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Abstract: Additive manufacturing has become a very important manufacturing method in the last
years. With additive manufacturing, a higher level of function integration can be achieved compared
to traditional manufacturing technologies. However, the manufacturing of larger parts leads to long
construction times. A possible solution is the combination of multipoint moulding with additive
manufactured form elements. This article reviews the state of technology for multipoint moulding
and additive manufacturing. Moreover, the state of technology is analysed to outline the possibilities
and challenges of combining both technologies. The review shows that there has been research
on different challenges of the new production process. On the other hand, it turns out clearly that
there are many open points at the intersections of both technologies. Finally, the areas where further
research is necessary are described in detail.

Keywords: additive manufacturing; multipoint moulding; fused filament fabrication; vacuum
assisted multipoint moulding; technology combination; silicone made build platform

1. Introduction

In recent years, additive manufacturing has become a very important manufacturing
method. The components are built up in layers of a pre-material. Therefore, additive
manufacturing allows function integration within a component. This function integration
enables components with better mechanical properties and lower weight to be produced. In
addition, time-consuming joining operations can be avoided. The currently used additive
manufacturing methods have the disadvantage that increasing component sizes lead to
massively increasing construction times.

On the other side, there may be the possibility to mould larger parts. In the production
of individual parts or small batches, the fabrication of moulds is a main cost factor. It can
be avoided by using vacuum-assisted multipoint moulding (VAMM). The possibility of
dispensing mould making not only leads to a reduction in costs, but also to an improved
environmental balance sheet, as the disposal of moulds that are little or only used once is
no longer necessary. On the other hand, vacuum-assisted multipoint moulding is limited
regarding the resolution and the possible part shapes.

A possible solution is the combination of additive manufacturing with vacuum as-
sisted multipoint moulding. Thereby, the whole process could gain from the speed and
flexibility of vacuum-assisted multipoint moulding with an increased resolution and higher
shape flexibility offered by the additive manufactured attachments.

Possibilities of this combination for a new process called enhanced vacuum-assisted
multipoint moulding with additive attachments (EMMA) and resulting advantages will be
examined in this paper. Therefore, the literature review in the next sections will discuss the
actual state of the art of multipoint moulding and additive manufacturing. For this purpose,
the article will review the different additive manufacturing technologies and analyse if
they accomplish for the combined process and what challenges remain. In the next step,
this paper reviews the actual research topics which could be related to these challenges and
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possibly provide evidence to solve them. The main objective of this article is therefore to
provide an overview of the existing evidence and the further research needed to implement
the enhanced vacuum assisted multipoint moulding with additive attachments process.

The next section will discuss the actual state of technology in vacuum-assisted multi-
point moulding and show the possibilities and restrictions of this technology.

2. Vacuum Assisted Multipoint Moulding
2.1. Definition and Historical Development

Multipoint moulding (MM) is based on the idea of creating a mould that can be
adapted to the part to be produced and thus it is not necessary to produce a mould for
each individual part. MUNRO AND WALCZYK [1] define a multipoint mould also called a
reconfigurable tool: “A reconfigurable tool is defined as a machine that can be repeatedly
configured by a user for shaping mechanical parts in a manufacturing setting. Although
most machines are reconfigurable by virtue of their replaceable cutting bits, dies, moulds,
rollers, and the like, the machines [ . . . ] are reconfigurable pin-type tools with a variable
surface similar to the popular 3-D pin art or PinPressions™ toy, [ . . . ]. To be clear, the
machines discussed here are not fixturing devices, nor are they used for secondary cutting
or finishing of parts.” Figure 1 shows the schematic of such a 3D pin art. As shown in
Figure 1, the toy consists of a set of needles behind glass. The needles are mounted in two
plates with open ends at the back. The image is then created by the movement of the pins,
e.g., pressing a hand on the back and thereby creating a three-dimensional image behind
the glass.
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Figure 1. Schematic drawing of 3D pin art (based on the work in [2]).

The first known approaches to multipoint moulding date back to a patent of COCHRANE [3]
from 1862 who developed a device for sheet metal forming with adjustable pins (see Figure 2).
After inserting the sheet metal, the pins should be adjusted by hand and thus the shaping should
be realised. Figure 2 shows the structure of the device. It consists of a set of pins with rounded
heads and a studding which mounts the pins in the backplate and allows the adjustment in the
forming process. The raw material is placed on the pinheads and is then pressed against the
counter-pins on the other plate to be transformed.
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Figure 2. Schematic drawing of the first multipoint mould (based on the work in [3]).

The further development of multipoint moulding with the main contribution of the
authors is shown in Table 1 in a chronological order.

Table 1. Chronological development of multipoint moulding.

Authors Year Published Main Contribution

COCHRANE [3] 1862 development of multipoint moulding for sheet metal
forming

WALCZYK AND HARDT [4] 1998 examination of pin shape and matrix structure

VALJAVEC [5] 1998 closed loop automatic adjustment control

WALCZYK AND IM [6] 2000 implementation of closed-loop automatic adjustment
control for hydraulic actuation

WALCZYK AND LONGTIN [7] 2000 separated pins at larger distance and extension as a
fixing device on CNC machine tables

WALCZYK et al. [8] 2003 densely packed pins with interpolation layer and a
single vacuum chamber for CFRP parts

OWODUNNI et al. [9] 2004 fully computer-controlled adjustment by a commercial
CNC system

WANG AND YUAN [10] 2006 forming of very large aluminium sheet metal in several
working steps mainly for large spherical objects

TAN et al. [11] 2007 forming of perforated titanium sheets for individually
formed plates for skull reconstruction

HAGEMANN [12] 2008 studies on multipoint moulding in injection moulding
with the technical implementation

WALCZYK AND MUNRO [13] 2009 second vacuum circuit under the interpolation layer for
concave shapes

KOC AND THANGASWAMY [14] 2011 adjustment and configuration for use in
injection moulding
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Table 1. Cont.

Authors Year Published Main Contribution

BAYERISCHE
FORSCHUNGSSTIFTUNG [15],

SIMON et al. [16], SIMON et al. [17],
ZITZLSBERGER [18], SIMON et al.

[19,20]

2011–2014
forming of plastic sheets with wide apart pins and a

thick interpolation layer without vacuum for car
prototype windows

SU et al. [21] 2012 forming of thermoplastic resin sheets without
interpolation layer

ZITZLSBERGER [18] 2014 dimpling evaluation method for transparent multipoint
moulded plastic sheets

HUNDT et al. [22] 2014 variable pin distance for CFRP parts without
vacuum support

WIMMER et al. [23] 2016

densely packed pin field with silicon made interpolation
layer and two vacuum circuits for CFRP parts, research

of the influence of the thickness of the interpolation
layer on dimpling

SUZUKI et al. [24,25] 2018

system for combination of small cuboids with magnets
to larger objects as a faster alternative to additive

manufacturing, the object creation is very similar to
multipoint moulding

An actual further development was made by WIMMER et al. [23] relying on a densely
packed pin field with vacuum support to enable forming of concave carbon fibre-reinforced
plastic (CFRP) components (see Figure 3). Figure 3 shows that the concept used by WIMMER

et al. [23] follow the classical idea of multipoint moulding by mounting rounded pinheads
on studdings. Moreover, they combine this classical approach with a silicone made inter-
polation layer and mount it inside a vacuum chamber. This allows the manufacturing of
concave parts but there is a risk of transferring dimpling from the interpolation layer to
the component. As it can be seen in Figure 4a,b, the thinner interpolation layers cause a
clearly markable dimpling at the top side. The thicker interpolation layers in Figure 4c,d
eliminate the dimpling, but also worsen the shape reproduction. Overall, the thickness of
the interpolation layer is one major effect in the shape reproduction, but there also several
other influences. Therefore, predicting the behaviour of the interpolation layer and the
corresponding control of the system remains an issue to be dealt with [23].
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Figure 3. Principle of vacuum-assisted multipoint moulding (VAMM), shown in a smaller test setup.
The setup from top to bottom: (a) interpolation layer, (b) pin array, (c) threaded rods, (d) vacuum
container, (e) base plate and (f) actuator couplings [23].
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Figure 4. 3D scans of bowl shape created with a silicon rubber interpolation layer (40 Shore-A) with
varying thickness ((a) 5 mm, (b) 10 mm, (c) 15 mm and (d) 20 mm) at a vacuum of 100 hPa [23].

Vacuum-assisted multipoint moulding according to WIMMER et al. [23] constitutes
the basis for the further analysis as being the actual state of technology.

2.2. Restrictions and Solutions

Overall, it was shown that this technology has a broad field of application in vari-
ous forming processes. Particularly in single-part and small-batch production, the time-
consuming and expensive production of moulds can be dispensed. On the other hand,
there are still various restrictions.

WIMMER et al. [23] show that size and shape of the pins as well as the interpolation
layer used result in a certain resolution of the system. This means that, depending on these
parameters, the structure manufactured on the plant must have a minimum size. Another
limitation results from the maximum deformability of the interpolation layer, therefore
two adjacent pins must not exceed a certain maximum height difference in order not to
damage the interpolation layer. This in turn means that sharp-edged transitions cannot
be represented.

Figure 5 shows a schematic part made of carbon fibre reinforced plastics including a
detail which is not producible with vacuum-assisted multipoint moulding. Real compo-
nents that correspond to the schematic in Figure 5 could be, for example, doors of cars with
a door handle recess. The vacuum-assisted multipoint mould can be configured for the
slightly curved section of the part, but not the buckle in the centre. On one hand, this buckle
may be too small for representation with the pins of vacuum assisted multipoint mould. On
the other hand, there are sharp edges which cannot be configured with the silicone made
interpolation layer without damaging the interpolation layer. Naturally, other components
are also a possibility, for example, with an additional negative form element.
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To solve this problem, LUŠIĆ et al. [26] propose the application of attachments to the
interpolation layer. These attachments are to be used in areas representing geometries that
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cannot be mapped on the vacuum-assisted multipoint mould. As shown in Figure 6, this
concept consists of the classical vacuum-assisted multipoint mould approach with the pins
mounted in a vacuum chamber and a flexible interpolation layer at the top. On top of the
interpolation layer an additive manufactured attachment is mounted to build the detail
which cannot be represented by the vacuum assisted multipoint mould. The fixing of the
externally manufactured attachments on the interpolation layer is identified as a problem.
Three different solutions are presented, two of them are types of vacuum mounting and
the third is a needle mounting system.
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Figure 6. Enhanced vacuum-assisted multipoint moulding with additive attachments, consisting of
the vacuum-assisted multipoint mould with pins and interpolation layer and the additive manufac-
tured attachment mounted on top of the interpolation layer.

The combination of the vacuum-assisted multipoint moulding and the additive man-
ufactured attachments has the opportunity to combine a fast moulding process with the
possibility for smaller details without producing a mould. Building the whole part with
additive manufacturing processes would consume a lot of time, although the parts are
thin-walled. On the other hand, the construction and milling of a mould needs even more
time, even if the moulding process itself is fast. When combining the vacuum assisted
multipoint moulding with additive manufactured attachments on one side the additive
manufactured parts are relatively small and thus can be manufactured in a short period
of time. On the other side, when using the vacuum-assisted multipoint mould there is no
mould-milling necessary which significantly reduces the time required. The positioning
problem of these attachments on the vacuum assisted multipoint mould is not completely
solved. If a manual positioning is carried out, deviations in dimensional accuracy can be
expected. In addition, trained employees are needed for manual steps, which generally
reduce the efficiency of the technology. A further aspect is the need to pick up the surface
in order to be able to produce precisely matching attachments. It is therefore desirable to
aim for a continuous production process directly integrated in one plant and delivering a
finished mould, based on the digital computer-aided design (CAD) model. Consequently,
this paper will only focus on production processes matching these requirements.

Figure 7 shows the process flow chart for the proclaimed enhanced vacuum-assisted
multipoint moulding with additive attachments process. It starts with the CAD model of
part to be manufactured followed by the separation of the geometries in the parts which
are manufacturable by the vacuum assisted multipoint moulding itself und the parts where
additive attachments are needed. In the next steps, the data for the adjustment of the
vacuum-assisted multipoint mould have to be calculated followed by the adjustment itself.
If the vacuum-assisted multipoint mould is adjusted accordingly to the target geometry
the manufacturing data for the additive attachments can be calculated and sliced, followed
by the manufacturing of these attachments the part can be moulded.
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Therefore, the next section will provide an overview of the actual state of the art
in additive manufacturing technologies and discuss them in respect to combine both
technologies.

3. Possible Additive Manufacturing Methods

According to BRANS [27], additive manufacturing processes have been known for
a long time and were already used in special applications and in prototype construction
in the past. However, it has not become possible to use additive manufacturing in com-
ponent production until the further development of the technology and its expansion to
various materials.

The additive manufacturing processes, commonly known as 3D printing, are in most
cases not based on a true three-dimensional production of the components, but use a 2.5D
approach. With this approach, the three-dimensional component to be created is cut into
individual layers with a constant thickness. These layers are stacked along the building
direction (see Figure 8). A change of the geometry, for example, the wall thickness, can only
take place in the transition of two layers. As it can be seen in Figure 8, this approach leads
to a loss of details on one hand and to a staircase effect in the other hand. However, this
method makes it possible to produce components with geometries that cannot be produced
using conventional fabrication methods and therefore would have to be joined from several
parts. In turn, this functional integration makes it possible to save joining processes and
thus reduce production costs [28].
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In this section, the most common processes are presented and their suitability for the
new enhanced vacuum-assisted multipoint moulding with additive attachments outlined
in this paper is assessed.

3.1. Metal Based Processes

The historically newer group are additive manufacturing processes that use metals
as manufacturing material. FRAZIER [29] already offers a comprehensive overview of the
current opportunities of these processes, so that only a brief overview is to be provided here.

In this group, commonly used systems are based on a powder bed. The main principle
is to build up a powder bed and fuse the powder using a laser beam directed by X-Y
scanning mirrors. The component is then covered with a further layer of powder by the
powder levelling roller that is fused to the underlying layer by the laser beam (see Figure 9).
These processes are called laser powder bed fusion respectively selective laser melting [30].
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Figure 9. Schematic representation of laser powder bed fusion (based on the work in [30]).

A similar process is directed energy deposition, in which a laser beam is guided along
the contour of the component while a nozzle is used to blow metal powder to the laser beam
continuously (see Figure 10). The laser beam melts the powder and the component can be
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built up. At the same time, a powder bed is not necessary, reducing powder consumption.
However, there is a high energy input into the build plate [31,32].
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SAENDIG et al. [33,34] and TECHEL et al. [35] introduce a process in which the layers
of individual metal plates are cut out by laser and then get welded together. According to
GEBHARDT [28], this form of laminating object modelling was not successful on the market.

An alternative method is the bonding of the powder by a binder in the binder jetting
process, which was introduced by SACHS et al. [36] for metallic and ceramic parts. A
powder bed is built up in layers similar to laser powder bed fusion. However, the individual
grains are not joined by welding with a laser, but by bonding. The adhesive is sprayed
onto the powder layer by layer to build up the geometry. The nozzles used are identical
or very similar in construction to the print heads known from inkjet printing, which are
usually guided and moved via a portal. Synthetic resins are often used as adhesives,
which are available not only colourless, but also in various colours, making multi-coloured
components possible. In case of using metal powder in the first step, a green part is
built. In a second process step, the green part is debindered and infiltrated into a dense
metal component [28].

3.2. Plastic-Based Processes

In addition to additive manufacturing processes using metals, there is the very
widespread group of processes based on plastics. These processes can be classified ac-
cording to the shape of the starting material. They can be divided into powder bed
processes, extrusion processes, resin bath processes and processes using plate- or film-like
starting materials.

In the field of powder bed processes, selective laser sintering is available in analogy
to laser powder bed fusion with metals. However, the construction chamber is heated
and maintained just below the melting point or the glass transition temperature of the
plastic powder. This significantly reduces the energy to be introduced by the laser and
prevents distortion. To suppress oxidation processes and the associated degradation of the
material, the process is carried out in a nitrogen atmosphere. The layer thickness is about
0.1 mm [30].
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The widely used fused layer modelling originates from the field of extrusion processes.
This method is often mistakenly referred to as fused deposition modelling. Due to the com-
paratively simple design of the devices and the possible placement at the workplace, this
procedure has become established for home users. Nevertheless, there are also devices for
commercial use with an extended range of functions. In most cases, the solid thermoplastic
raw material is pressed through a heated nozzle and liquefied. This liquid extrudate is
placed next to each other on one level to produce the individual layer and in several layers
on top of each other to produce the actual component. In most cases, a filament is used
as the raw material, which is fed directly from a coil to the nozzle. Therefore, the more
specific name fused filament fabrication (see Figure 11) is often used. Rarely pellet raw
material is applied, which is liquefied in a screw extruder. In most cases, fused filament
fabrication is used with a heated build plate to reduce warping, deformation and facilitate
a better adhesion between the first layer and the build plate. Whereas other additive
manufacturing technologies are very material specific there are many materials available
for fused layer modelling [28].
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Figure 11. Schematic representation of fused filament fabrication (based on the work in [37]).

In addition to the often-used plastics, also gel-like or liquid materials are used, for example,
in medical applications. LI et al. [38] present such a procedure for direct skin reconstruction.

Despite the relatively high degree of diffusion of the technology, many questions still
need to be clarified scientifically. These are often questions concerning the optimisation
of process parameters to improve production quality. DONG et al. [39] optimise the main
process parameters to enable and improve the production of lattice structures. They show
a clear influence on the manufacturability of the components, on the one hand, and on the
mechanical properties of the component on the other. Apart from that, ERTAY et al. [40]
address the problem of sharp directional changes in the extrusion path. These changes
in direction lead to accumulation of material if the extrusion rate remains unchanged as
the tangential speed of the die is greatly reduced relative to the build platform. Therefore,
ERTAY et al. [40] develop a control algorithm that leads to a more uniform material deposi-
tion rate and thus to more precise components by influencing the extrusion parameters.
LUZANIN et al. [41], on the other hand, optimise process parameters for polylactide (PLA)
components with the aim of achieving the greatest possible bending strength.

Another major factor influencing the component strength of fused filament fabrication
components is the connection between the individual extrusion strands within the layer or
between the layers. Based on empirical data COOGAN AND KAZMER [37] clearly show that
the component strength along the extrusion strands is significantly higher than the strength
across extrusion direction. For a better prediction of this anisotropic behaviour, COOGAN

AND KAZMER [42] develop a simulation model of the connection between the extrusion
strands. CANTRELL et al. [43] and KELEŞ et al. [44] can also determine a clear dependence
of the mechanical characteristics on the position of the component in the building space.
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SEIDL et al. [45] compare the mechanical properties of the components produced by fused
filament fabrication with those of components produced by injection moulding. The
conclusion is that the additively manufactured components achieve strengths close to those
of the injection-moulded components along the extrusion strands. In contrast, components
produced using fused filament fabrication perform significantly worse under bending
stress. RAUT et al. [46] extend the strength approach by the aspect of construction costs and
try to derive an optimum from it. LIU AND YU [47] make targeted use of this anisotropy and
show a formalism for the targeted reinforcement of highly stressed areas by corresponding
planning of the extrusion paths. MOHAMED et al. [48] identify not only the screen angle, but
also the layer thickness, the nozzle spacing and the number of contour paths as important
factors influencing creep resistance. PRATER et al. [49] show that components produced
in weightlessness have significantly better mechanical properties than those produced on
earth. The exact reasons for this behaviour remain unclear.

The group of stereolithographic processes (SLA) rely on a liquid and light-sensitive
resin as a base material. As shown in Figure 12a, one option is to use a laser beam for
exposing a construction chamber filled with liquid resin along the component contours and
thus activating the solidification of the polymer in these areas. Alternatively, the contours
of an entire layer are exposed to light and thus cured by a mask process, as shown in
Figure 12b. In the next step, the construction platform is lowered and the next layer is
created. This process achieves very high accuracies and especially the mask processes
achieve good production speeds. The downside is that in the first process step only green
parts are produced which have to be cured afterwards [28,30].

The laminated layer manufacturing (LLM) or laminated object modelling (LOM) (see
Figure 13) has to be mentioned as a process with plate- or film-shaped raw materials. For
each layer of the part, a new film layer is glued to the lower layer and cut out along the
component contours. The produced part can be removed from the waste material hackled
by a crosshatch after all layers have been produced [28,30].
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However, the disadvantage is that the individual film layers create clearly visible
and comparatively sharp-edged transitions between the layers on component slopes, the
so-called staircase effect. For a significant increase in production speed and simultaneous
improvement in surface quality HOPE et al. [51], HOPE et al. [52], LEE et al. [53] and LEE

et al. [54] present a process based on thicker layers. At the same time, a cut deviating from
the vertical is made possible, so that the staircase effect can be reduced.

3.3. Processes for Other Materials

In addition to the methods already presented, there are adapted or proprietary pro-
cesses for many other materials. Binder jetting is also available for sand and other materials
as base material. A special application for the sand-based process is the foundry industry,
where binder jetting is used to produce cores for moulds quickly and cheaply without an
expensive and time-consuming production of a mould for a core shooter [28,30].

JUNK AND CÔTÉ [55,56] also found in a comparative study that the energy balance of
binder jetting is significantly better than that of fused filament fabrication. It was found
that the energy consumption for building a test prototype in the binder jetting process is
significantly lower. The most important factor influencing energy consumption was the
construction time.

The fused filament fabrication has been further developed too. There are many
versions for a wide variety of materials. LIM et al. [57] present a version of fused layer
modelling for the production of large curved concrete parts. BELLINI [58], on the other
hand, is developing a process for the extrusion of ceramic components. AN et al. [59]
show in an overview of the current state of research that the fused filament fabrication
is also interesting for the production of organic components. Current research ranges
from the production of replacements for missing skin areas to the extrusion of tissue for
entire organs. Medical technology also deals with additive manufacturing. The idea is
usually the possibility of individual adaptation of the parts to the patient’s needs. For
example, COMOTTI et al. [60] show an approach for the production of a prosthesis of the
lower extremities. However, an individually adapted shape is created in a multi-material
approach, which can be produced in one production step by additive manufacturing.

The laminated layer manufacturing can use paper as a raw material. Thereby, the part
is built from individual layers of paper, which are glued together and cut out [28,30].

Summarising the additive manufacturing processes for other materials are mostly
variants of processes originally using metals or plastics.

3.4. Process Discussion

Table 2 provides an overview of the essential process parameters of the additive
manufacturing processes presented, so that the ideal options for the integrated process can
be discussed further.
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Beside the technical aspects in combining both technologies there are the production
costs of the process. On one hand, the plant costs and, on the other hand, the production
costs have to be mentioned. With regard to the production costs of parts manufactured by
the enhanced vacuum-assisted multipoint moulding with additive attachments process, the
largest part is related to the manufacturing costs of the additive manufactured attachments.
Therefore, the comparison of the production costs with the different additive manufacturing
processes would be a very interesting topic. There is a lot of literature on this subject, for
example, COSTABILE et al. [61], or DOUGLAS [62], offer an overview on calculating additive
manufacturing costs. As it can be seen there, the calculation of the real costs is very complex
and provides very different values depending on the specific machine manufacturer and
material supplier. Therefore, this factor is excluded from the further research and should
possibly be examined again in the future.

The processes for the additive production of metal components rely on metal powder.
Powder residues that get into the vacuum-assisted multipoint mould can lead to the failure
of the system. This would require a complex sealing against powder dust. On the other
hand, the metal parts provide a good temperature stability and high temperature curing
carbon fibre-reinforced plastics systems can be used. The melting temperatures of the
metals are well above the decomposition temperatures of the silicone mats currently used
as interpolation layers. Therefore, the application of the attachments to the interpolation
layer would lead to the destruction of the interpolation layer. In contrast, using the binder
jetting process resolves the temperature problem in the first step. In a second step, the
green parts have to be debindered and sintered, which leads to the same temperature
problem or to the removal from the interpolation layer with the need of repositioning after
postprocessing. Therefore, the additive manufacturing processes using metals or alloys are
not suitable for a combined integrated process.
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Table 2. Main characteristics of additive manufacturing processes in respect of the combination with vacuum assisted multipoint moulding.

Process Name Material Form of Base Material Field of Process
Temperatures Advantages Disadvantages

Laser Powder Bed Fusion (LPBF) metals, alloys powder bed
material dependent

(melting spot:
600–3500 ◦C)

temperature stability of parts,
precision, part strength,

shape options

powder bed, high fusing
temperatures,

residual material

Directed Energy Deposition
(DED) metals, alloys powder jet

material dependent
(melting spot:
600–3500 ◦C)

temperature stability of parts,
part strength

powder, high fusing
temperatures,

Laminated Object Modelling
(LOM)

metals, alloys, plastics,
paper solid plates, film reels depending on material (room

temperature—1500 ◦C)

depending on material, many
materials available, process at

room temperature possible

staircase effect, residual
material, cutting and joining

of material

Binder Jetting (3DP) metals, alloys, ceramics,
sand powder bed room temperature

many materials available,
part strength, process time,

shape options

possibly postprocessing
necessary, powder bed,

residual material

Selective Laser Sintering (SLS) plastics powder bed

material dependent (building
chamber: 100–150 ◦C

sintering spot:
100–350 ◦C)

precision, shape options
powder bed, high fusing
temperatures, residual

material, heated chamber

Fused Layer Modelling (FLM) 1 plastics, concrete, bio
materials

filament, pellets, gel-like
liquids

material dependent (room
temperature—250 ◦C)

no residual material,
comparatively simple, only

nozzle heated,
many materials

temperature stability of parts,
part strength, shape options

Stereolithography (SLA) liquid, light-sensitive resins resin bath 25–30 ◦C, possibly
cooling necessary precision, process time

resin bath, temperature
stability of parts, part

strength, shape options,
postprocessing needed

1 More commonly known is Fused Filament Fabrication (FFF), as a special case of the process group for the use of filaments as raw material.
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Accordingly, to the metal processes, powder bed processes are only insufficiently
suitable for enhanced vacuum-assisted multipoint moulding with additive attachments
integrated in one plant, even when using plastics. As the process temperatures are reduced
and may be suitable with the interpolation layer the big advance of the high temperature
stability is also no longer existent. The situation is similar with stereolithographic processes
that rely on a resin bath, which can only be realised directly on the interpolation layer with
great effort. In contrast, the fused filament fabrication has great potential for enhanced
vacuum assisted multipoint moulding with additive attachments, since the material is
only placed at the required points during production. The solid raw material can be
fed from a coil, so that no special precautions are necessary on the vacuum assisted
multipoint mould. Summarising in the case of plastic processes the powder bed processes
and the stereolithographic processes only have little advances in regard to the integrated
enhanced vacuum assisted multipoint moulding with additive attachments process. The
big disadvantage is the high effort in dealing with the powder and resin residuals.

When it comes to other materials the production of sand attachments directly on the
vacuum assisted multipoint mould leads to the same problem as with all powder bed
processes, although sand models would ensure good temperature stability. The extrusion
of concrete already shows clear advantages here since no excess material has to be removed
yet the penetration of concrete into the vacuum assisted multipoint mould carries risks.
Furthermore, the material cannot be stored ready for processing, but would have either
to be mixed in the process or produced in advance of production. Subsequently, the
components require a long setting and curing time until the actual component can be
manufactured. The high temperature stability would be an advantage too. Paper models
would ensure relatively easy processability, but the model must be impregnated before the
infiltration of the carbon fibre part starts. Otherwise, the paper absorbs the resin of the
component to be infiltrated with and adheres to them.

Summarising, there are different possible additive manufacturing methods available
for the integrated process of enhanced vacuum assisted multipoint moulding with additive
attachments. The fused filament fabrication is clearly the easiest way to implement the
process, with just one disadvantage which is the relatively low temperature stability of the
attachments. Therefore, only resin systems curing at room temperature can be used for
the carbon fibre reinforced plastic parts. Hence, this paper will focus on the combination
of vacuum assisted multipoint moulding with attachments produced by fused filament
fabrication.

Therefore, the next chapter will focus on the different possibilities and difficulties of
integrating fused filament fabrication to the vacuum assisted multipoint mould.

4. Discussion of the Process Combination in Enhanced Vacuum Assisted Multipoint
Moulding with Additive Attachments

By default, the fused filament fabrication process is operated with low melting point
plastics and therefore has the disadvantage that only material with low curing or forming
temperatures can be used for part production. In addition, in most cases a glass plate is
used as a construction platform for the fused filament fabrication, which inherits a number
of differing properties in comparison to the interpolation layer made of silicone. Moreover,
the building platform is usually flat. This means that the curved building ground on the
vacuum assisted multipoint mould also represents a deviation from the standard process.

According to KLEESPIES III AND CRAWFORD [63] the discrete pins of the vacuum
assisted multipoint mould cause unevenness in the part despite the interpolation layer
(see Figure 4). The degree of unevenness the so-called dimpling essentially depends on
the mechanical properties and the thickness of the interpolation layer. However, the use
of a thicker interpolation layer results in a significant decrease of the smallest producible
structure. Hence, an appropriate middle course must be chosen here. While KLEESPIES III
AND CRAWFORD [63] detect the occurrence of dimpling in the forming of plastic sheets,
PĂUNOIU et al. [64] show that this effect also occurs during the forming of sheet metal.
Similar influencing parameters are determined in each case. According to LUŠIĆ et al. [65]
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the compensation of this phenomenon would either be to make the system significantly
more precise and rigid, which would cause high costs. Hence, LUŠIĆ et al. [65] develop
a readjustment of the pins based on a 3D measurement of the surface. Therefore, the
pins are initially adjusted followed by a three-dimensional scan of the actual shape of the
interpolation layer. This actual shape is matched with the CAD model of the part to be
produced with a best fit method. Based on this match, the deviations of the individual
pins are determined and in the next step the VAMM is adjusted accordingly, thus the form
deviations of the VAMM can be reduced.

Another problem of enhanced vacuum assisted multipoint moulding with additive
attachments could arise from the layered manufacturing of the additively produced at-
tachments. KULKARNI AND DUTTA [66] clearly show that noticeable surface defects can
occur depending on the layer thickness and the construction angle of the component. Since
these surface defects resemble a staircase, the effect is also called the staircase effect (see
Figure 8). KULKARNI AND DUTTA [66] develop an adaptive cutting technique to reduce
this effect, which adapts the layer height to the shape of the component and thus produces
significantly more precise surface contours. To further improve the prediction of the stair-
case effect, VAHABLI AND RAHMATI [67] develop a method based on a neural network and
thus achieve a significantly more accurate prediction of the expected surface roughness.
KUO et al. [68], on the other hand, show an appropriate post-treatment option by filling
the steps with epoxy resin. In addition to a significant improvement in surface accuracy, a
massive improvement in the mechanical properties of the component can also be achieved.

Overall, the combination of the two processes in enhanced vacuum assisted multipoint
moulding with additive attachments is countered on the one hand by the problems of
the shape deviation of the flexible form. On the other hand, the defects of the additively
produced attachments themselves could impair due to the staircase effect. Therefore, the
next step is to examine whether solutions have already been found for these challenges
and whether these can be transferred to enhanced vacuum assisted multipoint moulding
with additive attachments.

4.1. Additive Manufacturing on Silicone Made Building Platform

The aim of current research is to develop enhanced vacuum-assisted multipoint
moulding with additive attachments a continuous process for manufacturing with a vac-
uum assisted multipoint mould. As already mentioned, it is necessary to place additional
additively manufactured attachments on the interpolation layer at certain points in order
to be able to map a larger part spectrum. Moreover, it should be possible to adjust the
machine without any further intervention by an employee. Therefore, the system must be
able to produce the attachments directly in one plant. As the vacuum-assisted multipoint
moulding for carbon fibre-reinforced plastics uses a silicone interpolation layer [23], the
attachments must be manufactured on a silicone building platform.

In the literature, there are already some processes outlined which produce directly
on existing components and thus deviate from the usual flat building platforms. Among
the procedures of laser-sintering the method of KESHAV et al. [31,32] should be mentioned.
They are developing a metal-based process that uses an inert gas jet to bring metal powder
to the point of material application. The powder is melted at its destination by a laser beam
and thus bonded to the underlying layer. They are reducing the laser power to minimise
the temperature load on the substrate. Nevertheless, the images show a clear heat influence
on the base material. Therefore, the process is ruled out for an application on silicone.

CHOI et al. [69] present a process resulting from the adaption of a standard fused
filament fabrication machine. Due to the conversions made to the machine used by them,
it is possible to manufacture on already existing components and to consider uneven
subsoil structures. The results show that production on existing components is possi-
ble, even if these components do not have a flat surface. However, the original compo-
nents also consisted of an acrylonitrile butadiene styrene (ABS) or Acrylonitrile butadiene
styrene/polycarbonate (PC) mixture, which shows a certain similarity to the acrylonitrile
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butadiene styrene used for fused filament fabrication. For these material combinations,
joining forces in the area of an industrial adhesive bond could be demonstrated. How-
ever, the shown process has clear disadvantages in the area of accuracies, which decrease
significantly compared to production on a commercial fused filament fabrication plant.
LI et al. [38] also show in their work on the concept study for direct printing for wound
care that production on curved surfaces is possible using a robot arm. A similar concern
is pursued by SUPHAMA et al. [70] with their approach to the repair of components and
the associated direct production on curved components. However, they use a delta printer.
In addition, the method is supplemented by real-time image evaluation for control with
respect to the subsoil.

A possible approach for problems with the adhesion of the actual component to the
surface of the additive attachments could be the method of KÖPPLMAYR et al. [71]. A
nanostructure is applied to components produced by fused filament fabrication using a
stereolithographic process. This method offers the opportunity to add different nanos-
tructures to the part. The test results show high accuracy. This could make it possible
to prevent undesirable adhesion by means of such a nanostructure. On the other hand,
to use this process in terms of controlling the adhesion of the part on the interpolation
layer it would require removing the part from the interpolation layer or building it in a
separate machine and add the nanostructure in a separate process. This leads to an extra
positioning process of the additive manufactured attachment which is challenging on a
freeform surface and therefore not suitable for a fully integrated process.

GRIMMELSMANN et al. [72], on the other hand, investigate the factors influencing
adhesion in additively manufactured composite materials made of textile fibres and plas-
tics. The greatest influence can be seen in the layer thickness since increasing it leads
to an incomplete coating of the fibres with the plastic. Moreover, the material used also
has a decisive influence on the production result due to its properties such as viscosity
during extrusion.

KUO et al. [73] develop a flexible construction platform made of silicone to facilitate
removal of components and reduce the adhesion compared to conventional construction
platforms. They mainly examine the manufacturability on the silicone base. KUO et al. [73]
show that production on the pure building platform made of silicone cannot be repeated
reliably. Therefore, various changes are made to the silicone mat. On the one hand, this
leads to an increase in surface roughness due to the use of different abrasive papers.
However, this also does not lead to process-safe manufacturability. The same result is
achieved by flame treatment of the surface. With the additional use of transparency film,
they achieve the desired repeatability. The influence of the build plate temperature is not
examined, which is a field of further investigations. In NAZAN et al. [74], the influences
of an improved connection of the component to the building platform by means of epoxy
resin are also examined on the basis of the resulting distortion. It is determined that the
different materials have different warpage tendencies, but PLA has the smallest deviations
with an unheated construction platform.

4.2. Additive Manufacturing on Curved Surfaces

As already described in the previous section, for direct production of the additive
attachments on the interpolation layer of the vacuum-assisted multipoint moulding, the
additive manufacturing must take place on a curved base. In the first step, the CAD
data of the part must be divided into the individual layers for production using the layer
construction method. There are two main methods for layering the part. Therefore, the
next section examines the advantages and disadvantages offered by the various options.

4.2.1. Flat Slicing Methods

Currently, most slicing algorithms divide the component in plane layers of the same
height. These layers are oriented parallel to the construction platform [28]. Therefore, the
positioning of the component in the building space is an important process parameter
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regarding to the surface quality of the finished part, as all edges of the part that are not
oriented parallel or perpendicular to the building platform, will show a more or less
pronounced staircase effect [30]. ARMILLOTTA et al. [75], therefore, develop an improved
calculation model to predict the surface quality more precise, depending on the position
of the component in the building space. This model can be used to reduce the staircase
effect and improve the surface quality. KULKARNI AND DUTTA [66] develop an improved
slicing algorithm using an adaptive layer thickness. The ideal layer thickness is selected
based on the current outer contour of the component. On the one hand, this makes a
significant improve of the surface quality possible and at the same time allows a significant
increase of the construction speed, compared to a uniform reduced layer thickness required
to achieve the same surface quality. A similar approach is chosen by TATA et al. [76] but
allows the user to set limits so that he can determine the required layer thickness himself.
ESPALIN et al. [77] also use an adaptive slicing process, but at the same time extend it
by the additional possibility of varying the width of the extrusion strand, as shown in
Figure 14. Whereas in the standard process, all extrusion strands have the same width and
height (see Figure 14 top). The concept proposed in ESPALIN et al. [77] has the opportunity
to use different layer heights and extrusion strand widths in one part. As shown in the
bottom part of Figure 14, it is possible to produce finer walls of the part in combination
with relatively rough extrusion strands inside the part. This increases the surface accuracy
according to ESPALIN et al. [77] by 38–55% and simultaneously reduces production times
by 53%.
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HOPE et al. [51], HOPE et al. [52], HOPE et al. [78], and HOPE et al. [79], on the other
hand, develop a system called “TruSurf”. “TruSurf” in the first step cuts layer edges at an
angle according to the object contour instead of straight cuts (see Figure 15). In comparison
of the standard slicing (see Figure 15, left) and the “TruSurf” slicing (see Figure 15, right),
a significant increase in accuracy can be achieved. Moreover, this allows significantly
greater layer thicknesses and thus shorter construction times. In addition, they extend
the process that not only straight, but also curved cuts are possible and thus the contour
accuracy is further increased. The variable curvature of the knife proves to be problematic.
The method shows significant improvements in surface accuracy but has been developed
for the laminated layer manufacturing and not yet been applied to extrusion processes.
NAGESHWAR et al. [80] allow the theoretical proof of these advantages. PATIL et al. [81,82]
show another calculation method of the reduced form error for sloping boundaries com-
pared to the standard way. On the other hand, KUMAR AND CHOUDHURY [83] show that
despite these extensions, more layers are required to achieve the surface quality than the
previous methods indicate.
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BOYARD et al. [84] show another problem: the support structures required for over-
hangs. Support structures lead to a higher material requirement and have to be removed
after production. They develop a method for creating these support structures directly
in the CAD tool. This generates a continuous process that reduces the necessary support
structures. WU et al. [85,86] choose another way and mount the building platform on a
6-axis robot underneath a fixed extruder. This design makes it possible to disassemble
the component into several subassemblies. The extrusion direction of these subassem-
blies can be chosen in a way that no support structures are required. The flat layers are
always extruded in the direction of the gravitational force, but the construction platform
is guided at different angles so that the application can also take place at an angle to the
construction platform. In contrast, there are several support structures required using the
standard process.

For enhanced vacuum-assisted multipoint moulding with additive attachments, the
building platform is a curved platform. Using flat layers perpendicular to the direction of
gravity may lead to a lower adhesion between the interpolation layer and the attachment.
This could be due to the small contact areas only at the layer edges, because of the staircase
effect. This point would have to be clarified in further investigations. If a building direction
along the surface normal to the building platform is selected, support structures become
necessary after a certain gradient.

The combination of the vacuum assisted multipoint mould and a 6-axis robot offers
the flexibility to use flat layers on the one hand and also curved layers. Therefore, the
full flexibility of both systems can be used as the robot arm can follow the build plate
as it is adjusted by the vacuum-assisted multipoint mould, making no restrictions to the
geometry adjusted by the mould, whereas a portal system needs the space for the extruder,
the extruder can be tilted with a 6-axis robot to reduce the geometrical problems between
the building platform and extruder. Furthermore, curved layers can also be used for the
reduction of the staircase effect with curved top layers.

4.2.2. Curved Slicing Methods

In addition to the today most commonly used methods using flat slices, the algorithms
for curved layers are developed and tested in [87–92]. The method investigated there is
called curved layer fused deposition modelling (CLFDM), where flat layers are replaced by
curved layers that are adapted to the component contour. As shown in Figure 16, the curved
model (a) is classically sliced in flat layers (b) resulting in a visible staircase effect. In order to
take advantage of these curved layers it is necessary for the components to be manufactured
along curved extrusion paths. In this case, a significant improvement in surface quality
can be achieved, as illustrated in Figure 16c. Moreover, the components, manufactured
by curved layer fused deposition modelling, show increased strength. If the number
of layers can be additionally reduced due to the curved production layer, the building
speed increases compared to the classic flat layer variant. HUANG AND SINGAMNENI [88]
examine the influence of the building direction on the mechanical properties and find that
the components where the extrusion strands oriented in the load direction can sustain
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approximately 500% of the load compared to strands lying transversely to them. HUANG

AND SINGAMNENI [89] extend the process by combining the classic flat layer structure
with curved layer fused deposition modelling for the surface strands to achieve a further
advantage in construction speed. Such a combined procedure is also examined by ALLEN

AND TRASK [93]. They show that the combination of the two layering techniques lead
to an improvement in surface quality and at the same time also improve the mechanical
properties, although a load-compatible extrusion path is only present in the outer layers.
DIEGEL et al. [87], on the other hand, show another application for curved layer fused
deposition modelling in electrical engineering. Here, the curved layer fused deposition
modelling makes it possible to integrate conductor tracks directly into curved components
and thus to create parts without circuit boards and connecting wires.
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ALSHARHAN et al. [94] use a similar process to go further and produce the entire
component from only one continuous extrusion strand. In the subsequent investigation of
the mechanical characteristics, a clear improvement compared to processes using flat slices
can be attributed to a better load distribution in the part. On the downside, the fracture
behaviour changes from ductile to brittle fracture without warning of failure. Such an
improvement of the mechanical characteristics is also demonstrated by LIM et al. [95] for
the “Concrete Printing” process [57] if curved layer fused deposition modelling is used
and the extrusion paths are generated according to the load paths in concrete parts.

Compared to the methods with flat layers the calculation of the extrusion paths for
the curved layer fused deposition modelling presents a greater challenge, as the ideal
curvature of the slices for the component surface must be determined. In addition to the
algorithms already mentioned, CHAKRABORTY et al. [96], JIN et al. [97] and LLEWELLYN-
JONES et al. [98] have each conducted their own investigations on the ideal layer generation
and present corresponding methods and algorithms. TAM AND MUELLER [99] go further
and reduce the component to a skeletal model with material only in the main load directions.
Therefore, a significant material saving can be achieved compared to a full model. In terms
of using this method for moulding parts, it would be necessary to adapt the process for
getting a closed surface at this side of the part where the moulding should take place.

Another challenge is the production of components in three-dimensional paths.
SEWELL et al. [100] are developing a process that uses the additional axes available in
conventional CNC machining centres. There the construction platform itself performs a
movement and at the same time, the print head is moved. This procedure can also eliminate
the need for support structures. ALLEN AND TRASK [93] use a gantry machine, on the one
hand, and delta kinematics on the other. The comparison of the two processes shows a
simpler and faster production with the delta kinematics, due to the additional degrees of
freedom. SONG et al. [101] confirm these findings and develop a kinematic similar to delta
kinematic itself. Moreover, they extend it by a real-time image evaluation to compensate
for positioning errors to achieve a higher building precision.

The use of industrial robots is also found in the curved layer fused deposition mod-
elling. BROOKS et al. [102] use the robot arm to pick up a construction platform correspond-
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ing to the component contour and move it along the extrusion paths below the stationary
extruder. The movement of the construction platform eliminates the need for support struc-
tures, as the material is always applied in the direction of gravity. TAM AND MUELLER [99]
also use a mould for the component, but rely on a moving extruder. ZHANG et al. [103,104]
and ZHANG et al. [105,106] also opted for an industrial robot and developed the software
for the calculation of the extrusion paths as well as the control system. OXMAN et al. [107]
further develop the process and make it possible to extrude freely into space without a
form and without support structures by means of a robot arm. The extrusion without
support structures is made possible by cooling the extrudate after it exits the nozzle.

A possible use of fused filament fabrication on freeform surfaces beyond the appli-
cation scenario shown in this paper could also be the possibility of component repair
described in BURANSKÝ et al. [108]. In addition to the completely new production of the
component shown in BURANSKÝ et al. [108], a repair could be carried out at the defective
location. This repair for example could be the recovery of a holder by directly printing the
new on the defective part.

To sum up, the previously presented studies show that it is possible to use fused
filament fabrication on curved building platforms. For the mentioned two different slicing
methods, further research has to be made to determine if a flat or a curved slicing algorithm
suite better for the process outlined in this paper. The general possibility of fused filament
fabrication on building platforms made of silicone has already been proved by KUO

et al. [73], although it is possible that more research has to be made in terms of adhesion on
the building platform in a fully automated integrated process.

5. Summary and Conclusions

Overall, it could be shown that vacuum-assisted multipoint moulding adds flexibility
in production of prototypes or small series, as there is no need for mould production.
In addition, resources and costs can be saved in the production, as there are no low-use
moulds to be recycled. At the same time, the structure of the production technology also
has some disadvantages. The biggest disadvantage is the limited detail accuracy due to the
necessary interpolation layer. This means that very small structures and larger structures
with strong transitions cannot be produced.

The solution to this could be an integrated process called enhanced vacuum-assisted
multipoint moulding with additive attachments that integrates the details that cannot
be depicted in the vacuum assisted multipoint mould using corresponding attachments.
These attachments are to be produced directly on the interpolation layer using additive
manufacturing. It could be shown that with enhanced vacuum-assisted multipoint mould-
ing with additive attachments a larger amount of part shapes can be depicted with this
process. A number of challenges were identified in this paper. A large block of topics is
the selection of the additive manufacturing process. In this study, it could be shown that
the powder bed-based processes and the processes based on resin baths are not suitable
for production directly on the vacuum-assisted multipoint mould. This is due to the raw
materials, which could damage the existing system, as well as to the temperatures required
for these processes, which can cause damage to the interpolation layer. Overall, it could be
shown that the extrusion-based fused filament fabrication is most suitable for this appli-
cation, although the plastics used in fused filament fabrication lead to restrictions for the
component materials that can be processed.

Further challenges arise from the interpolation layer as a building platform. In contrast
to the usual fused filament fabrication, which relies on a flat building platform made
of glass, the interpolation layer can form a curved building platform. In addition, the
interpolation layer is made of silicone. This raises the question of the adhesion of the
attachments on the interpolation layer. This study has shown that the challenges of a
curved building platform have already been examined in literature. It could be shown that
there are two possibilities for layer generation, on the one hand the classical process with
flat layers, and, on the other hand, the extrusion along curved layers. In principle, both
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methods are also suitable for use on curved building platforms. However, the comparisons
carried out in the literature clearly show that curved layers along the outer contours of the
component bring clear advantages in terms of surface quality and the tolerable load. The
first tests carried out in the literature for additive production on a silicone platform showed
that this is a challenge. Although a solution could be presented there using an additional
intermediate layer, the actual implementation must still be verified for the application
outlined in this paper.

The following investigations have to answer the question of the ideal combination of
process parameters of the additive manufacturing process for production on the curved
silicone platform. In this context, it should also be examined whether a corresponding
intermediate layer can be dispensed by varying process parameters. In addition, the
influence of the nozzle angle to the construction platform and on the component properties
has to be explored. In this context, it must be clarified which design (portal or delta
machine, robot arm, etc.) is ideal for the system. The achievable production accuracy of the
additively manufactured attachments must also be clarified.

In the area of the overall enhanced vacuum-assisted multipoint moulding with ad-
ditive attachments, this research has to be followed by investigations of the achievable
component accuracy and the possible mapping of any inaccuracies in the finished com-
ponent. Another important question is the limit of the hardening temperature for the
component to be manufactured and the prevention of the attachments sticking to the
finished component.

Another field of further investigation is the software integration between the two
different processes, mentioning the fields of separating the geometry into the parts mod-
elled by the vacuum assisted multipoint mould and the parts built with attachments. The
second field is the conversion of the geometrical data to machine instructions of the both
part systems.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: This work was financially supported through the Open Access Publication fund
of the Munich University of Applied Sciences.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Munro, C.; Walczyk, D.F. Reconfigurable Pin-Type Tooling—A Survey of Prior Art and Reduction to Practice. J. Manuf. Sci. Eng.

2007, 129, 551. [CrossRef]
2. Fleming, W. Vertical Three-Dimensional Image Screen. U.S. Patent 4,654,989, 7 April 1987.
3. Cochrane, J. Improvement in Presses for Bending Metallic Plates. U.S. Patent No. 39,886, 15 September 1863.
4. Walczyk, D.F.; Hardt, D.E. Design and Analysis of Reconfigurable Discrete Dies for Sheet Metal Forming. J. Manuf. Syst. 1998,

17, 436–454. [CrossRef]
5. Valjavec, M. A Closed-Loop Shape Control Methodology for Flexible Stretch Forming over a Reconfigurable Tool. Ph.D. Thesis,

Massachusetts Institute of Technology, Cambridge, MA, USA, 1998.
6. Walczyk, D.F.; Im, Y.-T. A Hydraulically-Actuated Reconfigurable Tool for Flexible Fabrication: Implementation and Control.

Transactions of the ASME. J. Manuf. Sci. Eng. 2000, 122, 562–568. [CrossRef]
7. Walczyk, D.F.; Longtin, R.S. Fixturing of Compliant Parts Using a Matrix of Reconfigurable Pins. Trans. ASME J. Manuf. Sci. Eng.

2000, 122, 766–772. [CrossRef]
8. Walczyk, D.F.; Hosford, J.F.; Papazian, J.M. Using Reconfigurable Tooling and Surface Heating for Incremental Forming of

Composite Aircraft Parts. Trans. ASME J. Manuf. Sci. Eng. 2003, 125, 333–343. [CrossRef]
9. Owodunni, O.O.; Diaz-Rozo, J.; Hinduja, S. Development and Evaluation of a Low-cost Computer Controlled Reconfigurable

Rapid Tool. Comput. Aided Des. Appl. 2004, 4, 101–108. [CrossRef]
10. Wang, Z.R.; Yuan, S.J. New forming technologies used in manufacturing large vessels. Int. J. Mach. Tools Manuf. 2006, 46, 1180–1187.

[CrossRef]

http://doi.org/10.1115/1.2714577
http://doi.org/10.1016/S0278-6125(99)80003-X
http://doi.org/10.1115/1.1286258
http://doi.org/10.1115/1.1314599
http://doi.org/10.1115/1.1561456
http://doi.org/10.1080/16864360.2004.10738248
http://doi.org/10.1016/j.ijmachtools.2006.01.022


Appl. Sci. 2021, 11, 1201 23 of 26

11. Tan, F.X.; Li, M.Z.; Cai, Z.Y. Research on the process of multi-point forming for the customized titanium alloy cranial prosthesis.
J. Mater. Process. Technol. 2007, 187–188, 453–457. [CrossRef]

12. Hagemann, F. Ein Formflexibles Werkzeug für das Rapid Tooling beim Spritzgießen. Ph.D. Thesis, Technical University of
Munich, Munich, Germany, 2008.

13. Walczyk, D.F.; Munro, C. Double-Diaphragm Forming of Advanced Composite Shapes with Active Tool Shape and Temperature
Control. Trans. NAMRI/SME 2009, 37, 309–316.

14. Koc, B.; Thangaswamy, S. Design and analysis of a reconfigurable discrete pin tooling system for molding of three-dimensional
free-form objects. Robot. Comput. Integr. Manuf. 2011, 27, 335–348. [CrossRef]

15. Bayerische Forschungsstiftung. Zwischenbericht 3D-Former—Wiederverwendbares Werkzeugsystem zum Formen von Kunststoffscheiben;
Bayerische Forschungsstiftung: Oberhaching, Germany, 2011.

16. Simon, D.; Götz, G.; Dietrich, S.; Stich, P.; Reinhart, G. Geometrieflexible Systeme zur Kunststoff- and CFK-Verarbeitung.
MaschinenMarkt 2014, 35, 38.

17. Simon, D.; Kern, L.; Wagner, J.; Reinhart, G. A Reconfigurable Tooling System for Producing Plastic Shields. Procedia CIRP 2014,
17, 853–858. [CrossRef]

18. Zitzlsberger, S. Flexibles Werkzeug zur Umformung von Polycarbonatplatten unter Besonderer Beachtung der Optischen Qualität.
Ph.D. Thesis, Technical University of Munich, Munich, Germany, 2014.

19. Zäh, M.F. (Ed.) Enabling Manufacturing Competitiveness and Economic Sustainability. In Proceedings of the 5th International
Conference on Changeable, Agile, Reconfigurable and Virtual Production (CARV 2013), Munich, Germany, 6–9 October 2013;
Springer: Cham, Switzerland; Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2013.
[CrossRef]

20. Simon, D.; Zitzlsberger, S.; Wagner, J.; Kern, L.; Maurer, C.; Haller, D.; Reinhart, G. Forming Plastic Shields on a Reconfigurable
Tooling System. In Proceedings of the International Conference on Changeable, Agile, Reconfigurable and Virtual Production,
Munich, Germany, 6–9 October 2013.

21. Su, S.Z.; Li, M.Z.; Liu, C.G.; Ji, C.Q.; Setchi, R.; Larkiola, J.; Panteleev, I.; Stead, I.; Lopez, R. Flexible Tooling System Using
Reconfigurable Multi-Point Thermoforming Technology for Manufacturing Freeform Panels. Key Eng. Mater. 2012, 504–506,
839–844. [CrossRef]

22. Hundt, T.; Schmidt, C.; Denkena, B.; Engel, K.; Horst, P. Variable forming tool and process for thermoset prepregs with simulation
verified part quality. Key Eng. Mater. 2014, 611–612, 391–398. [CrossRef]
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