall
average took about 94.83 min.

The final path length of the Q-Learning algorithm is 65 steps for the first test, 34 steps
for the second test, 60 steps for the third test, 91 steps for the fourth test, 49 steps for the
fifth test, and the average is 59.8 steps. The final path length of the Dyna-Q algorithm is
38 steps for the first test, 38 steps for the second test, 38 steps for the third test, 34 steps for
the fourth test, 38 steps for the fifth test, and the average is 37.2 steps.

The Q-Learning algorithm was faster than Dyna-Q in terms of path search time, and
Dyna-Q selected shorter and simpler final paths than those selected by Q-Learning. Fig-
ures 11 and 12 show the learning pattern through the number of training steps per epi-
sode. Q-Learning found the path by repeating many steps for 5000 episodes. Dyna-Q, sta-
bilized after finding the optimal path between 1500 and 3000 episodes. In both algorithms,
the maximum number of steps rarely exceeded 800 steps. All tests ran 5000 episodes for
each test. In the case of Q-Learning algorithm, the second test exceeded 800 steps 5 times
(0.1%) and fourth test exceeded 800 steps 5 times (0.1%). So, Q-Learning algorithm test
exceeded 800 steps at a total level of 0.04% in the five tests. In the case of Dyna-Q algo-
rithm, the first test exceeded 800 steps once (0.02%), third test exceeded 800 steps 7 times
(0.14%), fifth test exceeded 800 steps 3 times (0.06%). So, Dyna-Q algorithm test exceeded
800 steps at a total level of 0.044 % in the five tests. To compare the path search time and
the learning pattern result, we compared the experiment (e) of the two algorithms. The
path search time was 19.9 s for Q-Learning algorithm and 81.98 s for Dyna-Q. Looking at
the learning patterns in Figures 11 and 12, the Q-Learning algorithm learned by executing
200 steps to 800 steps per each episode until the end of 5000 episodes, and the Dyna-Q
algorithm learned by executing 200 steps to 800 steps per each episode until the middle of
the 2000 episode. However, the time required for the Dyna-Q algorithm is more than 75%
slower than the Q-Learning algorithm. In this perspective, it has been confirmed that
Dyna-Q takes longer to learn in a single episode than Q-Learning.

(a) (b)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 17

(c) (d)

(e)

Figure 11. Path optimization learning progress status of Q-Learning: (a) 1st test; (b) 2nd test; (c) 3rd test; (d) 4th test; (e) 5th test.

(a) (b)

(c) (d)

Figure 11. Path optimization learning progress status of Q-Learning: (a) 1st test; (b) 2nd test; (c) 3rd test; (d) 4th test; (e) 5th test.

Appl. Sci. 2021, 11, 1209 12 of 16

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 17

(c) (d)

(e)

Figure 11. Path optimization learning progress status of Q-Learning: (a) 1st test; (b) 2nd test; (c) 3rd test; (d) 4th test; (e) 5th test.

(a) (b)

(c) (d)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 17

(e)

Figure 12. Path optimization learning progress status of Dyna-Q: (a) 1st test; (b) 2nd test; (c) 3rd test; (d) 4th test; (e) 5th test.

Subsequently, additional experiments were conducted by applying ‘dynamic reward
adjustment based on action’ to the Q-Learning algorithm. The path search time of this
experiment was 19.04 min for the first test, 15.21 min for the second test, 17.05 min for the
third test, 17.51 min for the fourth test, and 17.38 min for the fifth test. It took about 17.23
min on average. The final path length of this experiment was 38 steps for the first test, 34
steps for the second test, 34 steps for the third test, 34 steps for the fourth test, and 34 steps
for the fifth test. The average is 34.8 steps. The experimental results can be seen in Figure
13, and it includes the experimental results of Q-Learning and Dyna-Q previously con-
ducted. In the case of the Q-Learning algorithm to which ‘dynamic reward adjustment
based on action’ was applied, the path search time was slightly faster than Q-Learning,
and the final path length was confirmed to be improved to a level similar to that of Dyna-
Q. Figure 14 shows the learning pattern obtained using the additional experiments com-
pared with the result of Q-Learning. There is no outstanding point. Figure 15 shows the
path found through the experiment of the Q Leaning algorithm applying ‘dynamic re-
ward adjustment based on action’ on the map.

(a) (b)

Figure 13. Comparison of experiment results: (a) Total elapsed time; (b) Length of final path.

Figure 12. Path optimization learning progress status of Dyna-Q: (a) 1st test; (b) 2nd test; (c) 3rd test; (d) 4th test; (e) 5th test.

Subsequently, additional experiments were conducted by applying ‘dynamic reward
adjustment based on action’ to the Q-Learning algorithm. The path search time of this
experiment was 19.04 min for the first test, 15.21 min for the second test, 17.05 min for
the third test, 17.51 min for the fourth test, and 17.38 min for the fifth test. It took about
17.23 min on average. The final path length of this experiment was 38 steps for the first
test, 34 steps for the second test, 34 steps for the third test, 34 steps for the fourth test, and
34 steps for the fifth test. The average was 34.8 steps. The experimental results can be seen
in Figure 13, and it includes the experimental results of Q-Learning and Dyna-Q previously
conducted. In the case of the Q-Learning algorithm to which ‘dynamic reward adjustment
based on action’ was applied, the path search time was slightly faster than Q-Learning, and
the final path length was confirmed to be improved to a level similar to that of Dyna-Q.
Figure 14 shows the learning pattern obtained using the additional experiments compared
with the result of Q-Learning. There is no outstanding point. Figure 15 shows the path
found through the experiment of the Q Leaning algorithm applying ‘dynamic reward
adjustment based on action’ on the map.

Appl. Sci. 2021, 11, 1209 13 of 16

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 17

(e)

Figure 12. Path optimization learning progress status of Dyna-Q: (a) 1st test; (b) 2nd test; (c) 3rd test; (d) 4th test; (e) 5th test.

Subsequently, additional experiments were conducted by applying ‘dynamic reward
adjustment based on action’ to the Q-Learning algorithm. The path search time of this
experiment was 19.04 min for the first test, 15.21 min for the second test, 17.05 min for the
third test, 17.51 min for the fourth test, and 17.38 min for the fifth test. It took about 17.23
min on average. The final path length of this experiment was 38 steps for the first test, 34
steps for the second test, 34 steps for the third test, 34 steps for the fourth test, and 34 steps
for the fifth test. The average is 34.8 steps. The experimental results can be seen in Figure
13, and it includes the experimental results of Q-Learning and Dyna-Q previously con-
ducted. In the case of the Q-Learning algorithm to which ‘dynamic reward adjustment
based on action’ was applied, the path search time was slightly faster than Q-Learning,
and the final path length was confirmed to be improved to a level similar to that of Dyna-
Q. Figure 14 shows the learning pattern obtained using the additional experiments com-
pared with the result of Q-Learning. There is no outstanding point. Figure 15 shows the
path found through the experiment of the Q Leaning algorithm applying ‘dynamic re-
ward adjustment based on action’ on the map.

(a) (b)

Figure 13. Comparison of experiment results: (a) Total elapsed time; (b) Length of final path. Figure 13. Comparison of experiment results: (a) Total elapsed time; (b) Length of final path.
Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 17

(a) (b)

(c) (d)

(e)

Figure 14. Path optimization learning progress status of Q-Learning with action based reward: (a) 1st test; (b) 2nd test; (c)
3rd test; (d) 4th test; (e) 5th test.

(a) (b)

Figure 14. Path optimization learning progress status of Q-Learning with action based reward: (a) 1st test; (b) 2nd test;
(c) 3rd test; (d) 4th test; (e) 5th test.

Appl. Sci. 2021, 11, 1209 14 of 16

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 17

(a) (b)

(c) (d)

(e)

Figure 14. Path optimization learning progress status of Q-Learning with action based reward: (a) 1st test; (b) 2nd test; (c)
3rd test; (d) 4th test; (e) 5th test.

(a) (b)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 17

(c) (d)

(e)

Figure 15. Path results of Q-Learning with action based reward: (a) 1st test; (b) 2nd test; (c) 3rd test; (d) 4th test; (e) 5th test.

5. Conclusions
In this paper, we reviewed the use of reinforcement learning as a path optimization

technique in a warehouse environment. We built a simulation environment to test path
navigation in a warehouse environment and tested the two most basic algorithms, the Q
-Learning and Dyna-Q algorithms, for reinforcement learning. We then compared the ex-
perimental results in terms of the path search times and the final path lengths. Compared
with the average of the results of the five experiments, the path search time of the Q-
Learning algorithm was about 4.1 times faster than the Dyna-Q algorithm’s, and the final
path length of Dyna-Q algorithm was about 37% shorter than in the Q-Learning algo-
rithm’s. As a result, the experimental results of both Q-Learning and Dyna-Q algorithm
showed unsatisfactory results for either the path search time or the final path length. To
improve the results, we conducted various experiments using the Q-Learning algorithm
and found that it does not perform well when finding search paths in a complex environ-
ment with many obstacles. The Q-Leaning algorithm has the property of finding a path at
random. To minimize this random path searching trial, the target position was deter-
mined for movement, and the set reward value was high around the target position,’ thus,
the performance and efficiency of the agent improved with ‘dynamic reward adjustment
based on action’. Agents mainly explore locations with high reward values. In further ex-
periments, the path search time was about 5.5 times faster than Dyna-Q algorithm’s, and
the final path length was about 71% shorter than in the Q-Learning algorithm. It was con-
firmed that the path search time was slightly faster than the Q-Learning algorithm, and
the final path length was improved to the same level as the Dyna-Q algorithm.

Figure 15. Path results of Q-Learning with action based reward: (a) 1st test; (b) 2nd test; (c) 3rd test; (d) 4th test; (e) 5th test.

5. Conclusions

In this paper, we reviewed the use of reinforcement learning as a path optimization
technique in a warehouse environment. We built a simulation environment to test path
navigation in a warehouse environment and tested the two most basic algorithms, the Q
-Learning and Dyna-Q algorithms, for reinforcement learning. We then compared the exper-
imental results in terms of the path search times and the final path lengths. Compared with
the average of the results of the five experiments, the path search time of the Q- Learning

Appl. Sci. 2021, 11, 1209 15 of 16

algorithm was about 4.1 times faster than the Dyna-Q algorithm’s, and the final path length
of Dyna-Q algorithm was about 37% shorter than the Q-Learning algorithm’s. As a result,
the experimental results of both Q-Learning and Dyna-Q algorithm showed unsatisfactory
results for either the path search time or the final path length. To improve the results, we
conducted various experiments using the Q-Learning algorithm and found that it does not
perform well when finding search paths in a complex environment with many obstacles.
The Q-Leaning algorithm has the property of finding a path at random. To minimize this
random path searching trial, the target position was determined for movement, and the set
reward value was high around the target position,’ thus the performance and efficiency of
the agent improved with ‘dynamic reward adjustment based on action’. Agents mainly
explore locations with high reward values. In further experiments, the path search time
was about 5.5 times faster than the Dyna-Q algorithm’s, and the final path length was about
71% shorter than the Q-Learning algorithm. It was confirmed that the path search time
was slightly faster than the Q-Learning algorithm, and the final path length was improved
to the same level as the Dyna-Q algorithm.

It is a difficult goal to meet both minimization of path search time and high accuracy
for path search. If the learning speed is too fast, it will not converge to the optimal value
function, and if the learning speed is set too late, the learning may take too long. In this
paper, we have experimentally confirmed how to reduce inefficient exploration with simple
technique to improve path search accuracy and maintain path search time.

In this study, we have seen how to use reinforcement learning for a single agent and a
path optimization technique for a single path, but the warehouse environment in the field
is much more complex and dynamically changing. In the automation warehouse, multiple
mobile robots work simultaneously. Therefore, this basic study is an example of improving
the basic algorithm in a single path condition for a single agent, and it is insufficient to
apply the algorithm to an actual warehouse environment. Therefore, based on the obtained
results, an in-depth study of the improved reinforcement learning algorithm is needed,
considering highly challenging multi-agent environments to solve more complex and
realistic problems.

Author Contributions: Conceptualization, H.L. and J.J.; methodology, H.L.; software, H.L.; vali-
dation, H.L. and J.J.; formal analysis, H.L.; investigation, H.L.; resources, J.J.; data curation, H.L.;
writing–original draft preparation, H.L.; writing—review and editing, J.J.; visualization, H.L.; super-
vision, J.J.; project administration, J.J.; funding acquisition, J.J. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
ITRC (Information Technology Research Center) support program (IITP-2020-2018-0-01417) super-
vised by the IITP (Institute for Information & Communications Technology Planning & Evaluation).

Acknowledgments: This work was supported by the Smart Factory Technological R&D Program
S2727115 funded by Ministry of SMEs and Startups (MSS, Korea).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hajduk, M.; Koukolová, L. Trends in Industrial and Service Robot Application. Appl. Mech. Mater. 2015, 791, 161–165. [CrossRef]
2. Belanche, D.; Casaló, L.V.; Flavián, C. Service robot implementation: A theoretical framework and research agenda. Serv. Ind. J.

2020, 40, 203–225. [CrossRef]
3. Fethi, D.; Nemra, A.; Louadj, K.; Hamerlain, M. Simultaneous localization, mapping, and path planning for unmanned vehicle

using optimal control. SAGE 2018, 10, 168781401773665. [CrossRef]
4. Zhou, P.; Wang, Z.-M.; Li, Z.-N.; Li, Y. Complete Coverage Path Planning of Mobile Robot Based on Dynamic Programming

Algorithm. In Proceedings of the 2nd International Conference on Electronic & Mechanical Engineering and Information
Technology (EMEIT-2012), Shenyang, China, 7 September 2012; pp. 1837–1841.

5. Azadeh, K.; Koster, M.; Roy, D. Robotized and Automated Warehouse Systems: Review and Recent Developments. INFORMS
2019, 53, 917–1212. [CrossRef]

6. Koster, R.; Le-Duc, T.; JanRoodbergen, K. Design and control of warehouse order picking: A literature review. EJOR 2007, 182,
481–501. [CrossRef]

http://doi.org/10.4028/www.scientific.net/AMM.791.161
http://doi.org/10.1080/02642069.2019.1672666
http://doi.org/10.1177/1687814017736653
http://doi.org/10.1287/trsc.2018.0873
http://doi.org/10.1016/j.ejor.2006.07.009

Appl. Sci. 2021, 11, 1209 16 of 16

7. Jan Roodbergen, K.; Vis, I.F.A. A model for warehouse layout. IIE Trans. 2006, 38, 799–811. [CrossRef]
8. Larson, T.N.; March, H.; Kusiak, A. A heuristic approach to warehouse layout with class-based storage. IIE Trans. 1997, 29,

337–348. [CrossRef]
9. Kumara, N.V.; Kumarb, C.S. Development of collision free path planning algorithm for warehouse mobile robot. In Proceedings

of the International Conference on Robotics and Smart Manufacturing (RoSMa2018), Chennai, India, 19–21 July 2018; pp. 456–463.
10. Sedighi, K.H.; Ashenayi, K.; Manikas, T.W.; Wainwright, R.L.; Tai, H.-M. Autonomous local path planning for a mobile robot

using a genetic algorithm. In Proceedings of the 2004 Congress on Evolutionary Computation, Portland, OR, USA, 19–23 June
2004; pp. 456–463.

11. Lamballaisa, T.; Roy, D.; De Koster, M.B.M. Estimating performance in a Robotic Mobile Fulfillment System. EJOR 2017, 256,
976–990. [CrossRef]

12. Merschformann, M.; Lamballaisb, T.; de Kosterb, M.B.M.; Suhla, L. Decision rules for robotic mobile fulfillment systems. Oper.
Res. Perspect. 2019, 6, 100128. [CrossRef]

13. Zhang, H.-Y.; Lin, W.-M.; Chen, A.-X. Path Planning for the Mobile Robot: A Review. Symmetry 2018, 10, 450. [CrossRef]
14. Han, W.-G.; Baek, S.-M.; Kuc, T.-Y. Genetic algorithm based path planning and dynamic obstacle avoidance of mobile robots.

In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and
Simulation, Orlando, FL, USA, 12–15 October 1997.

15. Nurmaini, S.; Tutuko, B. Intelligent Robotics Navigation System: Problems, Methods, and Algorithm. IJECE 2017, 7, 3711–3726.
[CrossRef]

16. Johan, O. Warehouse Vehicle Routing Using Deep Reinforcement Learning. Master’s Thesis, Uppsala University, Uppsala,
Sweden, November 2019.

17. Hands-On Machine Learning with Scikit-Learn and TensorFlow by Aurélien Géron. Available online: https://www.oreilly.com/
library/view/hands-on-machine-learning/9781491962282/ch01.html (accessed on 22 December 2020).

18. Sutton, R.S.; Barto, A.G. Introduction to Reinforcement Learning, 2nd ed.; MIT Press: London, UK, 2018; pp. 1–528.
19. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st ed.; Wiley: New York, NY, USA, 1994; pp.

1–649.
20. Deep Learning Wizard. Available online: https://www.deeplearningwizard.com/deep_learning/deep_reinforcement_learning_

pytorch/bellman_mdp/ (accessed on 22 December 2020).
21. Meerza, S.I.A.; Islam, M.; Uzzal, M.M. Q-Learning Based Particle Swarm Optimization Algorithm for Optimal Path Planning of

Swarm of Mobile Robots. In Proceedings of the 1st International Conference on Advances in Science, Engineering and Robotics
Technology, Dhaka, Bangladesh, 3–5 May 2019.

22. Hsu, Y.-P.; Jiang, W.-C. A Fast Learning Agent Based on the Dyna Architecture. J. Inf. Sci. Eng. 2014, 30, 1807–1823.
23. Sichkar, V.N. Reinforcement Learning Algorithms in Global Path Planning for Mobile Robot. In Proceedings of the 2019

International Conference on Industrial Engineering Applications and Manufacturing, Sochi, Russia, 25–29 March 2019.
24. Jang, B.; Kim, M.; Harerimana, G.; Kim, J.W. Q-Learning Algorithms: A Comprehensive Classification and Applications. IEEE

Access 2019, 7, 133653–133667. [CrossRef]
25. Kirtas, M.; Tsampazis, K.; Passalis, N. Deepbots: A Webots-Based Deep Reinforcement Learning Framework for Robotics. In

Proceedings of the 16th IFIP WG 12.5 International Conference AIAI 2020, Marmaras, Greece, 5–7 June 2020; pp. 64–75.
26. Altuntas, N.; Imal, E.; Emanet, N.; Ozturk, C.N. Reinforcement learning-based mobile robot navigation. Turk. J. Electr. Eng.

Comput. Sci. 2016, 24, 1747–1767. [CrossRef]
27. Glavic, M.; Fonteneau, R.; Ernst, D. Reinforcement Learning for Electric Power System Decision and Control: Past Considerations

and Perspectives. In Proceedings of the 20th IFAC World Congress, Toulouse, France, 14 July 2017; pp. 6918–6927.
28. Wang, Y.-C.; Usher, J.M. Application of reinforcement learning for agent-based production scheduling. Eng. Appl. Artif. Intell.

2005, 18, 73–82. [CrossRef]
29. Mehta, N.; Natarajan, S.; Tadepalli, P.; Fern, A. Transfer in variable-reward hierarchical reinforcement learning. Mach. Learn. 2008,

73, 289. [CrossRef]
30. Hu, Z.; Wan, K.; Gao, X.; Zhai, Y. A Dynamic Adjusting Reward Function Method for Deep Reinforcement Learning with

Adjustable Parameters. Math. Probl. Eng. 2019, 2019, 7619483. [CrossRef]

http://doi.org/10.1080/07408170500494566
http://doi.org/10.1080/07408179708966339
http://doi.org/10.1016/j.ejor.2016.06.063
http://doi.org/10.1016/j.orp.2019.100128
http://doi.org/10.3390/sym10100450
http://doi.org/10.11591/ijece.v7i6.pp3711-3726
https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch01.html
https://www.oreilly.com/library/view/hands-on-machine-learning/9781491962282/ch01.html
https://www.deeplearningwizard.com/deep_learning/deep_reinforcement_learning_pytorch/bellman_mdp/
https://www.deeplearningwizard.com/deep_learning/deep_reinforcement_learning_pytorch/bellman_mdp/
http://doi.org/10.1109/ACCESS.2019.2941229
http://doi.org/10.3906/elk-1311-129
http://doi.org/10.1016/j.engappai.2004.08.018
http://doi.org/10.1007/s10994-008-5061-y
http://doi.org/10.1155/2019/7619483

	Introduction
	Related Work
	Warehouse Environment
	Warehouse Layout and Components
	Mobile Robot’s Movement Type

	Path Planning for Mobile Robot
	Reinforcement Learning Algorithm
	Q-Learning
	Dyna-Q

	Reinforcement Learning-Based Mobile Robot Path Optimization
	System Structure
	Operation Procedure
	Dynamic Reward Adjustment Based on Action

	Test and Results
	Warehouse Simulation Environment
	Test Parameter Values
	Test Reward Values
	Results

	Conclusions
	References

