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Abstract: Citizens in dense built environments are susceptible to the simultaneous occurrence of Slow
Onset Disaster (SLOD) events, being particularly prone to increasing temperatures and air pollution.
Previous research works have assessed these events’ arousal separately and have identified when
their intensity is critical. However, few have integrated their analysis, possibly limited by the quality
and granularity of available data, the accessibility and distribution of sensors, and measurements
not emulating the surroundings of a pedestrian. Thus, this work performed an outdoor meso-scale
multi-hazard-based risk analysis to study the aggregated effects of the SLODs mentioned above. The
study was carried out to narrow down the time-frames within 2019 in which these two events could
have affected citizens’ health the most. A weighted fuzzy logic was applied to superimpose climatic
(temperature, humidity, wind speed, and solar irradiance) and air quality (particulate matter, ozone,
and ammonium) distress (true risk) on an hourly basis, allocated using set healthy and comfortable
ranges for a specific dense urban climate context within Milan (Italy), processing data from Milano
via Juvara station. The findings show that sensitive groups were at risk of high temperature and
pollution separately during 26% and 29% of summer and mid-season hours, respectively; while
multi-hazard risk would arise during 10.93% of summer and mid-season hours, concentrated mainly
between 14:00 and 20:00.

Keywords: risk assessment; climate change; health; heat stress; AQI

1. Introduction

The United Nations [1] reported in 2018 that 55% of the world’s population was
already living in highly urbanized areas and that this ratio is projected to grow to 68%
by 2050. These projections for the urban population, coupled with the projected health
threats identified by the World Health Organization (WHO) [2,3] due to climate change,
foresee that around 6.7 billion people are at great risk. Hence, identifying the frequency,
intensity, and extent of the hazard risk of these threats has become a pillar in the world-
wide effort to hold back the consequences of climate change, reflected by the Sustainable
Development Goals and in particular by the following three topics: good health and
wellbeing, sustainable cities and communities, and climate action [4].

In 2014, the WHO analyzed and projected the effects of climate change on health,
identifying heat-related mortality as among the foreseen death risks of the largest impact [2].
Later on, in 2016, the WHO also reported the extent of air pollutants’ concentration and
their severe potential effect on the decay of health condition and the increase in mortality.
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For instance, the WHO [2] estimated that by 2030, more than 92,000 additional heat-related
deaths are expected; and more than 255,000 for 2050 if no measures are taken. Furthermore,
Lee and Kim [5] studied the case of South Korea, comparing the 1992 to 2010 period with
the 2090s projections; resulting in a 4× or 6× increase in temperature-related mortality. On
the other hand, for air pollutants’ concentration, Jackson et al. [6] presented a case study
in Washington, in which it was reported that for people over 45 years old, there was an
increase of 0.46–1.50% in the risk of mortality for every 10 parts per billion (ppb) increase
in eight hour average ozone concentrations.

Climate change itself is an active and slow process, and within this context, increasing
temperatures and higher air pollution have been classified in the same way. Both have
been allocated into the definition of Slow-Onset Disasters (SLODs) [7], which are easy
to perceive, and predict, but harder to mitigate. The arousal frequency and intensity of
SLODs’ evidence is larger in the urbanized context [8], and this evidence can be worsened
given the inherent properties of the Built Environment (BE). A recent report by the Urban
Climate Change Research Network [9] shows that mean annual temperatures in 39 cities
around the world have increased at a rate of 0.12 to 0.45 ◦C per decade over the 1961
to 2010 time period. Furthermore, a recently audited air pollution report [10], which
surveyed more than 4300 cities worldwide in 2015, concluded that only 20% of the urban
population was reported to live in areas that comply with the WHO’s established unhealthy
concentrations of PM2.5. The average particulate air pollution levels in these cities were
found to be 4–15-times higher than the WHO air quality guideline limit levels. Dense
urban areas increase the risk of the two above-mentioned SLODs for the following main
reasons: (1) reduced evaporation, transpiration, and shading, due to limited green areas
and disadvantageous geometry; (2) increased surface temperatures with high thermal
capacity and/or low albedo; and (3) increased air stagnation due to diminished wind
speed [11–15], thus making every portion of the city (e.g., neighborhood) react/provide a
different meso-climate to the people within it.

Extensive research has been dedicated to studying these variations with different
approaches, at different scales, and with different tools. Udristioiu et al. [16] and Sassi and
Fourri [17] are recent examples on how to study the satellite remote sensing data, gathering
information on Land Surface Temperature (LST) from infrared radiation measures. Other
case studies, such as the one presented by Khamchiangta et al. [18], have used large
geographical data to study the land use land coverage and correlated these conditions to
estimate the possible response to undisturbed climatic readings (e.g., weather data); also,
these databases have been combined with geographical tools (e.g., Geographic information
Systems (GISs)) and small-scale on-site measurements to communicate actual point-in-time
conditions [19–21].

However, these analyses are limited by the availability, quality, granularity, and
applicability of data describing what is the real perception of a pedestrian, or a building
occupant, as his/her surroundings can drastically modify the perception of climatic and air
quality distress [22,23]. Moreover, integrated and multi-hazard analysis at the meso-scale
is hampered by the distribution of sensors and the fact that, mostly, the data collection
location does not always gather more than one parameter category (e.g., weather and
pollutants), which makes the superposition of the effects hardly applicable.

Therefore, this work intends to propose and perform a preliminary multi-hazard
risk analysis of northern Italy (i.e., Milan), using available open-source climate and air
quality databases supported by the Lombardy Regional Environmental Protection Agency
(ARPA Lombardia) [24]. Milan was considered a relevant location where a large population
density is found (large risk exposure) and both considerable increasing temperatures and
the decay of air quality and the increase of pollution converge (large risk hazard), based on
the preliminary assessment analysis carried out by Salvalai et al. [25] using demographic
data from the Italian National Institute of Statistics (ISTAT) [26] and historical temperature
and particulate matter measurements from EEA [27,28].
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In particular, the study presented in this paper is concentrated on assessing the overall
increasing temperatures and air pollution SLODs’ risk frequency for the least resilient
population: demographic groups that are more prone to suffer severe health consequences
when exposed to adverse environmental conditions. Moreover, critical hazard risk time-
frames (including daily profiles) are established to acknowledge and communicate those
moments of the year in which people are and probably will continue to be critically at risk
of their health being affected if exposed to these conditions.

2. Materials and Methods

This work intends to propose a replicable procedure at the city and neighborhood
scale, based on available and accessible data repositories (i.e., open data).

2.1. Temperature-Related Risk RiskT

There are few indexes or metrics that integrate the weather parameters with ease
to understand the proper sensation of people outdoors. Most of them require rather
extensive on-site surveys to feed the model with several measured quantities, or to feed the
virtual model for lengthy computer simulations. Fortunately, indexes such as the Universal
Thermal Climate Index (UTCI) [29] can be used in a simplified manner, which requires
rather commonly surveyed parameters to estimate the pedestrian’s sensation of his/her
surroundings; that is:

• Dry bulb air temperature (tdb−air)
• Mean Radiant Temperature (MRT)
• Relative Humidity (RH)
• Air/wind velocity (Va)

However, for a preliminary and large-/meso-scale outdoor human-centered analysis,
there is limited information on where the pedestrian is or will be located and how he/she
is or will be exposed to solar and emitted surface-heat radiation. Thus, computing spatial-
location variables, such as MRT and spot-specific Va, goes beyond the scope of this study.
Moreover, established simplifications for MRT estimations (as the ones listed in ASHRAE
55-2017 [30] for an indoor assessment) cannot be applied given the exposure to direct
solar radiation, high registered Va, high variance of the type of pedestrian activity, and the
clothing worn.

Therefore, for surveyed data obtained from open-source data such as national, regional,
or local weather station network repositories, another approach is needed to anticipate and
identify potential moments during the year in which pedestrians can be more susceptible
to risk. A susceptible temperature-related risk is then interpreted as the conjoint frequency
of undesirable conditions of tdb−air, solar radiation (Itot), RH, and Va.

To do so, a simple Boolean and weighting analysis was performed following fuzzy
logic; that is, for every hour of the year, the condition of each parameter was verified; if so,
this was allocated a certain risk weight according to the parameter’s influence on thermal
stress, and all the weights were summed for every single Hour Of the Year (HOY) (see
Equation (1)).

RiskTHOY =
(

Tbool ∗ Tweight + Ibool ∗ Iweight + RHbool ∗ RHweight + Vbool ∗ Vweight

)
HOY

(1)

2.1.1. Undesired Boolean Conditions

The Boolean is considered true (i.e., ibool = 1) when certain weather conditions fall
outside the comfort ranges. Based on indoor and outdoor comfort assessment metrics or
indexes, these true ranges were established as:

• tdb−air is recorded above 26 ◦C (only heat stress (T) is considered);
• Itot is measured over 300 W/m2;
• RH is registered outside a 30–70% range; and
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• Va speed is below 2 m/s.

An additional condition was included to avoid false positive results, reporting heat-
related distress when temperatures are below 18 ◦C. Hence, the Boolean shall be considered
negative (i.e., Tbool = −1).

2.1.2. Weighting Factors

Based on the effect of the parameter’s significance on outdoor thermal stress percep-
tion, factors summing to 1 were allocated, giving larger values to those directly related to
sky heat exchange (i.e., Tdb−air and Itot) [22]. Further development of the research work
includes a fine-tuning of these weights:

• for temperature, Tweight = 0.4 is used, given that the temperature is perhaps the most
relevant parameter;

• for radiation, Iweight = 0.3 is used, given that direct solar radiation falling on a body
can significantly alter its heat exchange; and

• for both air humidity and wind speed, RHweight = Vweight = 0.15 is given, as they can
intensify or alleviate one’s perception of the previous conditions.

2.1.3. Comparison with the Simplified UTCI Calculation

To validate the suitability of the assessment process and the weight allocation, the
values estimated were compared to the results obtained with the simplified outdoor thermal
comfort UTCI calculation.

UTCI values were computed using the UTCI Python code produced by Ladybug
Tools [22] based on the Fortran code provided by Brode et al. [29], but considering that
tdb−air ≈ MRT. The validation was considered successful based on the difference in the
number of hours classified as at risk of high thermal stress, and the accuracy was computed
using a classification-accuracy assessment (see Equation (2)).

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

where each of the following variables is:

• TP the number of True Positive values;
• TN the number of True Negative values;
• FP the number of False Positive values; and
• FN the number of False Negative values.

Heat distress was set to be expected, for sensitive groups, when:

• RiskT > 0.5
• UTCI > 26 ◦C

These weights, ranges, and thresholds were set based on the regulations enforced in
the case study analyzed, the available databases, and the assumed pedestrian condition
within a narrow urban canyon (i.e., shaded and wind protected).

2.2. Pollution-Related Risk

The Air Quality Index (AQI) was used as an established and widely used air pollution
metric [31]; also, it can be estimated with ease based on the data gathered at air quality
weather stations. The metric is based on the concentration of the main health affect-related
pollutants; and also, they can be compared in a unique scale. When more than one pollutant
is studied, the communicated AQI is the largest value.

The AQI calculation is based on Equation (3), which depends on the current pollutant
concentration (Cp) and the data collected in Table 1; which contains the pollutant concen-
tration Break Points (BPHi and BPLo) and the AQI range limits (IHi and ILo). The pollutant
concentrations are normally evaluated from an 8 hour (for O3 and NH3) or 24-h exposure
(for PM2.5 and PM10); thus, depending on the case, a moving mean of the previous 8 h is
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computed, or 24 h values are assumed for the 24 h period, allowing comparing the results
on an hourly basis.

The selected weather and air quality station monitors only some substances; hence,
O3, NH3, PM2.5, and PM10 were analyzed.

AQIpi =
IHi − ILo

BPHi − BPLo
∗
(
Cp − BPLo

)
+ ILo (3)

Table 1. Parameters needed for AQI calculation for an 8 hour or 24 hour exposure period (extracted and edited from the
Environmental Protection Agency (EPA) guidelines [31]). BP, Break Point.

BPs
O3 (ppm) PM10 (µg/m3) PM2.5 (µg/m3) NH3 (µg/m3) AQI Category

0.000–0.064 0–54 0.0–15.4 0–200 0–50 Good
0.065–0.084 55–154 15.5–40.4 201–400 51–100 Moderate
0.085–0.104 155–254 40.5–65.4 401–600 101–150 Unhealthy for sensitive groups
0.105–0.124 255–354 65.5–150.4 601–800 151–200 Unhealthy
0.125–0.374 355–424 150.5–250.4 801–1200 201–300 Very unhealthy

425–504 250.5–350.4 1201–1800 301–400 Hazardous
505–604 350.5–500.4 >1800 401–500 Hazardous

As performed in Section 2.1, the number of hours in which the residents of the nearby
area are exposed to hazard risk were computed, assuming the risk threshold for low air
quality sensitive groups as AQI > 100 (Table 2).

Table 2. Sensitive groups at risk by pollutant type when the AQI goes above 100 for an 8 hour (O3) or 24 hour (PM10)
average exposure period (extracted and edited from the EPA guidelines [31]).

Pollutant Demographic Groups at Higher Risk

Ozone (O3) People with lung disease, children, elderly, and people who are active outdoors
Particulate matter (PM2.5) People with heart or lung disease, elderly, and children
Particulate matter (PM10) People with heart or lung disease, elderly, and children

2.3. Air Temperature and Pollution Confluence Risk

Given that the results for both RiskT and AQI were allocated into 2 macro categories
(i.e., at risk and no risk) and that they were reported hourly, the confluence risk was
estimated as the product of the Boolean of both risks’ existence (i.e., RiskT > 0.5 and
AQI > 100).

Then, the recurrence of these conditions was estimated as the ratio between the hours
of risk presented, during:

• the whole year (8760 h);
• the summer period only (15 June–15 September, 2208 h);
• both the mid-season and summer period (15 April–15 October, 4392 h); and,
• mid-season (15 April–15 June and 15 September–15 October, 2184 h).

2.4. Case Study Description

Profiting from the database made available by the regional environmental monitoring
institution (ARPA Lombardy Agency [24]), it was possible to retrieve air quality and
weather data from a single, but relevant, data source (i.e., Milano via Juvara) near a
university district in the city of Milan, Italy (Figure 1). These data were collected and
elaborated only for 2019, given the yearly data’s completeness and recentness, as described
in the following sections.

The weather and air quality station Milano via Juvara is located within the Buenos
Aires-Venezia Local Identity Unit (NIL), a neighborhood characterized by low green area
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coverage and mid-to-high built density, as documented by the Municipality of Milan [32]
(see Figure 1). It was expected that the data collected would provide evidence to assume
that the area has a low heat and pollution management capacity, which puts its inhabitants
at a relevant increasing temperatures and air pollution SLODs risk.

Figure 1. Location of the Milano via Juvara station within the city of Milan divided by NILs.

3. Results

To understand the frequency distribution on a yearly basis, the results are presented
on 24 × 365 heat maps for every risk type and daily frequency distribution charts for their
confluence (e.g., Figure 2). It was considered that summer is between Day Of the Year
(DOY) 166 and 258; and winter ends and starts on DOYs 105 and 288, respectively.

Figure 2. Degree of RiskT from values monitored in 2019 at the station Milano v. Juvara, based on the confluence of
disadvantageous conditions of tdb−air, Itot, RH, and Va; which are closely related to the SLOD of increasing temperatures.
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3.1. Meaningful Thermal Stress Risk Frequency

Following the methodology described in Section 2, RiskT and UTCI values were
computed for each hour of the data collected from M. v. Juvara station during 2019. These
are plotted in Figures 2 and 3 to qualitatively analyze how this thermal-stress-related risk
was manifesting, and quantitative reported frequency data are summarized in Table 3.

Figure 3. Degree of thermal stress expressed in UTCI, based only on the values for 2019 from Milano v. Juvara of tdb−air,
RH, and Va.

Table 3. Summary results of the allocated thermal stress, when using RiskT > 0.5 or UTCI > 26 as
the criterion, differentiated by season.

RiskT UTCI

Season # of
Hours

Hours at Risk Ratio Hours at Risk Ratio

Whole year 8760 1324 15.11% 1343 15.33%
Summer and mid 4392 1295 29.49% 1343 30.58%

Summer 2208 1145 26.21% 1253 28.69%
Mid 2184 150 3.42% 90 2.05%

Winter 4368 29 0.66% 0 0.00%

The risk for both RiskT and UTCI is notably concentrated in summer (29.49% and
30.58%). However, Figure 3 displays that for UTCI, rare and low intensity risk arose
during the mid-season (2.05%), and no risk was registered during winter. On the other
hand, Figure 2 presents that RiskT would communicate a higher risk intensity in summer, a
larger frequency and intense risk for the mid-season (3.42%), and a rare risk during winter
(0.66%).

The above could result from the assumption made on MRT for computing UTCI and
the allocated weights used for estimating RiskT. The classification made with the RiskT
criterion was used, given the significant effect that direct solar radiation falling on a person
has on heat exchange and thermal perception [33].
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3.2. Unhealthy Polluted Air Recurrence

Following Section 2, pollutant concentration was screened for every available dataset,
and the AQI was computed accordingly. Information on the air concentration behavior,
during 2019, of O3, NH3, PM2.5, and PM10 is reported on Figure 4.

(a)

(c)

(b)

(d)

Figure 4. Degree of air pollution concentration in the AQI, based only on the 2019 values from Milano v. Juvara for (a)
PM2.5, (b) PM10, (c) O3, and (d) NH3.

These pollutants’ concentrations are reported in way that they display as well the
gravity of their accumulation, by setting the gradient ranges from zero to the maximum
value that would fall under the greatest hazardous category of AQI classification. An
exception was made for NH3 as the reported values are considerably lower, and the
maximum value for display was set to be the limit value before generating a risk to
sensitive groups.

From these, it is possible to see how PM10 and O3 are those representing a greater risk
to the citizens’ health in the area. In particular, they are at greater risk of O3 accumulation
during the afternoons and early mornings by the middle of the year (i.e., summer season).

Looking instead to the complete AQI analysis, there is a large hour ratio of low air
quality during winter time classified as risky (23.76%), comparable to the one reported for
summer and mid-season (26.3%); even the yearly risk/total hours (23.03%); see Table 4.
Thus, the risk frequency can be assumed to be rather similar throughout the seasons.
Anyway, Figure 5 clearly shows how the intensity, or gravity, of this air pollution SLODs
risk measured with the AQI is greater during the summer season.
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Figure 5. Final degree of air pollution risk in the AQI based on 2019’s values from Milano v. Juvara.

Table 4. Summary results of the allocated air pollution distress, when using AQI > 100 as the
criterion, differentiated by seasons.

AQI

Season # of Hours Hours at risk Ratio

Whole year 8760 2193 25.03%
Summer and mid 4392 1155 26.30%

Summer 2208 808 18.50%
Mid 2184 347 7.90%

Winter 4368 1038 23.76%

3.3. Boosted Health Risk from the Multiple Hazards Effect

Both SLODs’ risks are present and of considerable severity for sensitive groups during
summer. However, to clearly state how frequent the potential danger for these demographic
groups is, a superimposition assessment was applied as described in Section 2.3 and
displayed in Figure 6.
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Figure 6. Conjoint risk frequency distribution on a yearly basis for 2019’s data extracted from weather and air quality station
Milano v. Juvara.

Figure 6 clearly shows how their confluence frequency is concentrated during the
summer season (9.96% hour ratio), although some rare conditions were encountered during
winter (i.e., last week of February, around DOY ≈ 58), in which there was a severe RiskT
(>0.5) and AQI (>100) representing only 0.11% of the hours of said period. The frequency
by seasons has been compared and condensed in Table 5.

In addition, one can note that the hazard risk confluence is concentrated in the early
mornings and the afternoons.

Table 5. Summary results of the allocated multi-hazard risk, when using AQI > 100 as the criterion,
differentiated by seasons.

RiskT and AQI
Season # of Hours Hours at Risk Ratio

Whole year 8760 485 5.54%
Summer and mid 4392 480 10.93%

summer 2208 435 9.96%
Mid 2184 45 1.02%

Winter 4368 5 0.11%

4. Discussion
4.1. Validity of the Preliminary Assessment

A direct comparison was done between the values obtained for RiskT and UTCI
condensed in Table 3, to understand how different the collected samples of the proposed
risk criteria and the established, but simplified UTCI were.

UTCI presented a higher risk frequency overall with an absolute algorithmic differ-
ence of 0.22% when comparing yearly data, 1.09% during summer and mid-season, or
2.48% during summer. Yet, RiskT presented an absolute 1.37% more hours of potential
thermal stress risk during mid-seasons and 0.66% during winter when compared to UTCI.
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The absolute algorithmic difference between risk and no risk hours ranged between
19 and 108 h, being least for the 8760 yearly period (i.e., 19) and highest for the 2208 h
in summer. This was considered non-negligible; thus, the classification accuracy was
computed, assuming as true values those computed for UTCI, using Equation (2), as
91.56%; from: 360 False Positives (FPs), 379 False Negatives (FNs), 964 True Positives (TPs),
and 7057 True Negatives (TNs).

These results were expected as the assumption of MRT ≈ tdb−air did not truly express
the condition of a person outdoors, and RiskT was configured in a way in which it gave
a large significance to the presence of intense Itot (i.e., Iweight = 0.3). However, with an
accuracy over 90% on a large sample (>8000 measurements), it could be assumed that the
approach is feasible for preliminary analyses.

4.2. Considerable Prevailing Pedestrian Risk

Certainly, during the summer period in Milan (approximately 18–29% of the season
hours), sensitive groups among citizens or visitors in the areas adjacent to the weather
and air quality station Milano v. Juvara were subjected to critical hazards (see Table 2). In
addition, in this same period, people outdoors were vulnerable to the conjunct effects of
SLODs risk hazards (increasing temperatures and air pollution) for a considerable amount
of hours (9.96%).

On the other hand, multi-hazard risk arousal during the winter period was unlikely.
The seeming outliers were further studied by filtering all collected data; thus, this hazard
risk reported for winter resulted from high Itot (>300 W/m2), dry air RH (<30%), low wind
speed (<2 m/s2), and a high concentration of particulate matter (PM2.5 > 40.5 µg/m3).
Although, in these hours, high tdb−air were not reported (maximum values were registered
around 22.3 ◦C), this does not exclude the possibility of significant thermal stress given the
exposure to such solar irradiation [30,33,34].

In addition, winter shall not be assumed as a low risk season as air pollution haz-
ard was present during 23.76% of the winter time (see Table 4). Figures 5 and 4a show
how most of the hazardous AQI was correlated to the particulate matter (i.e., PM2.5 and
PM10) concentration trend; given that these values are normally reported as the daily
average, larger concentrations could have been experienced by pedestrians in the station’s
surroundings.

In brief, pedestrians within the built environment close to Milano v. Juvara were
subjected to either one of the SLODs hazards for 3032 h during 2019 (34.61% of the time) and
contemporaneously 485 h only (5.54% of the time). However, this gives only an overview
of the risk; thus, a frequency profile was drawn to better understand the occurrence trend
of these hazards on a daily basis.

Figure 7 displays the frequency density distribution of each and the conjunct SLODs
hazard during the day for that location during 2019, allowing identifying the peak moments
of the day in which pedestrians were more prone to health deterioration. It is worth noting
how the peaks for increasing temperatures and air pollution have a similar growing
trend, but a distinct dissipation behavior; this could be attributed to the low capacity
of the zone to deposit, absorb, dilute, or dissipate air pollutants; or simply, a pollution
concentration increase due to higher pollutant source loads during these time-frames
related to anthropogenic activities.
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Figure 7. Conjoint risk (Agg. risk) daily profile of the hourly frequency distribution on a yearly basis for 2019’s data
extracted from Milano v. Juvara.

The constructed profile also allowed identifying the great risk that a person can be
exposed during the night-time. People outdoors would be frequently subjected to poor air
quality and likewise for those indoors who rely on night cooling or natural ventilation.

Instead, when coupled, the profile shows that pedestrians were most vulnerable at
16:00 (maximum frequency distribution value). Moreover, the most unhealthy period can
be established during 14:00 and 18:00, having more than 9% of those specific i-th hours
classified as a conjunct hazard moment; and the second most hazardous time-frame was
found between 18:00 and 20:00 with a ≈8% ratio.

4.3. Limitations and Further Work

The 91.56% classification accuracy of the proposed criterion is not yet fully satisfactory,
and adopting a simplified UTCI result as the true values is only applicable under a
few surrounding outdoor conditions within the built environment. The accuracy could
be improved by further calibrating the weighting factors used by performing in situ
measurements and adjusting MRT for computing UTCI accordingly. These tests and data
elaboration will reduce the number of both FP and FN, thus increasing the accuracy.

In addition, a normed value could allow capturing and communicating more informa-
tion on the intensity of the thermal stress and air pollution hazard; as well as providing a
rather continuous function, instead of such a discrete trend when applying Booleans.

Further work is planned to include also the physiological characteristics of sensitive
groups to further understand the thermal stress variability among those sensitive groups
at risk. Furthermore, gathering larger yearly databases and handling time-series missing
data would allow making more reliable assumptions and conclusions from the results.

In addition, generating hazard risk frequency daily profiles from environmental data
eases future work on the combination of other risk-related analysis, which have a narrower
arousal temporal scale (e.g., earthquakes, terrorism attacks), for the superimposing of
multiple risk assessment.

5. Conclusions

People frequenting dense built environments are susceptible to SLODs, and some of
these could arise simultaneously; in particular, people are prone to increasing temperatures
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and air pollution. Coupling their analysis to an integrated approach is limited by the data
accessibility, applicability, quality, and granularity. This work proposes a framework that
enables and facilitates performing, for a specific site (i.e., Milano v. Juvara’s surroundings,
Milan, Italy), an outdoor meso-scale multi-hazard-based risk analysis; with which it is
possible to obtain a narrower time-frame in which these two events could have affected
citizens’ health the most.

A weighted fuzzy logic analysis permitted superimposing climatic and air quality
distress on an hourly basis, allocated using set healthy and comfortable ranges. Then, it is
possible to delineate an average daily multi-hazard arousal profile that can be later used as
the input in other risk-related assessments.

Specifically, for the selected case study, findings show that sensitive groups were
frequently and greatly at risk during 2019; in fact:

• Summer was found to be the most stressful period for both increasing temperatures
and air pollution using a simplified thermal-related index (i.e., RiskT) and the AQI as
separate criteria and/or combined criteria.

• Winter prevalently had low air quality; along with late afternoon and early morning
hours on a daily average.

• Thermal stress was reported more frequently instead during midday and afternoon
hours.

• During the day, the conjoint effect of climatic and air quality distress was found to be
more recurrent between 14:00 and 18:00, with a slight decay during 18:00 and 20:00
(as highlighted in Figure 7).
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