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Abstract: In this paper, a real-time implementation of a sliding-mode control (SMC) in a hardware-
in-loop architecture is presented for a robot with two degrees of freedom (2DOF). It is based on a
discrete-time recurrent neural identification method, as well as the high performance obtained from
the advantages of this architecture. The identification process uses a discrete-time recurrent high-
order neural network (RHONN) trained with a modified extended Kalman filter (EKF) algorithm.
This is a method for calculating the covariance matrices in the EKF algorithm, using a dynamic
model with the associated and measurement noises, and it increases the performance of the proposed
methodology. On the other hand, the decentralized discrete-time SMC technique is used to minimize
the motion error. A Virtex 7 field programmable gate array (FPGA) is configured based on a hardware-
in-loop real-time implementation to validate the proposed controller. A series of several experiments
demonstrates the robustness of the algorithm, as well as its immunity to noise and the inherent
robustness to external perturbation, as are typically found in the input reference signals of a 2DOF
manipulator robot.

Keywords: real-time implementation; recurrent high order neural network; sliding mode control;
Kalman filter; covariance matrices; 2DOF robot manipulator; hardware-in-loop architecture

1. Introduction

In many current medical applications, the utilization of manipulator robots plays a
very important role in dedicated procedures that require high accuracy and high perfor-
mance in real time. Medical robots have been used in neurosurgery, orthopedics, and
urology, and in these fields the robotic systems have been developed for minimally inva-
sive interventions. Medical robotic systems are typically mechanical manipulators with
rigid links connected by joints that allow relative motion from one link to another [1]. For
example, a robotic enhanced device has been used in limb rehabilitation, which could
replace (or partially relieve) physiotherapists [2], and authors in [3] reported the use of a
manipulator robot for percutaneous ultrasound-guided therapy.

The systems typically used for these procedures are robots with two degrees of free-
dom (2DOF). However, 2DOF systems are highly nonlinear, with strong interconnections
and dynamic behaviors. Robot manipulators are examples of nonlinear complex dynamics
with strong interconnections, parameters and dynamics that are difficult to measure and to
model [4]. One of the non-linearities can be present when the motor rotor is positioned
anywhere in the dead zone for the equilibrium position. If the frictional torque exceeds
the torque applied by the motor windings, the rotor will not move. Other non-linearity
can be an asynchronous generator introduced in the system due to actuator saturation [5].
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For the mentioned reasons, the neural networks (NNs) are selected to avoid these kinds of
difficulties in the identification process.

Due to these facts, there is a need to design custom controllers to improve the accuracy
and stability required in medical applications. A typical control scheme for 2DOF systems
is composed of two processes: an identification model that approximates the model of the
system, and a control algorithm.

In the identification process, the behavior of the 2DOF system is approximated using
a nonlinear function. However, due to its complex dynamics, is very important to consider
several aspects to obtain a good approximation of the identification model. Two important
factors are the viscous friction in the joints of the robot, and the inertia and the gravity of
the 2DOF system in continuous time [6] or in discrete time [7]. In this context, recently
neural network algorithms have gained popularity to identify complex dynamics systems,
due to their learning capabilities and inherent adaptability. An example of this approach is
presented in [8], which used a decentralized neural identification in discrete time, trained
with an extended Kalman filter (EKF) with static covariance matrices. An adaptive tracking
controller based on a recurrent neural identifier was used in [9]. A fully connected neural
network was used to identify a time-varying delayed nonlinear dynamic system in [10].
Another identification model that uses a fuzzy cerebellar model articulation controller
with a neural network on continuous time was reported in [11]. In [12] a modified EKF
algorithm, where the associated state and measurement noise covariance matrices are
composed by the coupled variance between the plant states, is presented.

On the other hand, the sliding-mode control (SMC) technique has been used as a
controller to ensure high accuracy, given that it provides a high insensitivity to parameter
variations, representing a powerful yet simple implementation and allowing the operation
of the switched-mode power converters. The potential of SMC was first demonstrated
in [13]; moreover, SMC was validated in [14], where a robust control scheme based on the
discrete-time block feedback linearization technique combined with SMC was presented.

In recent work, an identification algorithm similar to the EKF algorithm was used to
approximate the dynamics in discrete time, with a 2DOF manipulator robot. In [4] a robot
dynamics is analyzed for a 2DOF manipulator robot using an unscented Kalman filter in
a parallel series configuration as the learning algorithm. In this it was not necessary to
know the parameters of the plant or external disturbances. Another investigation showing
a different method to examine a non-singular fast time sliding mode controller (NFTSM) is
in [15] where a wavelet neural network (WNN) was used. The inputs were approximations
of the upper limits of uncertainties and disturbances, to mitigate the effect of uncertainties
taking into account approximation errors and unknown uncertainties. Thus, it can be
concluded that achieve a high tracking precision, reducing the vibration phenomenon and
also a quick response against errors and uncertainties.

In [16], simulation and experimental work involving a 3DOF robot manipulator was
controlled using a back propagation neural network (BPNN) in discrete time given a
normalized opening ratio of the joints. The Artificial Neural Network (ANN) output was
the control voltages applied to motors mounted in the 3DOF.

As a different way to approximate and control the dynamics involved in a 2DOF Robot,
the novel control architecture presented in [17] employs an adaptative neural network
using proportional derivative control comparison plus a feedforward fuzzy controller,
where the NN is pre-trained in simulation several times to obtain a suitable values of
weights to avoid overshoots in the torque being applied to every joint. Another method
of controlling a non-linear system is the neuro-fuzzy controller for the position control
arm used in [18], where a five layer neural network is used to adjust the input and output
parameters of the membership function in a fuzzy logic controller, concluding that this
proposed control is better than a proportional–integral–derivative (PID) controller for a
robot trajectory.

Finally, in [5], a real-time implementation of a recurrent wavelet first-order neural
network is presented. In the mentioned paper is proposed to achieve better identification of
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the dynamic behavior where a 2DOF robot manipulator is used for designing a centralized
neural integrator back stepping control scheme.

In this paper, we propose a control scheme based on a decentralized recurrent high-
order neural network (RHONN) in order to identify the dynamics of a 2DOF system in
discrete time, coupled with the SMC technique. The RHONN is trained online using the
modified EKF reported in [12]. This training algorithm ensures fast learning convergence
of the identification error. The proposed control system includes the RHONN identification
of the plant and the application of the SMC control technique, ensuring the stability and
robustness of the system. The validation of the system is carried out in a hardware-in-loop
architecture based on Xilinx System Generator (XSG) software [19], which enables the use
of a Matlab/Simulink environment to create and verify hardware designs, using a Virtex 7
field programmable gate array (FPGA). The hardware-in-loop (HIL) simulation is used to
test the controller system design to verify the response of the system in real time, due to
virtual stimulus without the burden of sacrificing scarce programmable resources [20].

The main contributions can be highlighted as follows.

• The control system design and implementation for a 2DOF manipulator robot using a
RHONN in a hardware-in-loop architecture.

• Is presented a methodology for identification and tracking of the 2DOF manipula-
tor robot.

• A Real Time implementation on an FPGA of the proposed control system based in a
RHONN with an EKF algorithm with an SMC.

• Inside the EKF the FPGA computes the associated state and measurement noise
covariance matrices composed by the coupled variance between the plant states.

• The results are obtained with a hardware-in-loop architecture and the experiments
and the results show the high performance of the system.

Section 2 presents the discrete-time 2DOF robot manipulator model used and the rest
of this paper is mainly divided into three parts. First, in Section 3, we present the control
system architecture, and explain the neural identification method based on the RHONN,
the extended Kalman filtering training algorithm and the discrete time sliding mode
controller. Secondly, the design and implementation in real time based on hardware-in-loop
architecture are presented in Section 4. Finally, in Section 5 we present the experimental
tests with real-time results to validate the performance of the system in the identification
process and the tracking control.

2. Discrete-Time 2DOF Robot Manipulator Model

The model of a 2DOF manipulator robot, presented in [21,22], is described using a
second-order nonlinear differential equation:

M(q)q̈ + C(q, q̇)q̇ + g(q) + f (q̇) = τ , (1)

where q is the 2× 1 vector of joint positions, q̇ is the 2× 1 vector of joint velocities, τ is the
2× 1 vector of applied torques, M(q) is the 2× 2 symmetric positive definite manipulator
inertia matrix, C(q, q̇) is the 2× 2 matrix of centripetal and Coriolis torques, and g(q) is
the 2× 1 vector of gravitational torques.

Then, the model in Equation (1) can be represented in state space as:

ẋ1 = x2

ẋ2 = −M−1[Cx2 + g(x1) + f (x2)] + M−1τ

y = x1 ,

, (2)

where x1 = [q1 q2]
> is the output of the system, x2 = [q̇1q̇2]

>, M = M(q, q̇) ∈ R2,
C = C(q, q̇) ∈ R2, g(q1, q2) ∈ R2×1, f (q̇1, q̇2) ∈ R2×1, and τ = [τ1 τ2]

> is the torque vector
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as the input signal. Using the Euler method, the model in Equation (2) can be represented
in discrete-time as:

x1(k + 1) = x1(k) + Tsx2(k)

x2(k + 1) = x2(k)− TsM−1[Cx2(k)

+ g(x1(k)) + f (x2(k))] + M−1τ(k)

y(k) = x1(k) ,

(3)

with x1(0) = [0 0]> and x2(0) = [0 0]>, where k ∈ Z ∪ 0 is the time index with Z as the
set of non-negative numbers and Ts is the sampling time. It must be noted that the Euler
method represents a good alternative for the nonlinear discrete plant when the sampling
rate is very low [23].

3. Discrete-Time 2DOF Robot Manipulator Model

In Figure 1, the proposed control system is presented. The structure has a neural
identifier based in a RHONN trained with the EKF algorithm, and a discrete-time sliding
mode controller. The system is validated on a FPGA hardware-in-loop implementation and
Matlab/Simulink is used to model the 2DOF manipulator robot and the reference signal.

Figure 1. Block diagram of proposed control system.

3.1. Neural Identification Method

The identification of the 2DOF model represented in the discrete-time model in
Equation (3) is realized using a RHONN architecture [12]. The mathematical expression of
the RHONN is described by the following Equation (4):

χl
1(k + 1) = wl

1(k)S(χ
l
1(k)) + w̄l

1χl
2(k)

χl
2(k + 1) = wl

2(k)S(χ
l
1(k)) + wl

3(k)S(χ
l
2(k))

+ w̄l
2ul(k)

y(k) = χl
1(k) ,

(4)

where χ is the neural network state, w1, w2 and w3 are the synaptic weights calculated
online by the EKF algorithm, S(·) is the sigmoidal activation function, u(k) is the l-th
input signal, k is the discrete time step, l-th are the states of the NN, and y is the output
of the RHONN [12]. The RHONN architecture used to identify the 2DOF system model,
described by Equation (4), is presented in Figure 2. The RHONN is composed of two
neurons and one layer; the high order is due to the second-order multiplication between
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the two states of the system. The potential of this RHONN is centered in the EKF algorithm
with the covariance matrix explained in Section 3.2.

Figure 2. Neural identifier based on recurrent high-order neural network (RHONN) architecture.

3.2. Extended Kalman Filtering Training Algorithm

In previous research, we demonstrated that Kalman filtering (KF) estimates the state
of a linear system with an additive state and output white noise [12]. However, as the
neural network mapping is a nonlinear system, then it is necessary to use an extended-KF
(EKF) algorithm as described in [24]. The EKF is used for non-stationary discrete systems
to ensure the accuracy of the online training process, and the mentioned method is shown
below.

wl
j(k + 1) = wl

j(k) + ηl
jK

l
j(k)e

l
j(k)

Kl
j(k) = Pl

j (k)Hl
j(k)Ml

j(k)

Pl
j (k + 1) = Pl

j (k)− Kl
j(k)Hl>

j (k)Pl
j (k) + Ql

j(k)

, (5)

with

Ml
j(k) = [Rl

j(k) + Hl>
j (k)Pl

j (k)Hl
j(k)]

−1 ,

el
j(k) = [xl

j(k)− χl
j(k)] ,

(6)

where l = 1, 2 is the number of joints, j = 1, 2 is the number of states of each joint,

Kl
j(k) ∈ RLl

j×m is the Kalman gain matrix, Ll
j is the respective number of neural network

weights, χl
j(k) ∈ Rm is the j-th neuron state corresponding to the l-th joint, xl

j(k) ∈ Rm is

j-th plant state of the l-th joint, ηl
j is the learning parameter, wl

j(k) ∈ RLl
j is the synaptic

weight vector calculated online; Ql
j(k) ∈ RLl

j×Ll
j is the measurement covariance matrix;

Rl
j(k) ∈ Rm×m is the state noise covariance matrix; el

j(k) is the prediction identification

error; Hl
j(k) ∈ RLl

j×m is a matrix in which each input Hl
j(k) is the derivative of j-th neural

network state as is explained in more detail in [25]. For the proposed time-varying learning
algorithm, the covariance matrices Pl

j (k), Ql
j(k) and Rl

j(k) are initialized as diagonal ma-

trices with random entries, and Ql
j(k) and Rl

j(k) are composed of a time-varying coupled
covariance between the j-th plant state, which allows the identification of interactions
associated to the plant states and helps with the neural convergence. This technique is
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proposed in [12] and requires the efficient computation of Ql
j(k) and Rl

j(k) in time-varying
form such that it minimizes the identification error:

minQl
j(k)

(
xl

j(k)− χl
j(k)

)
,

minRl
j(k)

(
yl

j(k)− ȳl
j(k)

)
.

(7)

This can be done in such a way that minimizes the variance (σ):

σ(x(k)) =
[

E
(
[x(k)− xm(k)]

2
)]1/2

,

σ(y(k)) =
[

E
(
[y(k)− ym(k)]

2
)]1/2

,
(8)

where xm(k) = E(x(k)) and ym(k) = E(y(k)) are expressed in terms of the recursive
expectation value, E(•), which represents the instantaneous mean value of the signal. For
the proposed formulation, the state [x1(k) x2(k)]

> and output x1(k) = y(k) are considered
as available measurements [14]. To get the best identification process, the algorithm
calculates the prediction covariance matrices with a recurrent on-line feeding process.

3.3. Discrete-Time Sliding Mode Controller

For the present proposal, we assume that the RHONN of Equation (4) can be repre-
sented in general nonlinear discrete-time form as follows:

χ(k + 1) = f (χ(k)) + B(χ(k))u(k) + d(k) ,

y(k) = χ1(k) ,
(9)

where χ(k) ∈ Rn is the state vector of the system (neural network state), u(k) ∈ Rm is
the input vector, y(k) ∈ Rp is the output vector, the vector f (·) and the function B(·)
are smooth vector fields, and d(k) is a vector that represents non-modeled dynamics and
disturbances. This implies a non-singular transformation of the system in Equation (9), and
can thus be represented in a controllable block form as in [26]. The r block is as follows:

χi(k + 1) = f i(χ̄i(k)) + Bi(χ̄i(k))χi+1(k) + di(k)

χr(k + 1) = f r(χ(k)) + Br(χ(k))ui(k) + dr(k) ,

y(k) = χ1(k), with i = 1, ..., r− 1,

(10)

where χ(k) = [χ1(k) ... χi(k) ... χr(k)]>, d(k) = [d1(k) ... di(k) ... dr(k)]> and χ̄i(k) =
[(χ1(k) ... χi(k)]>, and the sets of numbers (n1, n2, ... nr), which define the structure of the
system in Equation (10), and satisfy n1 ≤ n2...≤ nr ≤ m [26].

Then, the transformation regarding the tracking error z(k) is defined as follows:

z1(k) = χ1(k)− χ1d(k) = χ1(k)− χ1d(k) + ∆1(k),

zi(k) = χi(k)− χid(k) = χi(k)− χid(k) + ∆i(k),
(11)

where ∆i(k) represents the identification error for the i-th joint block, and χid(k) is the
desired value for χi(k) obtained as follows:

χ2d(k) = B̃1+
[
k1z1(k)− f̃ 1

(
χ1(k), k

)]
,

χi+1d(k) = B̃i+
[
kizi(k)− f̃ i

(
χ̃i(k), k

)]
.

(12)



Appl. Sci. 2021, 11, 1154 7 of 16

It is important to mention that for n1, n2..., nr > 1, B̃i+ = B̃i>(B̃i B̃i>)−1
is a pseudo-

inverse matrix and thus we can guarantee that B̃i is non-singular. For our particular case,
B̃ is a scalar (ω̄l

1). Additionally, the fact that the Ki diagonal matrix is made by kl elements,
which constitutes a Schur matrix, means it yields the following expression:

f̃ 1
(

χ1(k), k
)
= B̃1S1

(
χ1(k), k

)
− χ1d(k + 1),

f̃ i(·) = B̃iSi
(

χ1(k), · · · , χi(k)
)
− χi−1d(k + 1),

i = 2, · · · , r.

(13)

Then, applying the procedure explained in [14], the transformations in Equations (11)–(13)
reduce the system in Equation (4) to the following form:

zl
1(k + 1) =kl

1zl
1(k) + ω̄l

1zl
2(k) + ∆̃l

1(k)

zl
2(k + 1) = f̃ l

2(χ(k), k) + ω̄l
2ul(k) + ∆̃l

2(k) ,
(14)

Then, if we apply the block control technique in the last block of system, Equation (14)
yields

zl
2(k + 1) = kl

1zl
1(k) + ∆̃l

1(k) , (15)

with the superscript l = 1, 2 as the l-th joint, obtaining f̃ l
2(χ(k), k) = ωl

1(k)S
(

χl
1(k)

)
−

χld(k + 1). Each joint has two blocks (r = 2), with n1 = 1 and n2 = 1, ∆̃l
j(k) = ∆l

j(k + 1),
and the subscript constitutes the j-th neural network state.

The sliding function sl
D(k) can be derived from the block control transformation in

Equation (11), and the last block of Equation (14) can be represented as

sl
D(k + 1) =ωl

1(k)S
(

χl
1(k)

)

− χld(k + 1) + ω̄l
2ul(k) + ∆̃l

2(k),
(16)

Following the procedure explained in [14], the control law can be defined as

ul(k) =





ũl
eq(k) for

∥∥∥ũl
eq(k)

∥∥∥ ≤ ul
0(k)

ul
0(k)

ul
s(k)
‖ul

s(k)‖ for
∥∥∥ũl

eq(k)
∥∥∥ > ul

0(k)
(17)

where ul
0(k) represents the input signal (torques τ1(k) and τ2(k) of the system in Equation (3)),

with

ũl
eq(k) =−

[
w̄l

2

]−1[
−sl(k) + f̃ l

2(χ
l(k), k)

]

︸ ︷︷ ︸
ũeqα(k)

+
[
w̄l

2

]−1[
f̃ l
2

(
χl(k− 1), k− 1

)]
+ ũl

eq(k− 1)
︸ ︷︷ ︸

ũeqβ(k)

,
(18)

and

ul
s(k) =−

[
w̄l

2

]−1
f̃ l
2

(
χl(k), k

)
. (19)

In Equation (18), ũeqα(k) belongs to the part that rejects the nonlinear dynamics of the
RHONN in Equation (4), and ũeqβ(k) reduces the effect of the unknown identification error
∆̃l

j(k) of Equation (14). The results of the closed-loop system are shown in the next section.



Appl. Sci. 2021, 11, 1154 8 of 16

Now, following the procedure explained in [25]:

w̄l
2ul

0(k) > δl ,

δl =
(∥∥∥ f l

2s(k)
∥∥∥+

∥∥∥∆̃l
2(k)

∥∥∥
)

,

f l
s

(
χl(k), k

)
=− χl

r(k) + χld
r (k) + f̃ l

r

(
χl(k), k

)
,

(20)

the control law in Equation (17) is able to drive the system in Equation (15) within a small
neighborhood of the sliding manifold zl

2(k) = 0. Thus, the control error zl
2(k) satisfies

∣∣∣zl
2(k)

∣∣∣ =
∣∣∣χl

2(k)− χld
2 (k)

∣∣∣ ≤ O(Ts) . (21)

The sliding mode motion in an O(Ts) boundary layer of zl
2(k) = 0 is described by the

first-order system:
zl

1(k + 1) = kl
1zl

1(k) + w̄l
1zl

2(k) + ∆̃l
1(k) . (22)

By direct inspection of Equation (22), there exists kl
1 such that ∀kl > kl

1, the position
control error zl

1(k) satisfies
∥∥∥zl

1(k)
∥∥∥ ≤δl

1,

δl
1 =

1
γ

∣∣∣∆̃l
1(k)

∣∣∣+ O(Ts).
(23)

It is worth mentioning that the identification error ∆̃l
1(k) can be made arbitrarily small

by adding more higher order terms into the neural identifier in Equation (4), increasing the
number of adjustable weights [12]. The 1

γ is a positive constant and must be modified to

get a convergence of the sliding mode δl
1 variable.

4. Real-Time Implementation and HIL Method

The real-time implementation of the proposed system is presented in Figure 3. The
reference signal and the 2DOF manipulator robot model were realized in Matlab. The
neural identifier based on the RHONN architecture, the EKF algorithm for the training, and
the controller based on the discrete time sliding modes were implemented in a hardware-
in-loop architecture using in the Evaluation Board Virtex 7 FPGA with an internal data
acquisition device.

The testing of the system is performed with a virtual stimulus provided in HIL
architecture so it gives an extraordinary opportunity to perform a real test case with a
virtual stimulus, allowing the system to process the signals in real time and consequently
obtain results in real time.

The nonlinear 2DOF manipulator robot is modeled in Matlab using the discrete-time
presented in Section 2. The RHONN neural network is trained online using the EKF
algorithm, where the associated state and measurement noise covariance matrices are
composed by the coupled variance between the plant states. The implementation of the
RHONN as the neural identifier was realized in the XSG design and the hardware-in-loop
approach with a Virtex 7 FPGA. The results of the identification process and tracking
control architecture was validated in a Matlab/Simulink environment and with the FPGA
results. Figure 4 shows an image of the hardware-in-loop architecture.
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Figure 3. Real-time implementation of the control system using hardware-in-loop (HIL) architecture.

Figure 4. Physical real-time implementation using hardware-in-loop architecture.

5. Experimental Test and Real Time Results

The identification results are presented in Figure 5a for the first plant state of joint 1, where the
identification process used the hardware-in-loop architecture with the FPGA and the real angular
position for the first joint. Please note that in Figure 5a the initial condition for the neural identifier is 0.
Then, in one step simulation time, the signal of the neural identifier estimates the angular position for
the first joint with very good precision. Figure 5b displays the identification error for the first state of
joint 1, where e1

1(k) is the error obtained with the FPGA hardware-in-loop architecture. For simplicity,
only the identification of the first state of joint 1 is presented.

The results of the identification procedure shown in Figure 5a,b and explained in this work are
completely valid for reducing the estimation error by means of computation of the associated state and
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5. Experimental Test and Real Time Results

The identification results are presented in Figure 5a for the first plant state of joint 1,
where the identification process used the hardware-in-loop architecture with the FPGA
and the real angular position for the first joint. Please note that in Figure 5a the initial
condition for the neural identifier is 0. Then, in one step simulation time, the signal of the
neural identifier estimates the angular position for the first joint with very good precision.
Figure 5b displays the identification error for the first state of joint 1, where e1

1(k) is the
error obtained with the FPGA hardware-in-loop architecture. For simplicity, only the
identification of the first state of joint 1 is presented.

The results of the identification procedure shown in Figure 5a,b and explained in this
work are completely valid for reducing the estimation error by means of computation of
the associated state and measurement noise covariance matrices composed by the coupled
variance between the plant states.
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Tracking Results

In order to show the tracking simulation results, the following reference signals were applied:

q1d(k) = χ1d(k) = x1d(k) = [sin(ω1t) + 2] rad,

q2d(k) = χ2d(k) = x2d(k) = [sin(ω2t) + 3] rad.
(24)

with ω1 = (3.5 t + 1) rad/s and ω2 = (3 t + 3) rad/s. These reference signals were chosen arbitrarily
to demonstrate a very good approximation. A sample time of k = 0.001 s is used, and if we then insert
them into Equation (17), we obtain the following supply torques:

|τ1| ≤ τmax
1 (k) = 100 Nm,

|τ2| ≤ τmax
2 (k) = 50 Nm.

(25)

The closed-loop simulation results using the FPGA hardware-in-loop architecture are presented
in Figure 6.

The results for this real-time implementation are limited to the robot’s physical parameters.
The applied torque in Figure 6 has the maximum value calculated for this controller and it is applied
with limitations. An example of this can be if the applied disturbance reaches the limit of the physical
resistance of the 2DOF construction material for the present 2DOF robot. It can be pushed to an
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Tracking Results

In order to show the tracking simulation results, the following reference signals
were applied:

q1d(k) = χ1d(k) = x1d(k) = [sin(ω1t) + 2] rad,

q2d(k) = χ2d(k) = x2d(k) = [sin(ω2t) + 3] rad.
(24)

with ω1 = (3.5 t + 1) rad/s and ω2 = (3 t + 3) rad/s. These reference signals were chosen
arbitrarily to demonstrate a very good approximation. A sample time of k = 0.001 s is used,
and if we then insert them into Equation (17), we obtain the following supply torques:

|τ1| ≤ τmax
1 (k) = 100 Nm,

|τ2| ≤ τmax
2 (k) = 50 Nm.

(25)

The closed-loop simulation results using the FPGA hardware-in-loop architecture are
presented in Figure 6.
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The results for this real-time implementation are limited to the robot’s physical param-
eters. The applied torque in Figure 6 has the maximum value calculated for this controller
and it is applied with limitations. An example of this can be if the applied disturbance
reaches the limit of the physical resistance of the 2DOF construction material for the
present 2DOF robot. It can be pushed to an uncontrolled dynamic behavior. However,
the non-modeled dynamics can be tolerated until the 2DOF and the torque applied to the
2DOF resist the external involved perturbances if not reaching the SMC design parameters
presented in this paper (Equation (17)).
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torques T1(k) and τ1(k) reached the maximum value τmax

1 (k) specified in Equation (25) after
approximately 3.4 s of simulation. This is the time in which the system proceeds to the sliding
manifold s1

D(k)
(∥∥∥ũ1

eq(k)
∥∥∥ ≤ u1

0(k)
)

. After these 3.4 s, the control law u1(k) is a smooth function,

which means that the sliding manifold s1
D(k) has been reached

(∥∥∥ũ1
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The system works in open-loop during the interval from 0–0.5 s, and this in order to
let the RHONN estimate the state space variables. After this setup period, the system is
set in closed-loop. An external disturbance is applied in the interval of time from the fifth
to sixth second in a step-wise way. The tracking results for joints 1 and 2 are displayed in
Figure 6, and their corresponding tracking errors are shown in Figure 7.

Additionally, in Figure 8 the applied torques are shown. As can be seen in Figure 8a,
the applied torques T1(k) and τ1(k) reached the maximum value τmax

1 (k) specified in
Equation (25) after approximately 3.4 s of simulation. This is the time in which the system
proceeds to the sliding manifold s1

D(k)
(∥∥∥ũ1

eq(k)
∥∥∥ ≤ u1

0(k)
)

. After these 3.4 s, the control
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law u1(k) is a smooth function, which means that the sliding manifold s1
D(k) has been

reached
(∥∥∥ũ1

eq(k)
∥∥∥ > u1

0(k)
)

. After that the disturbance is applied at 5 s, and in conse-
quence the applied torques goes to the maximum value. This point can be observed in the
tracking results shown in Figure 6a and the applied torques T2(k) and τ2(k) are shown
in Figure 8b. In other words, after the 0.5 s, the value specified in Equation (25) means
that the sliding manifold s2

D(k) has been reached immediately thanks to the controller in(∥∥∥ũ2
eq(k)

∥∥∥ > u2
0(k)

)
.

Table 1 contributes with the hardware resource utilization of logic circuits used in
the hardware-in-loop architecture for the complete control system, which has the SMC
controller and the RHONN neural identifier. This table shows the quantity of DSP48s
circuits that were used as arithmetic blocks with floating point variables. It also allows
integration of other kind of structures in a training device with an FPGA. The proposed
design saves a great deal of resources that can be used for improved versions of the
algorithms presented herein, to increase the applicability of this method.
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Table 1. Hardware resource utilization of logic circuits used in the hardware-in-loop architecture.

Device Utilization Summary Neural Identifier (RHONN + EKF) Control System (RHONN + EKF + SMC)

Used % Used %

Slices 62,754 9 262,692 43
FFs 1983 13 3009 20

BRAM 0 0 0 0
LUTs 242,464 39 199,938 99
IOB 76 10 78 11

Mults/DSP48s 1818 64 2796 99
TBUFs 0 0 0 0
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6. Discussion

The main goal of the work presented in this paper was the control system designed for the
2DOF manipulator robot using a RHONN module in a hardware-in-loop setup. As such, we have
presented a methodology for identification and tracking of the plant (2DOF) to be controlled. Once the
identification and tracking results are reached, the present proposal can be expanded with a real 2DOF
implementation, where the mathematical model is unknown and only the state variables are available.
The results are obtained without the necessity to know the complete mathematical model of the plant,
or the parameters. Even when the results are obtained via a hardware-in-loop configuration, the
proposed methodology constitutes an advance in a new control system architecture: the RHONN,
modified EKF, and SMC implemented on an FPGA. This is due to the strategy proposed in this work,
which guarantees there is no requirement for an exact mathematical model to be reproduced by an
FPGA. Furthermore, the contribution of this proposal is in the area of programming a RHONN on an
FPGA. The FPGA can compute and solve the problem with this architecture: a RHONN in discrete-time;
the modified extended KF algorithm where the associated state and measurement noise covariance
matrices are composed by the coupled variance between the plant states; and the decentralized
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6. Discussion

The main goal of the work presented in this paper was the control system designed for
the 2DOF manipulator robot using a RHONN module in a hardware-in-loop setup. As such,
we have presented a methodology for identification and tracking of the plant (2DOF) to be
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controlled. Once the identification and tracking results are reached, the present proposal
can be expanded with a real 2DOF implementation, where the mathematical model is
unknown and only the state variables are available. The results are obtained without
the necessity to know the complete mathematical model of the plant, or the parameters.
Even when the results are obtained via a hardware-in-loop configuration, the proposed
methodology constitutes an advance in a new control system architecture: the RHONN,
modified EKF, and SMC implemented on an FPGA. This is due to the strategy proposed in
this work, which guarantees there is no requirement for an exact mathematical model to
be reproduced by an FPGA. Furthermore, the contribution of this proposal is in the area
of programming a RHONN on an FPGA. The FPGA can compute and solve the problem
with this architecture: a RHONN in discrete-time; the modified extended KF algorithm
where the associated state and measurement noise covariance matrices are composed by
the coupled variance between the plant states; and the decentralized discrete-time sliding
mode controller combined with a block control algorithm. The results of the control system
with the new combination of the mentioned architectures has been discussed in detail and
the experiments show very satisfactory results.

The results of the tracking control and identification process show the high per-
formance of the system, which is a tangible evidence of the new design architecture
implemented for discrete nonlinear systems.

This control system architecture has never been solved with this methodology in this
field and has not used the XSG, ignoring its potential in the design of complex systems.
Using an FPGA and co-design, in tandem with a hardware-in-loop approach, any control
can be implemented in the re-configurable hardware for quick simulation and production.

7. Conclusions

The design and implementation of a real-time control system for a 2DOF robot based
on a neural network and hardware-in-loop architecture has been presented in this paper,
and it is an adequate alternative for a 2DOF manipulator robot performing medical tasks.
A decentralized RHONN was trained online with the modified EKF algorithm, where
the associated state and measurement noise covariance matrices were composed by the
coupled variance between the plant states. Additionally, a sliding-window-based method
for dynamical modeling of non-stationary systems with a decentralized SM controller was
implemented as an improvement for the 2DOF manipulator robot. In addition, the SM con-
troller was successfully implemented, enabling the system to provide a relative fast-tracking
error of the control signal with a slight use of computing resources. FPGA implementation
allows a high performance and fast time calculations in a relatively low-cost platform. The
testing of the system with virtual stimuli, and the internal acquisition data device provided
by the Board Virtex 7/Evaluation kit through the HIL architecture, made the real-time
results shown in this paper possible. The use of an FPGA implementation for this problem
avoids the necessity to have an external data acquisition device, decreasing the number of
circuits for the final design. Additionally, the control system implementation requires a
smaller layout for manufacturing the digital circuit in a printed circuit board (PCB).

Future work can be expanded to consider different dynamic systems and SMC varia-
tions with new mathematical contributions in the algorithm in discrete time. The control
system exposed with this methodology can be used in future work in high-accuracy medical
tasks with a high performance.
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Abbreviations
The following abbreviations are used in this manuscript:

2DOF Two degrees of freedom
NN Neural networks
EKF Extended Kalman filter
SMC Sliding-mode controller
RHONN Recurrent high-order neural network
XSG Xilinx system generator
HIL Hardware-in-loop
KF Kalman filtering
FPGA Field programmable gate array
PCB Printed circuit board
v7 Virtex 7 FPGA
FF Flip-flop
LUTS Look-up table
IOBs Input/output block
Mults/DSP48S Floating-point multiplier circuit
TBUFs 3-state buffer
BRAMs Block RAM
Slices Basic building block components in the FPGA fabric
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