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Abstract: Diabetes Mellitus (DM) is one of the most common chronic diseases leading to severe
health complications that may cause death. The disease influences individuals, community, and the
government due to the continuous monitoring, lifelong commitment, and the cost of treatment. The
World Health Organization (WHO) considers Saudi Arabia as one of the top 10 countries in diabetes
prevalence across the world. Since most of its medical services are provided by the government, the
cost of the treatment in terms of hospitals and clinical visits and lab tests represents a real burden
due to the large scale of the disease. The ability to predict the diabetic status of a patient with only
a handful of features can allow cost-effective, rapid, and widely-available screening of diabetes,
thereby lessening the health and economic burden caused by diabetes alone. The goal of this paper is
to investigate the prediction of diabetic patients and compare the role of HbA1c and FPG as input
features. By using five different machine learning classifiers, and using feature elimination through
feature permutation and hierarchical clustering, we established good performance for accuracy,
precision, recall, and F1-score of the models on the dataset implying that our data or features are not
bound to specific models. In addition, the consistent performance across all the evaluation metrics
indicate that there was no trade-off or penalty among the evaluation metrics. Further analysis was
performed on the data to identify the risk factors and their indirect impact on diabetes classification.
Our analysis presented great agreement with the risk factors of diabetes and prediabetes stated by
the American Diabetes Association (ADA) and other health institutions worldwide. We conclude
that by performing analysis of the disease using selected features, important factors specific to the
Saudi population can be identified, whose management can result in controlling the disease. We also
provide some recommendations learned from this research.

Keywords: machine learning; prediction; feature importance; feature elimination; hierarchical
clustering

1. Introduction

Diabetes mellitus (DM) is one of the most common chronic diseases worldwide.
In 2019, the International Diabetes Federation (IDF) announced that the number of adults
that are diagnosed with diabetes is approximately 463 million of the world’s population [1].
In addition, IDF considers the Middle East as one of the highest regions in diabetes
prevalence, and the World Health Organization (WHO) places Saudi Arabia as the highest
among Middle Eastern countries [2] and fifth in the top 10 countries known for a high
diabetes incidence rate in the world. It is expected that Saudi Arabia is heading to a higher
position by 2035 [3]. The cost of medical treatment is also affected by the rapid growth
of the number of individuals with diabetes, representing a large burden on government
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health expenses. According to recent estimates, the cost of diabetes incurred by the Saudi
government is at 17 billion Riyals and if those with glucose intolerance (pre-diabetes)
progressed at the current observed rate, the total cost would be 43 billion Riyals [4] in the
coming years. Besides, Saudi Arabia is known for its rapid growth in population and has
encountered soaring economic development in the recent four decades, leading to lifestyle
changes due to urbanization.

These changes have led to an increasing rate of chronic diseases. Many studies
conducted to address the rapid growth of Diabetes Mellitus have either the objective
to quantify the status of diabetics in the country [3,5], identifying the most frequently
performed self-care behaviors [6], identifying factors related to diabetes control [7], or
apply mathematical [8] or machine learning models for diabetes prediction [9]. All these
efforts are related to the increasing demand to enhance healthcare quality and control the
elevated growth rate of diabetes in the kingdom.

It is essential for federal or local governments to perform national or local screening
and educate people through awareness programs. There is a need to invest in novel ways to
prevent and help in the early detection of such an expensive disease [10]. Early prevention
can limit the complications and their impact on the person’s quality of life, resulting
in a reduced cost with a positive impact on the community and the health system [11].
An upfront cost in the form of early investments by the governments can result in long-term
benefits to the overall society.

We believe that the existing efforts may have their own benefits and usefulness in
tackling the diabetes issues in Saudi Arabia however, there is a need to devise mechanisms
for efficient, cost-effective, and easily-available solutions for diabetes identification in the
general population. Given the constant rise in the diabetic population in the country, it is
imperative not not only to identify diabetics from non-diabetic persons but at the same
time, the factors associated with diabetes should also be delineated. By knowing and
overcoming these factors, people can act to control them in time. Clinics and hospitals can
also identify patients-at-risk by evaluating these factors.

Considering the above-mentioned context and the need for time, we are motivated
to develop a solution for predicting diabetics from non-diabetic patients from the elec-
tronic health records obtained from local Saudi hospitals. Therefore, the goal of this
research paper is to develop predictive classifiers and models to investigate real diabetic pa-
tients’ data gathered from different Saudi hospitals and regions, utilizing different metrics.
Although the obtained records have very few health-related attributes including lab test
results such as cholesterol tests (HDL and LDL), and the diabetes-specific tests (FPG and
HbA1c), our objective is to identify those factors that can be controlled by the patients-at-
risk or non-diabetics as precautions for avoiding diabetes. Previous work in this direction
has used a much larger number of variables in different contexts. Thus, the current work
presents a novel perspective on diabetes prediction. The insights obtained from this work
in the prediction of Diabetes Mellitus (DM) and its associated risk factors can be useful at
different levels: To support and strengthen the existing findings of DM medical research,
particularly, in the context of Saudi Arabia, to assist the community in understanding the
causes and prevention of diabetes, and to help the government to allocate efforts in the
right direction to minimize the effect of the growing number of diabetes patients.

With these objectives in mind, we developed a model that used five machine learning
classifiers to evaluate two datasets; each one containing some basic attributes about the
patients (age, gender, weight, height, presence of hypertension, and the level of physical
activity), the results of cholesterol laboratory tests (HDL and LDL) and one of these two
tests: HbA1c in one dataset and FPG in another dataset. With these limited sets of features,
we evaluated each dataset and identified the importance of various features and their role in
diabetes prediction. To improve the performance of our classifiers, we also applied feature
elimination using feature permutation and hierarchical clustering techniques. Finally, using
the rank-based correlation method, we also identified and analyzed correlation among
various features and their impact on diabetes risk and prediction.
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The remainder of this paper is structured as follows. In Section 2, we briefly explain
DM followed by the related work done in diabetes classification. In Section 3, we explain
our research methodology from data collection and preprocessing to the process of feature
engineering and dataset creation. Section 4 explains the development of machine learning
models for diabetes prediction and classification with a focus on improving the model
performance through feature elimination. The results are then discussed in Section 5.
Section 6 discusses the outcome and benefit of our research and Section 7 concludes
this article.

2. Background and Related Work
2.1. Diabetes Mellitus (DM) and Risk Factors

DM is a set of endocrine disorders resulting in high levels of blood glucose in the
human body due to a deficiency in insulin excretion or insulin action and sometimes both.
It causes direct and indirect complications responsible for significant illness and death [5].
There are different types of diabetes, but the most common ones are Type 1 Diabetes (T1D)
and Type 2 Diabetes (T2D). Type 2 (T2D) is the most common form of diabetes as around
90% of diabetic patients are T2D. The remaining 10% is classified as T1D or gestational
diabetes, which may occur during pregnancies.

The blood test for the measurement of Hemoglobin A1c (HbA1c) level is clinically
significant in prediabetes and diabetes diagnosis [12]. Similarly, the glucose in plasma of
fasting subjects is accepted as a diagnostic criterion for diabetes [13]. Moreover, according
to the American Diabetes Association (ADA) there is more harmony between blood tests
such as FPG and HbA1c when compared to two types of blood tests in the separation of
HbA1c [14]. Most of the existing work achieve good results for diabetes prediction only
when they include these tests in their input to the machine learning model along with a
myriad of other features [15–20]. However, as the number of features is reduced, such
predictions cannot be made with greater accuracy, and in absence of these tests, it becomes
impossible to identify the diabetic status of a patient with high certainty.

From a medical point of view, it is possible to avoid DM at an early stage or at least
control its complications [21]. For example, individuals with a certain range of FPG and
HbA1c, are considered as prediabetic patients [12]. Their early diagnosis can help in
preventing their transition to becoming diabetic or in their recovery into the non-diabetic
stage. However, identification of factors that can lead a person to transition to the status
of diabetes in a population is a challenge, albeit some studies have identified factors such
as hypertension or body size among some of the associated risk factors with diabetes [22].
Other studies have identified certain conditions that can only be determined through
various blood or imaging tests [23–26]. The unavailability of such tests at most health
facilities and the associated costs may prevent people from diagnosing with diabetes and,
thus, a large part of the population remains undiagnosed until it is very late in the treatment
process [27].

Despite these difficulties associated with the diagnosis of diabetes, prediction of
diabetes using machine learning techniques has gained significant attention from the
medical and informatics research community. Below, we identify some of the recent efforts
in this direction.

2.2. Related Work

There are different Machine Learning (ML)-based methods for diabetes prediction as
well as methods that use feature selection. We will review them next.

2.3. ML-Based Methods

Othmane et al. [28] applied and evaluated four ML algorithms (decision tree, K-nearest
neighbors, artificial neural network, and deep neural network) to predict patients with
or without type 2 diabetes mellitus. These techniques were trained and tested on two
diabetes databases: One obtained from Frankfurt hospital (Germany), and the other one,



Appl. Sci. 2021, 11, 1173 4 of 18

the openly available, well-known Pima Indian dataset (https://www.kaggle.com/uciml/
Pima-indians-diabetes-database). These datasets contained the same features composed
of risk factors and some clinical data such as the number of pregnancies, glucose levels,
blood pressure, skin thickness, insulin, BMI (Body Mass Index), age, and diabetes pedigree
function. The results compared using different similarity metrics give a classification
accuracy of more than 90% and up to 100% in some cases. Similarly, many other approaches
trained their models on similar features. For example, in [15–20]) the authors used the
Pima Indian diabetes dataset by modifying the preprocessing steps, applying different
algorithms and adjusting their hyperparameters to generate improved results. The limiting
factor of these approaches is the inclusion of some features like skin thickness, insulin,
and diabetes pedigree function, which are generally not available or recorded. Moreover,
factors like skin thickness may result in the classification based on ethnic function, thus,
preventing a wide-range applicability of the approach.

Lai et al. [29] built a predictive model to better identify Canadian patients at risk of
having Diabetes Mellitus based on patient demographic data and the laboratory results.
Their data included the patient features age, sex, fasting blood glucose, body mass index,
high-density lipoprotein, triglycerides, blood pressure, and low-density lipoprotein. They
built predictive models using Logistic Regression and Gradient Boosting Machine (GBM)
techniques achieving good sensitivity results. But the authors did not mention their
performance in accuracy or specificity, which usually has better sensitivity as a trade-off.
Thus, their performance cannot be generalized. Like this, many research works have
compared the performance of several machine learning using the selected metrics, while a
different metric may give a poor performance on the same model. Many other approaches
for diabetes classification concluded that a certain type of algorithms can give better results
for prediction without considering the issue of the generality of their models [30,31].

A number of other studies have used the National Health and Nutrition Examination
Survey (NHANES) (https://wwwn.cdc.gov/nchs/nhanes/) from the US Center for Dis-
ease Control (CDC) for the prediction of diabetes or other diseases. The NHANES data
was initiated in 1999 and is growing every year in the number of records as well as the vari-
ables it considers in its surveys. These studies, while utilizing the main NHANES dataset,
use some subset of variables for disease prediction or classification tasks. For example,
Yu et al. [32] identified 14 important variables—age, weight, height, BMI, gender, race and
ethnicity, family history, waist circumference, hypertension, physical activity, smoking,
alcohol use, education, and household income—for training their machine learning models.
Using two different classification schemes, they achieved 83.5% and 73.2% results for the
area under the Receiver Operating Characteristic (ROC) curve. Semerdjian and Frank [33]
added two more variables—cholesterol and leg length—in their analysis. By applying
an ensemble model using the output of five classification algorithms they were able to
predict the onset of diabetes with an AUC (Area Under Curve) of 83.4%. In both these
studies, the number of variables (14 and 16) was significantly higher than would normally
be available in most EHRs. Hospitals supporting the record of these variables may also not
have the values for all these variables for maximum patients. This limits the generality or
wide applicability of the approaches.

The study by Dinh et al. [34] used the NHANES dataset and various machine learning
algorithms to predict variables that are a major cause for the development of diabetes and
cardiovascular diseases. They also considered the prediction of prediabetes and undiag-
nosed diabetes. Logistic regression, support vector machines, random forest, and gradient
boosting algorithms were used to classify the data and predict the outcome for the diseases.
The authors used ensemble models by combining the performance of the weaker models to
improve accuracy. In diabetes classification, they used 123 variables and achieved good pre-
diction performance. A distinguishing aspect of their work was that the dataset was further
categorized into laboratory dataset (containing laboratory results) versus non-laboratory
(survey data only) dataset. Laboratory results were any feature variables within the dataset
that were obtained via blood or urine tests. The purpose of the non-laboratory dataset was

https://www.kaggle.com/uciml/Pima-indians-diabetes-database
https://www.kaggle.com/uciml/Pima-indians-diabetes-database
https://wwwn.cdc.gov/nchs/nhanes/
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to enable a performance analysis of machine learning models in cases where laboratory
results were unavailable for patients, supporting the detection of at-risk patients based only
on a survey questionnaire. According to their results, waist size, age, self-reported weight,
leg length, and sodium intake were five major predictors for diabetes patients. The study
found that machine learning models based on survey questionnaires can give automated
identification mechanisms for patients at risk of diabetes. In non-laboratory data, the most
important features included waist size, age, weight (self-reported and actual), leg-length,
blood pressure, BMI, household income, etc. [34]. The exact number of variables used in
non-laboratory data is not reported by the authors, and, thus, it cannot be concluded if
their approach can be useful in general situations.

2.4. Feature-Based Methods

Feature selection has been used previously for improving the classification perfor-
mance in different medical situations. Particularly, Matín-Gonzaĺez et al. have proved
that by performing feature selection, the results of the classifier can be improved for the
prediction of success or failure in Noninvasive Mechanical Ventilation (NIMV) in Intensive
Care Units (ICU) [35]. Similarly, Akay [36] used F-score feature selection-based SVM model,
and Chen et al. [37] used SVM with rough-set based feature selection for the improved
diagnosis of breast cancer. Liaqat et al. [38] performed a premier study on developing deep
learning-based classifiers for atrial fibrillation. They built six models based on feature-
based approaches and DL approaches. However, their features are manually extracted
while the DL methods are trained on raw data without any feature engineering, as they
perform implicit feature selection. It is unclear how they performed the manual feature
extraction, but manual feature extraction is not a preferred approach if this can be done
automatically, as explained later in our case.

Amer et al. applied a feature engineering approach to gain clinical insight and, thus,
improve the ICU mortality prediction in field conditions [39]. The authors used only
linear hard margin SVM as it maximizes the separation between different classes. Feature
selection was performed using statistical and dynamic feature extraction with an evaluation
performed after each step. Any misclassifications after these two stages were investigated
manually. A final phase of feature fine-tuning consists of seven steps and utilizes the vital
signs as opposed to the selection of dimensions in the previous stages. Results were then
obtained by evaluating the various combinations of feature selection performed in different
stages. The interesting aspect of their approach is the combination of different features at
different stages and improving the results step-by-step. A conclusion of the work was that
different profiles of patients required a different set of features for efficiently predicting the
mortality of patients.

Tomar and Agarwal used the hybrid feature selection technique [40] on three different
datasets of diabetes, hepatitis, and breast cancer. Their model adopted Weighted Least
Squares Twin SVM (WLSTSVM) as a classification approach, sequential forward selection
as a search strategy, and correlation feature selection to evaluate the importance of each
feature. In contrast, we applied permutation importance for feature selection, which is
known to be a faster technique without the need for a selection strategy. Once the features
were found, we could use any of the ML models to classify and predict the data.

Specific for the case of diabetes, Balakrishnan et al. used SVM ranking with backward
search for feature selection in T2D databases [41], where they proposed a specific feature
selection approach for finding an optimum feature subset that enhanced the classification
accuracy of Naive Bayes classifier. Ephzibah [42] constructed a combined model using
genetic algorithms and fuzzy logic for future subset selection. However, genetic algo-
rithms have their own associated costs, and the proposed approach did not justify the
cost compared to the achieved accuracy. On the same lines, Aslam et al. [43] used genetic
programming with Pima Indian diabetes dataset by generating subsets of original features
by adding features one by one in each subset using the sequential forward selection method.
The approach is not only costly but their results using 10-fold cross validation with KNN
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(K-Nearest Neighbor) and a specific configuration of genetic programming yielded an
accuracy of about 80.5%, which is not up to par with other contemporary approaches.

Rodríguez-Rodríguez et al. [44] applied feature selection on T1D Mellitus (T1D) pa-
tients using variables like sleep, schedule, meal, exercise, insulin, and heart-rate. Using
time-series data of these features and the Sequential Input Selection Algorithm (SISAL),
they ranked features according to their importance with respect to their relevance in the
blood glucose level prediction.

One approach for feature selection consists of clustering that has been mostly used for
dimensionality reduction in text classification. But hierarchical agglomerative clustering
that organizes features into progressively larger groups [45] have been used in structural
classification. Ienco and Meo [46] used hierarchical clustering for improving the accuracy of
classification on 40 datasets from the UCI Irvine[47]. Their experimental results show that
the hierarchical clustering method of feature selection outperforms the ranking methods in
terms of accuracy. On the diabetes data, they achieved an accuracy of 77.47% using the
Naïve Bayes’ classifier and 75.26% using the J48 based classifier. There are two limitations
of their work. First, the accuracy is not as good as reported by other approaches on the
same dataset. Second, the performance reported is only the accuracy of classification,
but it is worse in other evaluations. Compared to their approach, we report a much higher
performance in accuracy, precision, and recall scores.

Considering the above analysis, we conclude that most of the existing approaches (1)
use features which are not generalizable, (2) use a large number of features that cannot
be obtained in many real-world scenarios, (3) develop specific models that may not be
generalizable, and (4) report only a specific metric for evaluation while ignoring other
metrics that may have worse performance as an issue of trade-off between the various
evaluation metrics. We approach the problem of diabetes prediction while considering
these limitations.

In our approach, we use a minimum number of features, reducing them further by
feature elimination. We apply five different classification models to avoid model-specific
performance. We report that all the models performed equally well on the metrics of
accuracy, precision, recall, and F1-score, implying that our data or features are not bound
to specific models. Finally, our analysis also includes the identification of those factors that
can have an indirect impact on the complications of diabetes.

3. Materials and Methods

We begin with data collection, preprocessing, feature engineering, and label assign-
ment to explain how we obtain two different datasets from the same subset of features.

3.1. Data Collection

The anonymized Electronic Health Records have been acquired from five different
Saudi hospitals across three regions: The Central region, the Western region, and the
Eastern region. It contains data of around 3000 patients collected over two years from 2016
until 2018 through different departments such as outpatient, inpatient, and emergency.
The obtained dataset consists of 16 features of numerical, binominal, polynomial, and date
type. The initial features along with a brief description of each are listed in Table 1.

3.2. Data Preprocessing

In the data preprocessing phase, data is prepared to be suitable for cleansing and clas-
sification. The data is cleansed using normalization and transformation of some columns
(features) for example, the birth date was used to generate the age of the patient. In addi-
tion, many patients were missing important feature values like Fasting Plasma Glucose
(FPG) and Hemoglobin A1c (HbA1c). Since both features were used to initially classify
a person as diabetic or non-diabetic, to establish the ground truth, all the instances that
did not have these feature values were removed. As the number of missing features was
very high, replacing the missing values for both features was not desirable. After filtering



Appl. Sci. 2021, 11, 1173 7 of 18

the patients, our dataset decreased to 225 eligible patients for classification. However,
43 out of 225 patients were missing HDL and LDL values. HDL is considered as “Good
Cholesterol”—higher HDL means better state—while LDL is considered as “Bad Choles-
terol” therefore, lower LDL values are desirable. In the experiments, when HDL and LDL
values were used, the records with missing values were dropped. FPG and HbA1c values
were also transformed using the American Diabetes Association (ADA) as reference for the
different value ranges [48].

Table 1. The set of features selected in our dataset for classification of diabetic and prediabetic patients.

No. Feature Name Feature Type Feature Description

1 Date of birth Date Values in date format
2 Gender Binominal F: Female, M: Male
3 Height Numerical Values in Centimeter (cm)
4 Weight Numerical Values in Kilograms (kg)
5 Hypertension (HTN) Binominal Values as Yes, No
6 Fasting Plasma Glucose (FPG) Numerical Lab test results measured in mmol/L
7 Hemoglobin A1c (HbA1c) Numerical Lab test results measured in percentage (%).
8 High-density lipoprotein (HDL) Numerical Lab test results in mmol/L
9 High-density lipoprotein (LDL) Numerical Lab test results in mmol/L
10 Physical Activity Level Categorical Values in L: Low, M: Medium, H: High
11 Diagnosis start date Date Values in date format
12 Primary diagnosis Categorical Values available in ICD10 code format.
13 Secondary diagnosis Categorical Values available in ICD10 code format.
14 Primary diagnosis full name Categorical Values indicate diagnosis full name
15 Secondary diagnosis full name Categorical Values indicate diagnosis full name
16 Region Categorical Values indicate the region of the patient whether in central, western or

eastern region.

3.3. Subject Exclusion

In this study, we excluded subjects whose age was less than 19 years to focus on the
prediction of T2D by reducing the chances of T1D, which usually develops in children and
adolescents. Previous work [32–34] also excluded similar data as well as data indicated
as gestational diabetes, which is relevant to pregnant women however, since we lack
information on pregnancy, we did not perform this step. By excluding these subjects, we
were finally left with 162 instances.

3.4. Feature Engineering

Of the 16 features mentioned in Table 1, we had to apply techniques to modify
some features to make them suitable for ML algorithms for improved classification. We
proceeded as follows. The date of birth was replaced by the age feature. All the features
containing diagnosis information (primary, secondary, and their full names) were removed
as the diagnosis of patients included multiple diagnoses, most importantly T1D and T2D,
and was removed to avoid leaking the classification information into the machine learning
model. Finally, the region and diagnosis start date features were also removed.

After the initial feature selection, the dataset obtained consisted of 10 features: Age,
height, weight, gender, Hypertension (HTN), Physical Activity Level (PAL), lab tests of
Lipoprotein levels (HDL and LDL), Fasting Plasma Glucose (FPG) and Hemoglobin A1c
(HbA1c). We would like to mention that age, height, weight, HDL, LDL, FPG, and HbA1c
were all numerical features, while gender (M or F), HTN (Yes or No), and PAL (L, M, or H)
were categorical features containing text or literals. As our implementation is done in the
scikit-learn library (http://scikit-learn.org/), whose methods require numerical data for
efficient processing, we converted the categories to numerical values. Instead of replacing
text with numbers (e.g., L:0, M:1, H:2), we used one-hot encoding to prevent the implicit
ordering caused by the numeric values.

http://scikit-learn.org/
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At this stage, our data processing steps were finished. Before starting the analysis, it
was imperative to identify each record as representing data for a diabetic or non-diabetic
patient. In other words, each record was to be labeled with an appropriate class.

3.5. Label Assignment

The appropriate references to use for evaluating diabetes were the “Standards of
Medical Care in Diabetes—2018” from the American Diabetes Association (ADA) [49] and
considering the algorithm proposed by the American Association of Clinical Endocrinolo-
gists (AACE) [48]. Two medical experts were also consulted who guided in the diagnosis
of diabetes including the factors related to predicting the development of diabetes among
people. Their suggestions agreed with the ADA and AACE specifications. Based upon
these criteria, any of the FPG or HbA1c laboratory tests could be used to classify patients
into either a Diabetic (Y) or Non-Diabetic (N) class. Thus, we proceeded to create two
different datasets based on the class labeling scheme. Using an algorithm, the data was
automatically labeled in the datasets with either of these classes using the criteria.

3.5.1. Dataset-1: HbA1c Labeling

In this case, a dataset was created by labeling each instance as diabetic if the value of
HbA1c ≥ 6.5% (48 mmol/mol) otherwise it was classified as non-diabetic. This labeling
resulted in n = 79 (≈49%) instances as diabetic and n = 83 (≈51%) as non-diabetic. We can
see that the dataset is quite balanced.

3.5.2. Dataset-2: FPG Labeling

In this case, a dataset was created by labeling each instance as diabetic if the value
of FPG ≥ 126 mg/dL (7.0 mmol/L) otherwise it was classified as non-diabetic. This
labeling resulted in n = 62 (≈38%) instances as diabetic and n = 100 (≈62%) as non-diabetic.
Although the dataset with FPG labeling is not quite balanced as in the case of HbA1c
labeling, it cannot be characterized as imbalanced either.

Thus, we get two labeled datasets with 8 common features (age, weight, height,
gender, PAL, HTN, LDL, and HDL) and using one of the FPG and HbA1c features as input
and the other as the label in each dataset. For convenience, we refer to these datasets as
HbA1c-labeled and FPG-labeled datasets, where the HbA1c-labeled dataset contains FPG
as an input feature and vice-versa.

4. Model Development

To analyze the effect of the choice of the HbA1c or FPG labeling attributes on the
datasets with the remaining attributes common between the two datasets, we performed
the task of diabetes prediction using five machine learning classifiers. Each classifier was
evaluated against both datasets. The details of the classifiers and results of the predictions
will be discussed in Section 5.

After getting the prediction results on the initial datasets, we planned on improving the
results further by performing further analysis and evaluation through feature importance
and feature elimination.

4.1. Feature Importance and Feature Elimination

Feature selection aims at filtering out features that may carry redundant information.
It is a widely-recognized important task in machine learning with the aim of reducing
the chances of overfitting of a model on a dataset [46]. There are several ways to select
features for a model. One way is to use those features which are important in the predictive
power to affect the classification accuracy. Based on the score assigned to each feature,
its usefulness in predicting a target variable can be estimated. Many models provide
an intrinsic mechanism to rank the features according to the value of their coefficients
(e.g., in Support Vector Machines or Logistic Regression) or using the split-criteria (e.g., in
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Decision Tree and Random Forest). The correlation between various features can also be
used to discover more relevant and important features [50].

While classifiers like linear SVM and linear logistic regression are suitable for interpre-
tation in the form of linear relationships among the variables, they fail to discover complex,
non-linear dependencies in the data. Decision trees are suitable for finding interpretable
non-linear prediction rules, but there have been some concerns about their instability and
lack of smoothness [51]. Similarly, RF models are found to be biased by giving importance
to categorical variables with a large number of categories [52,53]. More explicit and ad-
vanced mechanisms include the method of Recursive Feature Elimination (RFE) which
provides the flexibility of choosing the number of features to select or the algorithm used
in choosing the features [54]. The impact of an exploratory variable on a response variable
is usually interpreted in isolation, this is usually inappropriately interpreted as an impact
for business or medical insight purposes [55].

Permutation importance is one technique recently proposed for identifying measures
of feature importance [53,55]. It is a reliable technique that directly measures variable
importance by observing the effect on model accuracy by randomly shuffling each predictor
variable. In addition, it does not rely on internal model parameters, such as linear regression
coefficients, and can be used with other models such as those developed using RF.

Feature elimination aims to reduce the number of input variables when developing
a predictive model. The objective is to remove the features that may be non-informative
or redundant predictors in the model [56]. By reducing the input variables, not only
is the computational cost of modeling reduced, but it may also result in improving the
performance of the model. By eliminating weak predictors, we can also improve the
generality of the model [55]. Although our datasets comprise a small number of features as
well as a relatively small number of instances, we were more concerned with improving
the performance of the models through feature selection and elimination. Thus, we applied
permutation importance followed by hierarchical clustering to identify the features that
could be eliminated.

(a) HbA1c-labeled dataset (b) FPG-labeled dataset

Figure 1. Permutation importance applied to the 9 features in HbA1c- and FPG-labeled datasets.

Figure 1 depicts the permutation importance applied to the two datasets. Although we
can observe the importance of the FPG and HbA1c features in the HbA1c- and FPG-labeled
datasets, respectively, the importance of the remaining variables is not consistent, given that
they have all the eight features in common. This inconsistency is because the categorical
features have been broken down using the one-hot encoding (as explained in the feature
engineering subsection), resulting in collinearity among the features. For example, HTN
(Yes/No) and Gender (Male/Female) are inversely correlated features. This is also evident
in the case of Figure 1, where the collinear features have almost identical importance
values. To avoid multicollinearity, as in our case, a strategy is to cluster features that are
correlated and only keep one feature from each cluster. We applied Spearman’s correlation
by ranking the values of the variables and then running a standard Pearson’s correlation
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on those ranked variables as proposed by Parr et al. [53]. This resulted in a linkage matrix
that is used to infer three main clusters, divided into further subclusters, as shown in the
dendrograms for each dataset in Figure 2.

Compared to the permutation importance shown in Figure 1, the agglomerative
hierarchical clustering in Figure 2 is consistent for both the datasets. Notably, the HTN=Yes
feature is in the same cluster as the label (FPG or HbA1c) of the dataset, which implies they
are close in their importance. Similarly, the height and Gender=M features are in the same
cluster and are among the least predictive features. The final step is to flatten the cluster to
its cluster components. By using the distance among the clusters as a criterion for cluster
flattening, obtained from the linkage matrix computed earlier, we can identify the features
that can be eliminated from the dataset. This process was applied to both datasets and
Gender=M was the only feature that could be eliminated.

With one feature less than the total number of initial features, we performed the
classification task once again. This is explained in the next section.

Appl. Sci. 2021, 11, 1173 10 of 19

on those ranked variables as proposed by Parr et al. [53]. This resulted in a linkage matrix
that is used to infer three main clusters, divided into further subclusters, as shown in the
dendrograms for each dataset in Figure 2.

Compared to the permutation importance shown in Figure 1, the agglomerative
hierarchical clustering in Figure 2 is consistent for both the datasets. Notably, the HTN=Yes
feature is in the same cluster as the label (FPG or HbA1c) of the dataset, which implies they
are close in their importance. Similarly, the height and Gender=M features are in the same
cluster and are among the least predictive features. The final step is to flatten the cluster to
its cluster components. By using the distance among the clusters as a criterion for cluster
flattening, obtained from the linkage matrix computed earlier, we can identify the features
that can be eliminated from the dataset. This process was applied to both datasets and
Gender=M was the only feature that could be eliminated.

With one feature less than the total number of initial features, we performed the
classification task once again. This is explained in the next section.

(a) HbA1c-labeled dataset (b) FPG-labeled dataset

Figure 2. Dendrograms showing hierarchical clustering of the features in our datasets.

4.2. Selection of Machine Learning Classifiers
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sion Tree (DT) and two ensemble learners: Random Forest (RF) and Ensemble Majority
Voting (EMV). RF uses a set of homogenous decision trees as its base classifiers while the
EMV classifier was composed of the three simple learners LR, SVM, and DT, and used hard
voting that considered the majority for predicting the class label for each instance in the
test set. The rationale for choosing these is based on their previous performance reports in
similar situations [9,31,32]. As our objective was to understand the factors contributing to
the classification, we chose not to use any neural networks-based classifier in our analysis
due to their “black-box” nature of interpretation of the model [34,57].

5. Results

For each dataset, two types of experiments were performed with all the classifiers.
In the first experiment, all nine input features were used. In the second experiment, we
performed feature selection and elimination before training and evaluating the classifiers,
which resulted in eliminating one feature (Gender = M) from the dataset. With the eight
final features, we performed the prediction task once again.
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4.2. Selection of Machine Learning Classifiers

We chose five machine learning classifiers to evaluate the two datasets. These include
three simple learners: Logistic Regression (LR), Support Vector Machines (SVM), and Deci-
sion Tree (DT) and two ensemble learners: Random Forest (RF) and Ensemble Majority
Voting (EMV). RF uses a set of homogenous decision trees as its base classifiers while the
EMV classifier was composed of the three simple learners LR, SVM, and DT, and used hard
voting that considered the majority for predicting the class label for each instance in the
test set. The rationale for choosing these is based on their previous performance reports in
similar situations [9,31,32]. As our objective was to understand the factors contributing to
the classification, we chose not to use any neural networks-based classifier in our analysis
due to their “black-box” nature of interpretation of the model [34,57].

5. Results

For each dataset, two types of experiments were performed with all the classifiers.
In the first experiment, all nine input features were used. In the second experiment, we
performed feature selection and elimination before training and evaluating the classifiers,
which resulted in eliminating one feature (Gender = M) from the dataset. With the eight
final features, we performed the prediction task once again.
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Performance of Machine Learning Classifiers

To measure the performance of each classifier, we used the widely-accepted perfor-
mance statistics: Accuracy, precision, recall, and F1-score [58]. For model evaluation, we
used 10-fold cross-validation in all experiments. The RF classifier used n = 100 estimators
with max depth set to 40. Other parameters were left as default by the scikit-learn library.
Both datasets were evaluated with the same model configurations. To allow reproducing
the same splits across different experiments, we used the same seed for generating the
random state for both datasets.

Table 2 and 3 describe the comparative performance of the five classifiers against each
performance metric in the two experiments. The metrics represent the weighted average of
the cross-validation. We learn the following from these tables:

• The performance of all classifiers was better in the FPG-labeled dataset as compared
to the HbA1c-labeled dataset;

• SVM performed best on the HbA1c-labeled dataset while RF performed best on the
FPG-labeled dataset;

• There was no change in the performance of SVM after feature elimination in both cases,
while all the other classifiers saw an improvement or a decrease in the performance
after feature elimination;

• The performance of DT and EVM classifiers improved, but that of RF decreased,
after feature elimination in both cases.

The classification results are comparable to existing approaches for diabetes classifica-
tion [9,31,32,34].

Table 2. Performance evaluation of the HbA1c-labeled dataset.

Evaluation with 9 Features Evaluation with 8 Features

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Logistic Regression 80.86 80.95 80.86 80.83 80.86↔ 80.95↔ 80.86↔ 80.83↔
SVM 82.10 82.30 82.10 82.05 82.10↔ 82.30↔ 82.10↔ 82.05↔
Decision Tree 74.07 74.07 74.07 74.06 75.31 ↑ 75.34 ↑ 75.31 ↑ 75.28 ↑
Random Forest 81.48 81.91 81.48 81.38 80.86 ↓ 81.61 ↓ 80.86 ↓ 80.70 ↓
Ensemble 77.78 78.14 77.78 77.66 78.40 ↑ 78.86 ↑ 78.40 ↑ 78.26 ↑

Table 3. Performance evaluation of the FPG-labeled dataset.

Evaluation with 9 Features Evaluation with 8 Features

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Logistic Regression 83.33 83.31 83.33 83.04 82.72 ↓ 82.62 ↓ 82.72 ↓ 82.45 ↓
SVM 84.57 84.74 84.57 84.22 84.57↔ 84.74↔ 84.57↔ 84.22↔
Decision Tree 80.86 81.50 80.86 81.03 82.72 ↑ 83.01 ↑ 82.72 ↑ 82.81 ↑
Random Forest 88.27 88.31 88.27 88.29 87.65 ↓ 87.90 ↓ 87.65 ↓ 87.72 ↓
Ensemble 83.95 83.84 83.95 83.84 84.57 ↑ 84.47 ↑ 84.57 ↑ 84.43 ↑

6. Discussion

Together with other features in the form of lab tests (LDL and HDL) as well as patient’s
information (age, gender, height, weight, hypertension, and physical activity level), we
used HbA1c and FPG as features in two separate datasets for classifying an instance as
diabetic or non-diabetic. In our experiments, we found that all five different classifiers
predicted with better performance on the FPG-labeled dataset that included HbA1c as
one of the input features. This implies that HbA1c can be used as a superior variable
than FPG for diabetes prediction. This is consistent with the previous work as well. In a
previous study on Vietnamese patients [59], researchers collected overnight fasting blood



Appl. Sci. 2021, 11, 1173 12 of 18

samples from 3523 individuals (of which 2356 were women). Like our case, diabetes was
diagnosed with an HbA1c value≥ 6.5% or an FPG level≥ 7 mmol/l. It was concluded that
HbA1c testing had a higher sensitivity for identifying patients at risk for diabetes vs FPG,
and therefore may have a greater impact on the diagnoses, cost, burden, and treatment of
patients with diabetes [59].

When compared with the existing approaches, we can identify some distinguishing
features of our approach. We used only a limited number of basic features (age, gender,
height, weight, presence of hypertension, and physical activity level) and three laboratory
tests (HDL, LDL, HbA1c, or FPG) to predict if a person has diabetes or not. In contrast,
most of the existing approaches use many attributes. For example, Dinh et al. [34] initially
used 123 features in diabetes prediction and even after removing the various laboratory
tests, they were left with a much higher number of features (the exact number is not
known). Finding these many features in real-world data is rarely possible. So, we proposed
a mechanism whereby only with a few features could we infer the role played by them in
the classification of a person into diabetic or non-diabetic.

The strategy for the identification of the contribution of each feature through the
feature importance is also significant in the current analysis. Mostly, a correlation analysis
is performed directly to identify such hidden patterns from data (e.g., as in [44]). However,
as can be seen in Figure 1, visualizing the feature importance for different features does not
reveal the same information as we have inferred from our results. Thus, we had to carry
out a certain transformation in the form of clustering and distance evaluation to perform
feature elimination. While we did not use correlation in the prediction task, the ranked
correlations obtained during an intermediate step of our model development can be used
to add to our findings.

6.1. Analysis of Diabetes Risk Factors

Figure 3a shows the correlation matrix of the initial dataset obtained after feature
engineering, without applying any transformations, and Figure 3b shows the correlation
matrix obtained after the ranked correlation based on the Spearman’s ranking. While there
have been small changes in some of the values, after the transformation, the correlation
between the variables largely remains the same during the transformation process. Thus,
the transformation has not affected the original relationship between the variables and
the data remains integrated. The values of the correlation between some of the features of
interest are shown in Table 4. We have organized the table into three sections: Lab results
of HDL and LDL, hypertension, and personal attributes of age, weight, and height.
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From the correlation analysis, we can establish the following information:

1. When we compare LDL to HbA1c and FPG, LDL is more correlated with HbA1c than
FPG. On the other hand, HDL has almost no impact on HbA1c (close to 0);

2. The presence of hypertension is correlated with an increase in age as well as with a
lower level of physical activity. Lower PAL is associated with hypertension while
medium PAL is associated with the absence of hypertension;

3. Hypertension is also correlated with increasing levels of HbA1c and FPG, with an
almost similar impact on both;

4. A higher level of physical activity has a good impact on HDL (the “good” cholesterol),
while a low level of physical activity may cause higher levels of LDL (the “bad”
cholesterol);

5. As the age of a person increases, so does LDL, meaning that younger people have
comparatively small levels of dangerous cholesterol as compared to the older ones;

6. The level of physical activity decreases with the age. Thus, older people lack physi-
cal activities;

7. The level of physical activity of a person has also a strong correlation with the weight
of a person, i.e., lower PAL indicates more weight while higher PAL is correlated with
less weight of a person. Also, males have more weight when compared to females;

8. The height of a person is negatively correlated with both HbA1c and FPG. Accordingly,
shorter people may be at higher risk of diabetes. This is also in accordance with
existing findings [60,61]. In comparison, when we evaluate the weight of a person
against HbA1c and FPG, there is almost no correlation between them (0.01);

9. There is no significant, direct relation between PAL and either HbA1c or FPG (<|0.05|
in all cases of HbA1c and FPG with all PALs). Thus, we conclude that PAL has effects
on weight, HTN, LDL, and HDL, which then have an impact on HbA1c and FPG
levels, leading to diabetes.

These insights give us some hints into the diabetic disease, its development, and asso-
ciated complications.

Table 4. Correlation between various features after ranking.

LDL and HDL Hypertension Age, Weight, and Height

Feature 1 Feature 2 Corr Feature 1 Feature 2 Corr Feature 1 Feature 2 Corr

LDL HbA1c −0.19 HTN=Yes Age 0.17 Age LDL 0.15

LDL FPG −0.11 HTN=Yes PAL=L 0.22 Age PAL=L 0.29

LDL PAL=L 0.12 HTN=No PAL=M 0.21 Weight PAL=L 0.52

HDL PAL=H 0.21 HTN=Yes HbA1c 0.12 Weight PAL=H −0.29

HDL FPG −0.14 HTN=Yes FPG 0.13 Weight Gender=M 0.22

HDL HbA1c −0.01 Height HbA1c −0.12

Height FPG −0.12

6.2. Recommendations

With insights from the current work, we can present some recommendations. First,
we can see that even with limited data, patients can be pre-screened for diabetes, and in
case of their classification as diabetic, they can be advised to make appropriate changes
to their lifestyle. We have found that physical activity plays an important role in diabetes
development. Lower levels of physical activity were found to correlate with more weight,
higher levels of LDL (the “bad” cholesterol), as well as hypertension. Thus, everyone needs
to include higher levels of physical activity in their daily routines and avoid associated
complications. Second, LDL has been found to have an association with HbA1c and FPG
and the LDL levels also increase as a person progresses in age. In a similar fashion, HDL
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levels are associated with FPG. Thus, it is important that people perform regular LDL/HDL
tests and to control their levels in case it increases with time.

In our current work, we only had access to the hypertension feature of a patient
as being Yes or No. However in practice, the patient’s blood pressure is recorded as
diastolic and systolic values. Similarly, temperature, vision, waist size, etc. are some
other features that can be recorded with commonly available instruments in every clinic.
Thus, just like age and weight play an indirect role in diabetes prediction, these and other
features may also play a certain role in diabetes prediction and should be recorded for
each patient to improve the diagnostic process. Finally, the government could enforce the
pre-screening of diabetes based on age, weight, physical activity levels, and the presence
of hypertension. These factors do not require any specialized tests or equipment and can
be checked in any clinic, even in rural areas. By controlling these basic factors, a large
segment of the population can be averted from developing early diabetes, a problem that
has a large economic and social burden in many countries including Saudi Arabia. It is also
important that accurate recording of physiological data should be enforced by hospitals and
local clinics for any visiting patients for better opportunities to diagnose patients-at-risk.
The data should be recorded in the patient’s EHR so it can be used via a similar analysis on
a larger scale to produce better analysis in the future.

6.3. Limitations of Work

We can also identify a few limitations within our work. First, as data availability is
an important issue in health science research, although our data concerned 3000 patients,
the final size of data was very small. The performance accuracy of a classification task
mainly depends on the availability of large amounts of data [62] and with large data, we
may have better insights. Unfortunately, our final dataset had only 199 records and after
removing the missing values found for LDL and HDL features, we had only 162 records
with complete feature values. With such small-scale data, there are limited options to test
the available classifiers as well as the configuration of their various hyperparameters. That
is why we did not invest time in further optimizing our classifiers for the given small
dataset. With more data, better classifiers can be trained, evaluated, and optimized.

Second, the data were obtained in the context of Saudi Arabia. It would be interesting
to test our approach to similar datasets from other countries/regions of the world. Third,
in our current work, we used common machine learning classifiers. After establishing the
feature importance of various features, we could even utilize black-box approaches like
machine learning or deep learning and achieve state-of-the-art performance evaluation
results [15–17]. This is one of our near-future goals.

7. Conclusions

The prevalence of diabetes is not only a burden for the governments in terms of the
associated expenditures, but it is also a lifelong strain on diabetic patients. HbA1c and
FPG are two important features for diabetes classification. With a dataset having both
these important features for diabetes analysis, we constructed two separate datasets that
classified an instance into diabetic or non-diabetic class. We found that HbA1c used as a
future resulted in better performance (accuracy, precision, and recall) as compared to FPG.
Moreover, we also identified several other features like hypertension, weight, and physical
activity levels that had an indirect role in diabetic prediction. The LDL/HDL tests were
also found to be correlated with diabetic conditions.

With data from other countries, our approach could be generalized, which may have
important implications in the healthcare community. The prescreening of diabetes could
be rapid, people could be more aware and educated about their lifestyles, and government
expenditures could be reduced alongside the decrease in the significant burden on hospitals
due to the prevalence of diabetes. With the ability to predict the onset of diabetes, necessary
steps can be taken to avoid the diabetic stage of millions of people who are undiagnosed due
to limited resources and lack of awareness. This can not only improve a person’s quality of
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life but also result in a positive impact on the healthcare system. Several recommendations
have been proposed in this article in this regard.
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