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Abstract: This study investigates the potential association between the daily distribution of the
PM; 5 air pollutant and the initial spreading of COVID-19 in New York City. We study the period
from 4 March to 22 March 2020, and apply our analysis to all five counties, including the city,
plus seven neighboring counties, including both urban and peripheral districts. Using the Granger
causality methodology, and considering the maximum lag period (14 days) between infection and
the correspondent diagnosis, we found that the time series of the new daily infections registered in
those 12 counties appear to correlate to the time series of the concentrations of the PM, 5 particulate
circulating in the air, with 33 over 36 statistical tests with a p-value less than 0.005, thus confirming
such a hypothesis. Moreover, looking for further confirmation of this association, we train four
different machine learning algorithms on a portion of those time series. These are able to predict that
the number of the new daily infections would have surpassed a given infections threshold for the
remaining portion of the series, with an average accuracy ranging from 84% to 95%, depending on the
algorithm and/or on the specific county under observation. This is similar to other results obtained
from several polluted urban areas, e.g., Wuhan, Xiaogan, and Huanggang in China, and Northern
Italy. Our study provides further evidence that ambient air pollutants can be associated with a daily
COVID-19 infection incidence.

Keywords: COVID-19; New York city; time series analysis; daily infections; air pollution; machine
learning; artificial intelligence

1. Introduction

On 1 March 2020, the first case of COVID-19 was recorded in New York City (NYC).
A woman traveling back from Iran tested positive. This was only the first of a long
series of infections: The pandemic swept through the whole State of New York, infecting
25,665 people and causing more than 200 deaths in just one month [1]. We were just
at the beginning of a sad story, since in the following three months, NYC experienced
widespread diffusion of this contagion, recording over 200,000 infections, and more than
21,000 confirmed deaths.

After the words of the Governor, Andrew Cuomo: “The apex is higher than we thought
and the apex is sooner than we thought”, many measures were implemented to contain the
spread of this virus, including public school closures on 15 March, and stay-at-home
orders (for non-essential workers) on 22 March [2]. While newly diagnosed infections,
hospitalizations, and deaths peaked in April, this lockdown regime led to a substantial
drop in cases in May, and to a subsequent re-opening phase for industries, and other
business activities, starting on 7 June 2020 [3]. Since then, NYC has experienced a relatively
long period where the number of the new daily COVID-19 cases have continued to fall,
while they climb in the rest of the United States. However, at the moment of writing,
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as winter nears, cases in city are ticking upward again, with a weekly average of some
4000 new infections and 40 deaths, as registered in the week of 17-24 November [4].

Ten months after the beginning of the pandemic, many studies have been developed
by scholars to investigate how COVID-19 spreads and decays [5,6]. While scientific investi-
gations that look for the most effective non-pharmaceutical containment countermeasures
are of great interest, as they could help to keep a lid on the epidemic (including contact
tracing and testing) [7-14], much attention has also been paid to the factors that can favor
the contagion [15,16]. In this broad spectrum of research, studies are emerging that try to
understand if a possible association exists between exposure to air pollution and COVID-19
infection and deaths.

This is a rapidly expanding research area that has attracted much interest, especially
from China and various European countries. The rationale behind these studies is that fine
particles (especially PM; 5; particles with diameter, <2.5 pm) have been linked to various
adverse health events. Long-term exposure to this kind of particulate may negatively
affect the respiratory and cardiovascular systems, and increase the mortality risk—thus,
exacerbating the severity of COVID-19 symptoms, and worsening the prognosis of this
disease [8,9,17].

Besides our present study, the relationship between COVID-19 and pollution has been
researched intensively from various angles, yielding many published papers thus far [18].

We consider these kinds of studies as extremely relevant, since they have opened this
new research area that is still flourishing through the collaboration of many different types
of scientists, including virologists, biologists, chemists, physicists, and data scientists.

In this regard, the first work we would like to mention is the one by Wu et al. that
investigates the association between exposure to air pollution and the death rate due to
COVID-19, through a nationwide study of more than 3000 counties in the United States [19].
Fed with the values of PM; 5, they developed a mathematical model able to predict the
extent to the county-level long-term exposure to that particulate can be associated with
an increase of the COVID-19 mortality rate. This model was also reinforced with some
twenty potential confounders of various socioeconomic and demographic nature, including,
for example, the percentage of the population older than sixty-five years, the percentage of
African Americans, and the percentage of persons affected by obesity. The authors fitted
a binomial mixed model, where the COVID-19 deaths values were the outcome. Results
have shown that even a small increase in the long-term exposure to PM; 5 is associated
with a relevant increase of the COVID-19 death rate, in the county of interest. While that
paper focused on U.S. COVID-19 data in general, at the moment of writing this paper,
there appears to be no published work that concentrates exclusively on NYC, and its
neighboring counties. However, there have been a number of relevant publications that
address a similar topic within the context of other nations, especially in Italy and in China.

For example, Becchetti et al. studied the long-term exposure to air pollution and
COVID-19 infections and mortality in Italy during the first wave of the pandemic [20].
The assumption at the base of their work is that air pollution, and in particular, the par-
ticulates, like PM; 5, may be a carrier for the virus, and that a person who lives in a very
polluted area has a limited capacity of reacting to the virus. They considered the annual
values of both the PM; and PM; 5 particulates, plus other factors that could have played a
role, such as population density, average income, public transport usage, and number of
lung ventilators, yielding a cross-sectional regression statistical model that, again, has pro-
vided a clue about the correlation between COVID-19 infections/mortality incidence and
air pollution.

Along the same line of reasoning is the paper by Setti et al. [21]. Their initial state-
ment is that an epidemic model, based only on close contacts and respiratory droplets,
cannot explain the excessive number of people infected with COVID-19 in Northern Italy.
Hence, with univariate analysis, they have verified the correlation between the number of
exceedances of the daily limit value of the PMyq particulate, finding that 39 of the 41 North-
ern Italian provinces most impacted by COVID-19 also reported the highest PM levels.
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Their conclusion is that air particulates may favor an airborne transmission of this virus,
up to a distance of eight meters in an outdoor environment.

In the same vein of Reference [21], but with a different statistical model based on a
time series analysis, the work described in References [22,23] has provided further proof of
the causal correlation between abnormal values of various types of particulate (including
PMj; 5, PMyg, and NO;) and COVID-19 infection incidence in the Italian region of Emilia-
Romagna. This region is one of the most polluted areas in Italy, and the district that has had
the highest death toll in Italy so far, after Lombardy. Moreover, one of these two papers,
using a machine learning-based methodology (plus pollution data from previous years),
also predicted (with excellent accuracy) the occurrence of the second wave of the contagion
that is currently raging in that Italian region, as of November 2020.

Finally, the study by Jiang et al. [24] used a retrospective cohort, from 25 January to
29 February 2020, from the Chinese cities of Wuhan, Xiaogan, and Huanggang. The authors
found that a daily COVID-19 infection incidence was positively associated with high values
of both PM; 5 and humidity, in all the examined cities.

After this long introduction that was needed to frame the scenario, we can finally
come to the intent behind this study: To investigate the association between particulate
matter and the surge of COVID-19 infections suffered in NYC, during the 2020 spring.
The main motivation is that, to the best of our knowledge, there does not exist similar
studies for this iconic city.

To this aim, some premises are in order. First, we took the decision to study only one
of the particulates, precisely PM; s—because it is well known that PM 5 is one of the air
pollutants with a more positive correlation with the virus spread, as witnessed by many
recent studies [24]. With regard to this important point, we can anticipate that the average
values of that pollutant, measured in micrograms/m? in NYC during the first epidemic
outbreak (February—-March 2020), were from 20% to 25% higher than the average values
computed for a longer period that extends from February to July 2020.

Second, we decided to analyze the pollution/infections data relative to two different
types of counties, belonging to the state of New York. Obviously, we were particularly inter-
ested in studying the situation of the metropolitan area of NYC, with its five counties which
coincide with the renowned boroughs, namely: New York (Manhattan), Kings (Brook-
lyn), Bronx (The Bronx), Richmond (Staten Island), and Queens (Queens). Nonetheless,
in addition to these, we also studied some other neighboring counties, including: Nassau,
Suffolk, Rockland, and Westchester. Moreover, to evaluate whether the association we
were trying to validate was only valid for urban, densely populated areas, very close to the
city, such as those we have just mentioned, we decided to extend our analysis also to other,
more peripheral counties, including: Onondaga, Oneida, and Monroe. This way, we have
been able to test two different situations: Both densely populated and less-populated
areas, with their different relative values, in terms of COVID-19 infections and amount
of pollution.

Third, and finally, we examined two different time series in the period of interest
(February-March 2020): The number of daily infections vs. the registered values of PM; 5
circulating in the air, daily. The daily COVID-19 infections data was provided by the
New York State Department of Health, while the registered values of PM, 5 come from the
United States Environmental Protection Agency. To check whether an association could
be established between these two series of data, we adopted two different methodologies:
Granger causality and machine learning.

We first subjected those temporal series of data to a Granger causality statistical
hypothesis test. Testing for Granger causality means verifying the statistical hypothesis
that a time series X Granger-causes another time series Y: In other words, X values would
better predict the future values of Y, beyond the information contained in past values of
Y alone. To do that, two different regression models are, typically, tested on the Y values.
The first one uses only previous values of Y, while the second exploits both previous Y
values, plus lagged values of X. If those tests are successful, it can be concluded that X
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values provide statistically significant predictive information about future values of Y.
In simple words, X Granger-causes Y.

Unfortunately, many believe that the use of Granger causality tests can be questionable,
if one aims at demonstrating a clear cause—effect correlation. Nonetheless, we argue that,
with two different types of counties of the state of New York under investigation (that is,
densely populated and less-populated areas), the results of this study have shown that an
association between the two time series can be confirmed, well beyond the limit of a weak
interpretation of causality, as 33 over 36 statistical tests have confirmed the hypothesis,
with a p-value less than 0.05.

Then, to provide further evidence in favor of this correlation, we conducted a second,
additional series of experiments, using machine learning (ML) algorithms. Specifically,
four different ML algorithms were used in the following (non-traditional) way. At each
step of this procedure, they were trained with the data (COVID-19 infections vs. pollution)
relative to all the studied counties, except for the one for which we asked the algorithms
to predict the number of the daily infections, given the concentrations of the pollutant
occurred in the previous days. This procedure was repeated for all the counties of interest,
resembling a kind of county cross validation methodology. With this procedure, we were
able to develop 48 different experiments, aimed at predicting if the number of infected
persons had exceeded a certain given value. Those experiments returned an excellent
average prediction accuracy, ranging from 84% to 95%.

In conclusion, these two different types of experiments (i.e., Granger and ML predic-
tions) should be considered a further confirmation that pollutants, like PM, 5, have played
a non-secondary role in the spreading of the virus, at least in this specific case of NYC,
during the 2020 spring.

The remainder of the paper is structured as follows. The next section describes both
the dataset and the methodologies on the basis of our scientific investigations. In Section 3,
we illustrate the results we have obtained. Finally, Section 4 concludes the paper, with some
final and important considerations on both the potential and limitations of our approach.

2. Materials and Methods

This section provides a description of the dataset used in this study, and then presents
some relevant information about the employed methodologies.

2.1. Dataset Description

The data at the base of our study was essentially corresponding to two types of
time series.

The former was relative to the new daily COVID-19 infections registered in all the
counties of interest in the period 4-22 March 2020, while the latter was concerned with the
air pollution, in particular, the particulate matter PM; 5 registered on a daily basis, in the
period 19 February—-8 March 2020, in all the counties of interest.

The information relative to the daily COVID-19 infections was retrieved from the web-
site of the New York State Department of Health—COVID-19 Tracker [25], while the daily
pollution PM; 5 levels were collected from the website of the United States Environmental
Protection Agency, under the Outdoor Air Quality Data section [26]. Since, in each county,
there were different sensor stations returning pollution values, at various times during
the same day, the correspondent data was aggregated using an average daily value for
each county.
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The first issue to explain regarding these two time series of data is concerned with the
different periods that were analyzed, that is, 19 February-8 March (PM; 5) vs. 4-22 March
(COVID-19 infections).

In regard of this, it is well known that a delay can occur between the day a person
comes in contact with the virus (with pollution circulating in the air that might favor an
airborne virus transmission) and the day when this person manifests the first symptoms
of COVID-19 (being consequently recorded as infected). Unfortunately, such a delay
can be influenced by two different factors. First of all, there is an incubation period of
this virus that, according to the medical literature, may range from a couple of days to
almost fourteen. More precisely, as reported in Reference [27], the mean incubation period
for COVID-19 is estimated to be 5.2 days, while 12.5 days are needed to reach the 95th
percentile of the distribution of all the infections. Moreover, other studies have highlighted
how an additional delay can be suffered from the time when a person is tested for positivity
and the moment in time when this infection is registered by the authorities [28].

For these reasons, the two time series of data we took into consideration, say X
(the daily average PM; 5 level) and Y (the number of the new daily infections), were stag-
gered by 14 days, yielding: X ranging from 19 February-8 March, and Y ranging from
4-22 March 2020.

It is also important to note that our investigation period ends on 22 March, in corre-
spondence with the announcement of the Governor of New York State, Andrew Cuomo,
who placed the statewide stay-at-home order, starting from 8 p.m. on 22 March [29]. Hence,
the reason to limit our study to the pre-lockdown period is that the lockdown measures
might have significantly altered the general situation, with a slowdown of human activities
and a consequent change of the pollution levels.

The two corresponding curves of our interest (pollutant and infections), staggered
by 14 days, are shown in the plots of Figure 1, where those curves are reported for all
the counties we have examined (precisely: New York, Kings, Bronx, Richmond, Queens,
Nassau, Suffolk, Rockland, Westchester, Onondaga, Oneida, and Monroe).

In Figure 1, blue lines are the PM; 5 pollutant values and the corresponding time
period, while red lines are the new daily infections and the relative time period of interest.
For each plot, one can see (leftmost) the measurement unit of the PMj; 5 pollutant (measured
in micrograms/m?) and (rightmost) the number of the new daily infected people.

The motivations behind our choice of investigating those precise 12 counties in the
New York state, represented in grey in the map of Figure 2, was to evaluate whether the
(potential) relationship between the PM; 5 pollutant and COVID-19 diffusion remained
valid through very different scenarios. However, scenarios that were all geographically
relative to NYC.

This was translated into the following two conditions. First, we have wanted to inves-
tigate both on densely populated districts, like those comprised in the city of New York,
and also in less populated areas. Second, we have also wanted to extend our analysis both
to those counties that are comprised in NYC (or are very close to NYC), and to those coun-
ties that are further away from NYC. We decided to choose 12 different counties, that can
be considered as clustered in three different groups. First, the counties/boroughs of NYC—
New York (Manhattan), Kings (Brooklyn), Bronx (The Bronx), Richmond (Staten Island),
and Queens (Queens). Second, the counties that are very/quite close to NYC—Nassau,
Suffolk, Rockland, and Westchester. Third, a group of suburban, less populated counties
that are far away from NYC—Onondaga, Oneida, and Monroe.
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Figure 2. New York State map (studied counties: in grey).
The corresponding population density for each of the 12 counties is shown in the fol-

lowing Table 1, where the number of inhabitants is provided per square mile (1 square mile

is equal to 2.58999 square kilometers), along with a total number of registered inhabitants,
as per 2018 [30].

Table 1. Population density of the twelve investigated counties.

County Density Population
New York 72,056 1,632,480
Kings 37,252 2,600,750
Bronx 21,132 1,437,870
Queens 34,194 2,298,510
Richmond 8149 474,101
Nassau 4763 1,356,560
Westchester 2250 968,815
Rockland 1866 323,686
Suffolk 1632 1,487,900
Monroe 1132 744,248
Onondaga 596 464,242
Oneida 190 230,782

Before concluding this section, we need to return to the issue relative to the value of
the PM, 5 pollutant in the period under investigation (i.e., 19 February—8 March 2020).

The first point to be considered is that the highest tolerable level of the PM, 5 pollutant,
indicated in the guidelines by the World Health Organization, is equal to 10 micrograms/m3 [31].
In this regard, we should notice that in our period of interest (which is as long as 19 days),
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the number of times, when the PM; 5 levels were above that threshold, were as many as 41,
considering all the 12 counties.

If we make a similar count for a longer time period, which extends from 19 Febru-
ary to the end of July (that is, a 168 days-long period), we yield a total number of PM; 5
exceedances equal to 115. Even though we have already mentioned that the lockdown
measures, adopted starting on 22 March, have probably altered the entire scenario (includ-
ing the levels of pollution circulating in the air), it should be noted that our shorter period
of interest had totaled the 35% of the total amount of PM, 5 exceedances recorded in the
longer period that extends from the beginning of the pandemic to its decay at the end
of July 2020. Moreover, if we compare the average values of PM; 5, measured in all the
12 counties in the two following different periods: 4-22 March vs. 19 February—end of July,
we can notice an increase of the amount of PM; 5 in the 4-22 March period, ranging from a
minimum of almost +13% (New York) to a maximum of almost +50% (Oneida), with an
average value of circa +24%, as calculated all over the 12 different counties.

All these considerations are summarized in Table 2, where the values of the PM; 5
particulate are given, as usual, in micrograms/m?>. In the second and third column,
we show, respectively, the average values of PMj; 5, registered over the two different
periods, while the aforementioned increase is given in the fourth and in the fifth column.
The sixth and the seventh column account, instead, for the number of the PM, 5 exceedances
in the two periods. This was examined for all 12 counties.

Table 2. The PM;5 (short and extended periods) per county, increase, number of days with exceedances (short and

extended periods).

PM; 5 # of Days with PM; 5 > 10
County
19/02-08/03 19/02-31/07 Increase Percentage 19/02-08/03 19/02-31/07
New York 7.48 6.63 +0.85 +12.8% 4 10
Kings 6.27 5.28 +0.99 +18.8% 2 8
Bronx 7.62 6.47 +1.15 +17.8% 5 15
Queens 6.87 5.79 +1.08 +18.7% 4 14
Richmond 6.86 5.63 +1.23 +21.8% 5 12
Nassau 6.52 5.18 +1.34 +25.9% 3 7
Westchester 6.08 4.77 +1.31 +27.5% 2 4
Rockland 6.14 4.82 +1.32 +27.4% 3 6
Suffolk 6.35 5.4 +0.95 +17.6% 2 9
Monroe 7.11 6,15 +0.96 +15.6% 3 13
Onondaga 8.51 6.38 +2.13 +33.4% 5 11
Oneida 6.63 4.38 +2.25 +51.4% 3 6
Average 24.04%

2.2. Methodologies

As anticipated, we have employed two different techniques to evaluate if a potential
relationship exists between the PM; 5 particulate matter and the spread of COVID-19
infections in New York City in the period 4-22 March 2020: Granger causality and machine
learning. In the following sections, we will discuss the two different methodologies.

2.2.1. Granger Causality

The first technique we have used was the Granger causality testing methodology,
which is recognized as a kind of statistical hypothesis testing that determines if an associa-
tion can be established between two time-series. It is based on the idea that a time series
X Granger-causes another time series Y, if past values of X predicts the future values of
Y better than using only past values of Y. This particular concept of causality is based
on some epistemological assumptions. The reader interested in those issues can refer
to References [32,33]. Instead, from a mathematical viewpoint, this Granger causality
testing method requires that the time series under investigation are stationary. This is a



Appl. Sci. 2021, 11,1177

90f19

condition to be checked prior to developing any experiment. Hence, before proceeding
with the Granger causality methodology, we have verified that our time series (infections
and pollution in NYC) met this stationary condition, using the augmented Dickey-Fuller
method [34].

Finally, from a statistical viewpoint, a Granger causality test requires to define both
a null hypothesis and an alternative hypothesis. The null hypothesis corresponds to the
fact that the time series X does not Granger-causes the time series Y. The alternative
hypothesis is that the time series X Granger-causes the time series Y. Coming to our specific
case, the null hypothesis is that the series of the PM; 5 values does not Granger-cause the
time series of the new daily infections in NYC. Consequently, we could decide that the
time series of that particulate Granger-causes the time series of the infections, only if the
aforementioned null hypothesis should be rejected.

To better understand, now, how a Granger causality hypothesis testing procedure
works, we can start from our time series X and Y (i.e., PMj; 5 and COVID-19 infections) that
can be modeled with the following Granger causality Equation (1) below:

I I
Yi= ) a; Y i+ Y b Xiqaqi+ cr. 1)
i—1 i—1

Y; and X; are the single values of the two series Y and X, in our case corresponding
to the values of the PM; 5 and of the infections, recorded daily, yet staggered by 14 days,
due to the maximum delay it may take for COVID-19 to manifest symptoms. This said,
the above formula computes the current values of Y, based on previous values of both X
and Y. How far back one can go with past values of X and Y, to get the current values of
Y, is given by the value of J, the so lag. In our case, we have chosen this lag value equal to
5, as 5.2 is the mean incubation period for COVID-19, as estimated in Reference [27]. ¢,
instead, is a white-noise-random vector.

The above formula, works based on the role played by the b coefficients. Essentially,
X Granger-causes Y, only if the b coefficients are different from zero. In fact, if the b
coefficients are equal to zero, only the previous values of Y have an influence on the future
values of Y. It is now clear that modeling a causal relationship with the Granger formula
above is equivalent to performing a statistical hypothesis test, where the null hypothesis is
that all the b coefficients are zero, based on the following Formula (2):

Holblzbzz...zblzo (2)

Instead, the alternative hypothesis is that at least one of the b coefficients is not zero.

At this point, assigned all the real values to Y and Y, a vector autoregressive procedure
must be run to get the b coefficients. Once that b coefficients are computed, a final F test
procedure is to be performed to verify if those values fit with the all zero distribution of
the null hypothesis. This statistical test will return a p-value. The higher is this p-value,
the more certain is the null hypothesis. With a lower p-value, instead, the alternative
hypothesis comes confirmed (that is, X Granger-causes Y). In all the Granger experiments
we have conducted, a level of significance equal to 5% was used. Said simply, in each
experiment, we have rejected the null hypothesis only if the returned p-value was less
than 0.05.

More important is, now, to explain why and how we used this specific Granger
procedure.

To respond to the first question (why?), suppose that one wants to decide if a rela-
tionship exists between the number of infections registered in a given day (e.g., 15 March)
and the amount of PM; 5 circulating in the air in the previous days. To do that, with other
alternative approaches, one would have considered only the measurement of the values of
interest, taken on just two days: The day of the registered infections (15 March) and the
day when the pollutant circulating in the air might have favored an airborne transmission
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of this virus, with the result of the consequent infections. Assume that this specific day
could be the one set 14 days before 15 March, that is 1 March.

It is easy to understand that this would be an extremely reductive analysis, based on
the role played by the amount of particulate circulating in the air on just one day (1 March),
without the possibility of taking into account all the remaining days between 1 March to
15 March.

With the approach based on the Granger formula, instead, we can take into simultane-
ous consideration multiple days, each with its amount of measured particulate. This is by
virtue of the lag factor (i.e., the [ index in the sum of the Granger formula) that allows one
to go back as many days as one wants in the computation. And this, in turn, brings us to
the answer to the second of the two questions we have posed before (how?).

In particular, for each of the 12 counties of interest, we took into account three different
pairs of time series. As to the (three) time series relative to the COVID-19 infections, all of
them started in coincidence with the day of the beginning of the pandemic in NYC, that is
4 March; while the first, the second, and the third of those series ended, respectively,
on the following days—20 March, 21 March, and 22 March. The idea was that using three
different series, in our Granger analysis, would have corroborated our study, yielding more
experiments/results for each of the 12 counties of interest.

Finally, given the time lag of 14 days between a COVID-19 infection and its registered
symptoms, the (three) time series relative to the PM, 5 particulate all started on 19 February
(14 days prior to 4 March) and ended, respectively, on the following days—6 March,
7 March, and 8 March. This is due to the fact that, to carry out a Granger analysis,
the length of the compared series must be equal. In the end, all this yielded a total amount
of 36 Granger experiments (three pairs of time series and 12 counties), whose final results
are reported in the next section.

2.2.2. Machine Learning

We now come to the second methodology of our study. As already anticipated in
Section 1, the rationale was to conduct an additional series of experiments that could con-
firm (or reject) our hypothesis, using a very different approach. Specifically, using machine
learning (ML) algorithms, with which we have a strong experience [35-37].

Essentially, we devised a non-traditional procedure, resembling a kind of a ML
(county) cross validation methodology, which went as follows: During the training activity,
we let some ML algorithms be instructed with the daily values of the PM; 5 (input) and
the COVID-19 infections (output). The periods of these two series of daily data were those
mentioned before: PM; 5 (19 February-8 March) and COVID-19 infections (4-22 March).
More precisely, the number of the COVID-19 infections for each given precise day, say X,
were put in relation with the amount of the values of the PM; 5, registered in all those
days included in the following time interval: [X—7, X—14]. The choice of these eight days,
prior to X, was taken depending on two different factors: (i) The need to be as close as
possible to the correspondent lag value used in the Granger analysis (which was equal to
5), and (ii) as a result of the ML hyperparameters optimization process. After this learning
phase, this procedure went through a kind of testing validation where the instructed algo-
rithms had to predict if, in a given day, in a specific county, the number of infections either
exceeded a predefined infections threshold or they did not.

To summarize, the entire process worked as follows. With each round of our procedure,
our ML algorithms were trained with the data (PM; 5 vs. COVID-19 infections) relative
to all the 12 studied counties, except for the one for which we asked our algorithms to
predict the number of daily infections, given the concentrations of the PM, 5 particulate
occurred in previous days. This procedure was repeated, in turn, for all the counties under
investigation. We developed 48 different experiments (4 ML algorithms and 12 counties),
to predict if the number of infected persons has exceeded the infections threshold value.
Obviously, the more accurate were the predictions on the infection threshold exceedances,
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for the counties subjected to our investigation, the more was confirmed the hypothesis of a
correlation between PM,; 5 and the COVID-19 spread in those areas.

As to the choice of the infection threshold, we had two different alternatives: Either
computing an infection threshold for each different county or computing a unique threshold
to be used for all the counties of interest. Even if the first choice could seem, at a first
impression, as more accurate, nonetheless managing twelve different thresholds, with four
different learning algorithms, would have resulted, with a high probability, in a kind of an
overfitting problem with our ML-based procedure. Hence, the choice of a unique threshold.
Moreover, to further simplify the problem, we resorted to a procedure to compute that
threshold, which was very simple and effective. The idea was that of counting the number
of daily infections registered per each county, in all the twelve counties of interest, during
the four days that preceded the lockdown decision. Once we obtained those daily infection
counts, we computed an average for all four days on a per-county basis. We then got
12 numbers that were definitely aggregated under the form of a final average count,
thus yielding an infections threshold equal to 122.8. All the values used to compute our
average are reported in Table 3.

Table 3. The number of COVID-19 infections over four different days per each county.

Number of Infections (Four Days)

County
17/03 18/03 19/03 20/03
New York 69 161 335 437
Kings 39 264 273 674
Bronx 29 123 154 191
Queens 38 123 336 519
Richmond 11 26 33 116
Nassau 24 52 186 385
Westchester 157 158 261 292
Rockland 9 8 23 48
Suffolk 22 31 62 193
Monroe 1 4 13 5
Onondaga 1 0 3 3
Oneida 0 0 2 0
Overall Average 122.8

The rationale behind this procedure was the following. When the Governor of the
State of New York opted for a lockdown decision on 20 March, the average state number of
daily infections, on a per-county basis, had just reached that threshold of 122.8 infections.
Consequently, we can use that number as a key to design the predictions scheme of our
ML model. One should also not forget the fact that New York was, at that time, along with
its surrounding boroughs, the city with the largest number of COVID-19 infections in
the U.S. Hence, the average number of infections that happened in all that region had an
important weight.

We now come to the employed ML algorithms. We used the following ones:

K-Nearest Neighbors [38],
Support Vector Machine [39],
Multi-Layer Perceptron [40],
Extra Tree [41].

The motivation behind the choice of those specific ML algorithms goes back to a
previous study [23], where we tried to train a dozen of different ML algorithms by using
the same kind of relation (particulate vs. COVID-19 infections). These four algorithms
resulted among those with the best performances, in terms of accuracy of the predictions.

Before we can conclude this section, some final comments are in order, regarding
the metrics we have used to evaluate the results of these 48 experiments. To be precise,
we measured the accuracy of the predictions with the F1-score (whose value can range from
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0 to 1). An Fl-score is the harmonic average between the precision and the recall, computed
based on the following Formula (3):

Precision * Recall
F1 = score =2 Precision + Recall’ ©)

With precision, it is intended the number of true positives divided by the sum of the
true positives and the false positives, while with recall, it is computed the number of the
true positives divided by the sum of the true positives and the false negatives.

As to the meaning of true/false positives and negatives in our experiments, we went
for the following protocol: True positives were those predictions of having a number of
daily infections above the threshold, and were confirmed as right, while true negatives were
those predictions of having a number of daily infections below the threshold, and were
confirmed as right. Instead, all the wrong predictions returnded by our algorithm are to be
considered as false. An example of this protocol is given in Figure 3, where we report the
case of the results given by the KNN algorithm and the data from the Bronx. As shown in
the figure, we count as many as 11 true negatives, and as many as 6 true positives. Instead,
KNN yielded wrong predictions just in two cases (2 false positives). Consequently, in this
specific case, KNN returns a precision of 0.75 and recall equal to 1, with a resulting F1-score
equal to 0.85. In the next Section 3, we finally provide all the results we have obtained with
our datasets and the two different methodologies we have explained.

<=122

True label

> 122

0 o
5 s
7 7

Predicted label

Figure 3. KNN algorithm at work with data from the Bronx (confusion matrix).

3. Results

We are going to present the results in two separate sections, respectively. First,
Section 3.1 presents the results we have obtained by applying the Granger causality testing
methodology, and then second, Section 3.2 presents the results we got with the use of
ML-based methodology.

3.1. Granger Analysis: Results

Let us start with the results returned by the Granger procedure. They are reported in
Table 4. As previously mentioned, we have subjected to our Granger tests the data relative
to the following counties of New York State: New York, Kings, Bronx, Queens, Richmond,
Nassau, Westchester, Rockland, Suffolk, Monroe, Onondaga, and Oneida. For each county,
we have evaluated if the time series of the average daily values of the PM, 5 particulate
(X) Granger-causes the time series of the new daily COVID-19 infections (Y). As already
mentioned, the two time series were staggered by 14 days. This means that, for each
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Y;, the following temporal relation held Y; — 14 = X;. The time series of the new daily
infections started on 4 March. The air pollution time series started consequently fourteen
days before, precisely on 19 February. With regard to the end of the infections time series,
we considered different alternatives, using 20-22 March as the final days. Consequently,
the end of the PMj; 5 time series was set, respectively, on 6-8 March. Therefore, for each
county, we subjected three different time series to our Granger procedure. Since we are
considering 12 counties, the total number of tests we carried out was 36. For each of these
36 tests, Table 3 shows the corresponding p-values.

Table 4. Results of the Granger causality tests.

Start Date

(Infections) 04/03
End Date 20/3 21/03 22/03
(Infections)
New York <1074 0.0518 0.0902
Kings <1074 0.0003 <107
Bronx <1074 0.0011 0.0003
Queens <104 0.0002 0.1283
Richmond <104 <1074 <10~*
Nassau <10~4 <1074 0.0018
Westchester <1074 <1074 <1074
Rockland 0.0071 0.0 <10~*
Suffolk <104 <104 <104
Monroe <104 0.0058 0.001
Onondaga <10~* <10~* <10*
Oneida <104 <1074 <10~*

As previously explained, the null hypothesis can only be rejected if the corresponding
p-value, returned by the statistical test, is lower than 0.05. Only in that case, can we maintain
that the PM; 5 time series Granger-causes the time series of the COVID-19 infections.

As shown in Table 4, out of 36 tests, the null hypothesis was rejected in as many as
33 cases, yielding 92% of experiments in favor of a hypothesis of an association between
the PMj; 5 particulate and the spread of the COVID-19, in the various geographical areas
relative to NYC. The few cases when the null hypothesis was not rejected are highlighted
in red in Table 4.

3.2. Machine Learning: Results

We come now to the results we got by exploiting the ML-based procedure we have
adopted. As described in the previous section, we used four different ML algorithms,
namely: K-Nearest Neighbor (KNN), Support Vector Classifier (SVC), Multi-Layer Percep-
tron (MLP), and Extra Tree (ET).

Each algorithm worked with the data of the 12 counties, trying to return, for each
county, a prediction that the COVID-19 daily infections would have exceeded a given
threshold, in a certain day, given the values of the corresponding PM; 5.

Those predictions were obtained after a training phase conducted, in turn, with the
data coming from all the 12 counties, except for that county subjected to the prediction,
yielding a total amount of 48 different predictions (12 counties and 4 algorithms).

Before we can come to the results, we think it can be informative for the reader
to look at the two procedures used in our designed process with the aim, respectively:
(i) To prepare the data for the learning process, and (ii) to conduct the training and (county)
cross validation activities.

The first procedure is shown in Algorithm 1, with its corresponding pseudocode.
To better understand it, the following explanations are in order. We have a double nested
iteration on both the various NY counties (line 6) and the period of interest (line 8). Within
this iteration, the in_data array is prepared (lines 10-12), built on the values of the pollutant
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registered in all those eight days that run from 14 to 8 days before that specific day X when
we take into consideration the infections.

Algorithm 1 Dataset preparation algorithm.

1
2
3
4:
5:
6.
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:

Input: raw data with number of infections and pollution values per county
Output: time series with pollution levels and infection threshold exceedances per county
begin
in_data =]
out_data =[]
for each county in counties do
i=0
for each day from 03/04 to 03/22 do
out_data[county][i] = infections[county][day] > threshold
in_data[county][i] = []
for each lag from 0 to 7 do
in_data[county][i].append(pollution[county][day-14+lag])
end for
i++
end for
end for
end

To this aim, line 9 is the out_data array. Specifically, here, the program returns a

boolean value. That boolean value is equal to 1 if the amount of the registered COVID-19
infections in that day X is above the infections threshold, 0 otherwise. In essence, a function
is built with these infections threshold exceedances (line 9).

Now, it is the turn to illustrate the second procedure, reported in Algorithm 2, with its

pseudocode. Here, we have another iteration (lines 5-13). Within this iteration, our al-
gorithms are trained (after the data preparation of lines 6-9) with the pollutant values
(in_data) and the infections threshold exceedances (out_data). This happens for each of the
twelve counties of interest, except for one (line 10).

Algorithm 2 Training and (county) cross validation algorithm.

1
2
3
4:
5:
6.
7
8
9

10:
11:
12:
13:
14:

Input: time series with pollution levels and infection threshold exceedances per county
Output: predictions accuracy on the COVID-19 infections per each county
begin
results = []
for each county in counties do
input_train = in_data[!county]
output_train = out_data[!county]
input_validation = in_data[county]
output_validation = out_data[county]
model.train(input_train, output_train)
output_pred = model.test(input_validation)
results.append(f1_score(output_result, output_validation)
end for
end

Upon completion of this training activity, the series of the pollutant values, relative to

that county that was left out from the previous training activity, are shown to our trained
algorithms.
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At that point, our algorithms are asked to make their prediction on the number of
expected COVID-19 infections threshold exceedances, for that given county (line 11).

The process ends with a comparison between that prediction and the real data,
along with the consequent computation of the correspondent accuracy (line 12).

Obviously, this process is iterated over the whole set of the twelve countries of interest
(line 5).

To conclude this discussion about using our ML-based procedure, it is time to commu-
nicate which hyperparameters were chosen and/or what kind of optimization techniques
were used to tune our ML algorithms.

We report all this information in Table 5, being it crucial for the reproducibility of
the results, for their interpretation, and for understanding the relationships learned and
exploited by our algorithms.

Table 5. Machine learning (ML) algorithms: Hyperparameters optimization.

Algorithm Hyper-Parameters Value
N Neighbors 5
KNN Weights Uniform
C 1
Kernel RBF
sve Degree 3
Gamma 1/8
Hidden Layer 1
Hidden Layer size 100
Max Epochs 500
MLP Activation Function ReLU
Optimization Algorithm Adam
Batch Size 16
Learning Rate 0.001
N Estimators 50
Criterion Gini
ET Min Samples Split 2
Min Samples Leaf 1
Max Features V8
Bootstrap False

The reader could note that the only parameter which is not present in the Table is the
one regarding the lag value, because it has been discussed at length, before.

Table 6 shows all the 48 values of the accuracy of the predictions returned by our
algorithms are reported, given in terms of the F1-score metric. Except for just one case
(Nassau/SVC, highlighted in red), we have obtained 47 excellent F1-score values, all ex-
ceeding the value of 0.7. This both for those counties comprised in (or closer to) NYC,
and also for those counties that are further away from the city. In Table 6, we have also
reported the mean Fl-score, respectively computed, averaging both on the 12 counties
and on the 4 algorithms. If we look at the average F1-scores for the counties comprised in
(or near to) New York City, they range from 0.84 to 0.89, while average values from 0.87
to 0.95 were returned for those counties that are further away from NYC (i.e., Onondaga,
Oneida, and Monroe).
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Table 6. ML results: F1-score obtained with data from each county as a validation set.

County KNN SvC MLP ET Avg. per County
New York 1 1 0.95 0.82 0.94
Kings 0.95 0.8 1 0.79 0.89
Bronx 0.85 1 0.95 0.82 0.91
Queens 0.9 0.89 0.89 0.89 0.89
Richmond 0.87 0.87 0.87 0.91 0.88
Nassau 0.8 0.7 0.95 0.89 0.84
Rockland 0.77 0.82 0.82 0.82 0.81
Westchester 0.95 0.83 0.76 0.76 0.83
Suffolk 0.9 0.85 0.85 0.9 0.88
Rockland 0.77 0.82 0.82 0.82 0.81
Avg per 0.89 0.86 0.89 0.84
algorithm
Monroe 0.85 0.85 0.88 0.91 0.87
Onondaga 0.85 0.88 091 1 091
Oneida 0.91 0.94 1 0.94 0.95
Avg per 0.87 0.89 0.93 0.95
algorithm

Obviously, the rationale here is that the more precise the predictions, the more confi-
dently we can consider our correlation hypothesis as confirmed.

4. Discussion and Conclusions

The potential role played by the exposure to particulate matter in the spread of the
COVID-19 pandemic has attracted a lot of interest in the scientific community. Different tech-
niques have been employed to analyze this potential relationship from several perspectives.

This paper has provided a further contribution to this discussion, analyzing this asso-
ciation in the context of the first COVID-19 outbreak that hit New York City in March 2020.

The analyzed data consisted of both the PM; 5 daily levels and the daily number of
infections, treated as time series. Two different methodologies (Granger causality and
machine learning predictions) were used and extended to 12 different counties in the State
of New York, thus including both densely populated and less populated districts.

Both the employed methodologies returned results in favor of a possible association
between the PM; 5 particulate and the spread of this contagion in NYC, in the period
of interest.

However, it is important to conclude by discussing the potential limitations of this
study. The first relevant issue is that a Granger causality approach, like any other statistical
method in this context, cannot establish if a true causal link does exist between two
phenomena under observation. Instead, it checks if a predictive causality holds, which is a
stronger evidence than mere correlation. Nonetheless, this is still very far from the very
complex concept of true causality.

Much of this problem technically derives from the fact that the Granger methodology
is designed to manage pairs of time series. For this reason, it can produce erroneous results
when this relationship engages more than two variables. In fact, if both X and Y were
influenced by a third common phenomenon, say W, a Granger causality test on X and Y
might lead to accepting the alternative hypothesis (i.e., X Granger causes Y), even though
the mutual correlation between X and Y were simply caused by W [33].

In our specific case, the role of W could be played by humans. In fact, one could argue
that our observed phenomena (PM; 5 particulate and COVID-19 infections) might be both
due to the common daily human activities that have led to an increase both in the level of
pollution and in the risk of being infected.

However, this is exactly why we have structured our Granger-based experiments
to include two different types of counties. In fact, those counties comprised in NYC
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(or very close to NYC) could be, in theory, more subjected to the influence of the W factor
(i.e., the humans). Instead, those counties that are less populated, and far away from the
city, should not suffer from that influence.

Another limitation is that we have extended our study to a limited number of counties
(12) in the State of New York. Nonetheless, we judge this number of counties as not being a
real limitation, based on the following reasoning. The State of New York comprises 62 dif-
ferent counties. New York City has a population of about 8,522,698, which is nearly half of
the population of the entire state (at 19,453,561) [30]. The majority of the counties that are
far from NYC have a population density and present socio-economical and demographical
characteristics that are very similar to those possessed by the three counties we have chosen
to represent this kind of situation, i.e., Monroe, Onondaga, and Oneida. Adding some
other counties of this same type would just have increased the number of experiments,
without changing the value of the results we got with our analysis.

An additional remark is relative to COVID-19 infection predictions using machine
learning algorithms. One could criticize the non—conventional use we have made of these
techniques. Essentially, rather than predicting the future, we tried to have a confirmation
of our hypothesis of an association between the PM; 5 particulate and COVID-19 infections,
by verifying if the predictions returned by a machine learning algorithm, trained with data
relative to that hypothesis, were either right or wrong. Nonetheless, this is the same exact
mechanism commonly used to perform a classical cross validation procedure.

Moreover, we do not consider that we have used only four different ML algorithms in
our analysis as a limitation of this study. In fact, as we have explained, this choice is due to
a previous study [23] where we tried to train several different ML algorithms using the
same kind of relation (particulates vs. COVID-19 infections). The four algorithms we have
selected were those with the best performances, in terms of accuracy of the predictions.

Lastly, to conclude the paper, we want to recognize the public sources from where
we got the data employed in our experiments [25,26], and add that all the experiments we
have conducted are fully reproducible, using the techniques we have illustrated.
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