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Abstract: Autonomous learning of robotic skills seems to be more natural and more practical than
engineered skills, analogous to the learning process of human individuals. Policy gradient methods
are a type of reinforcement learning technique which have great potential in solving robot skills
learning problems. However, policy gradient methods require too many instances of robot online
interaction with the environment in order to learn a good policy, which means lower efficiency of the
learning process and a higher likelihood of damage to both the robot and the environment. In this
paper, we propose a two-phase (imitation phase and practice phase) framework for efficient learning
of robot walking skills, in which we pay more attention to the quality of skill learning and sample
efficiency at the same time. The training starts with what we call the first stage or the imitation
phase of learning, updating the parameters of the policy network in a supervised learning manner.
The training set used in the policy network learning is composed of the experienced trajectories
output by the iterative linear Gaussian controller. This paper also refers to these trajectories as
near-optimal experiences. In the second stage, or the practice phase, the experiences for policy
network learning are collected directly from online interactions, and the policy network parameters
are updated with model-free reinforcement learning. The experiences from both stages are stored
in the weighted replay buffer, and they are arranged in order according to the experience scoring
algorithm proposed in this paper. The proposed framework is tested on a biped robot walking task
in a MATLAB simulation environment. The results show that the sample efficiency of the proposed
framework is much higher than ordinary policy gradient algorithms. The algorithm proposed in
this paper achieved the highest cumulative reward, and the robot learned better walking skills
autonomously. In addition, the weighted replay buffer method can be made as a general module for
other model-free reinforcement learning algorithms. Our framework provides a new way to combine
model-based reinforcement learning with model-free reinforcement learning to efficiently update the
policy network parameters in the process of robot skills learning.

Keywords: robot skills learning; policy learning; policy gradient; experience; data efficiency

1. Introduction

Dynamic modeling and control techniques have been widely used to develop robot
skills such as walking [1,2] and grasping [3,4], but robot abilities related to adapting to the
uncertainty of real-life environment are still insufficient. Making a robot learn a new skill
depends largely on the knowledge of expert experiences, and the resulting skill tends to
deteriorate under environmental disturbances. In recent years, many studies have been
reported about robots autonomously understanding tasks and learning skills without
expert knowledge. To this end, reinforcement learning has received much attention, which
provides a mathematical formation for learning-based control, making autonomous robotic
skills learning possible [5].
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Reinforcement learning (RL) is based on learning from trials, in which the effectiveness
of trials is assessed with a reward function. The whole process of a serial of trials and assess-
ments is to find an optimized policy to maximize the cumulative reward and then acquire
the wanted skill. Expert knowledge is needless in the whole process, and the acquired skills
are more robust to the dynamic environment. References [6–9] proved that model-free
reinforcement learning (model-free RL) can solve high dimensional robot manipulation
problems. In references [10,11], biped robots were trained to walk autonomously by model-
free RL. Model-free RL requires lots of trial-and-error interactions with the environment to
find the optimal policy, and the data requirement rises with the increase in task complexity,
so it is mainly used for learning robot skills in simulators [12].

Model-based reinforcement learning (model-based RL) enables agents to learn an
explicit environmental dynamic model through interactions with the environment so as
to improve sample efficiency. Reference [13] modeled the dynamics of an unmanned
helicopter, fitted the model parameters from the sample data and then combined this
model with the policy gradient method to optimize the policy to achieve aerobatic flight
such as aerial inversion and hovering. References [14–16] fitted a dynamic model from the
interaction data between a robot and the environment and used this model to optimize
the control strategy, which significantly reduced the number of sampling interactions.
Model-based RL is more sample-efficient compared to model-free RL, but due to the noise
interference and limited number of sample trajectories, there is some mismatch between
the fitted regression model and the real dynamics, i.e., the model bias problem [17], which
bottlenecks the performance of the policy.

Both model-free and model-based RL have their own problems. An intuitive idea is
to combine the two together. In fact, to learn a skill, human beings do not simply rely on
their previous cognition of the skill, nor do they always learn by trial and error. Guided
policy search (GPS) [18] provides an idea of combining the two approaches, as shown in
the blocks with a light blue background in Figure 1. GPS contains two controllers, a linear
Gaussian controller and a policy network controller (referred to as policy network), both of
which map the observed system state xt to their own control variables ut over the robot.
In the beginning, a linear Gaussian controller is initialized and used to control the robot’s
motion. The linear Gaussian controller iteratively interacts with the environment to build
data-driven environment dynamics and solves the deterministic finite horizon optimal
control problem with the iterative linear quadratic Gaussian (iLQG) method [19]. A large
number of training samples with high reward are generated by trajectory optimization and
are stored in a dataset (which we call a replay buffer). The policy network is trained on
the replay buffer by a supervised learning manner. GPS enables the policy network to be
updated without direct interaction with the environment and makes it easier to deploy
a policy built with neural networks to real robots. Compared with model-free RL, this
training method has higher sample efficiency.

The learning process of the policy network in GPS is essentially supervised learning.
The purpose of supervised learning is to train a model to fit the labeled training data so as to
achieve a specific task. The degree to which a model performs a task is directly determined
by the data fed to it. Consequently, the main drawback of GPS is that the performance
of the policy network cannot surpass that of the linear Gaussian controller. Although the
near-optimal trajectory samples generated by the linear Gaussian controller will make the
policy network explore the high-reward area more fully, which can be very beneficial to
improve the sample efficiency, the policy network may never explore the optimal space.
Beyond that, the policy network will not be updated online after being deployed to the
robot because the performance of the neural network will deteriorate rapidly if low-reward
samples are used for fine-tuning. In addition, the policy network will not be updated after
it is deployed to the robot because the distribution of the low-reward trajectory samples
generated by online interaction is not balanced with the original high-reward near-optimal
ones, which will lead to instability of the policy network training.
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Figure 1. Schematic diagram of weighted near-optimal experiences policy optimization (WNEPO). Blocks in the blue
background are about guided policy search (GPS). WNEPO replaces the replay buffer in GPS with the weighted replay
buffer to select the experiences with high quality. When the performance of the policy network is close to that of the linear
Gaussian controller, the policy network directly interacts with the environment. In WNEPO, the blue dotted line in the
above figure is not executed.

To solve the problems that GPS encounters, weighted near-optimal experiences policy
optimization (WNEPO) is proposed in this paper. The algorithm framework of WNEPO
is shown in Figure 1. In WNEPO, the update of the policy network can be divided into
two stages. In the first stage, the optimization objective adopted by GPS is used to update
the policy network, and the near-optimal experiences generated by the linear Gaussian
controller are used as the training samples; in the second stage, the policy network interacts
with the environment directly and is trained by the policy gradient method. The first
stage of learning is a supervised learning manner—more accurately speaking, imitation
learning [20]—and the second stage is a model-free RL manner. Compared with GPS,
WNEPO has two improvements: (1) it replaces the traditional replay buffer with a weighted
replay buffer; (2) the policy network not only learns from the near-optimal experiences but
also uses the data directly interacting with the environment to improve the performance
after approaching the performance of the linear Gaussian controller. The pros and cons of
the RL algorithms mentioned above are summarized in Table 1.

Table 1. Advantages and disadvantages of different reinforcement learning (RL) methods.

RL Methods Advantages Disadvantages

Model-free RL - No need for prior knowledge
- Strong asymptotic performance

- Slow convergence speed
- High risk of damage to robot

and environment

Model-based RL
- Less online interaction, safer for robot

and environment
- Fast convergence speed

- Depends on explicit models
- Poor asymptotic performance

GPS - All the above advantages - May never explore the optimal space
- Cannot be updated after being deployed

WNEPO - Same as GPS - Not all of the above, but additional
component is required

The goal of this paper is to introduce our WNEPO method through training a biped
robot to walk, and the whole work is performed under a MATLAB simulation environment.
The paper is organized as follows: Section 1 discusses the shortcomings of the existing
algorithms in solving the problem of robot skill learning and describes the overall idea;
Section 2 provides a brief introduction to the underlying theory; Section 3 introduces the



Appl. Sci. 2021, 11, 1131 4 of 18

algorithm framework proposed in detail; Section 4 describes the experimental verification
and analysis; Section 5 summarizes the whole paper.

2. Preliminary

In this paper, the reason why WNEPO is introduced in the background of a biped
robot walking task is that the state and action dimensions of this task are high, and the
system dynamics are nonlinear [21], which puts forward higher requirements for the
learning algorithm. Scholars have proposed gait planning methods based on different
principles, such as methods based on a mathematical model [22], imitating human walking
characteristics [23] and a central pattern generator [24]. All the methods above need
accurate modeling and have poor generalization. The RL-based method proposed in this
paper can provide some ideas for solving these problems.

Our goal is to have the robot learn to walk in a straight line using minimal control effort
without any prior information. As a sequential decision-making problem, this walking
task can be modeled as a Markov decision process, where at any moment t, the agent in
state st selects action at with probability πθ(at|st ), causing the environment to enter a new
state st+1 with state transition probability p(st+1|st, at ), and then receives an instantaneous
reward rt [25]. In this paper, we use u and x instead of a and s as the control variable and
system state, respectively, to be consistent with the conventions in optimal control.

A trajectory τ = {x0, u0, . . . , xt, ut, xt+1, . . .} is a sequence of state–action pairs (xt, ut)
along the timeline from x0 until the biped robot enters a terminal state. The quality of
robot walking can be evaluated by calculating the reward R(τ) of trajectory τ. The reward
function used in this paper is inspired by reference [25]. The compound probability of a
possible trajectory τ can be expressed as pθ(τ) = p(x0)∏ πθ(ut|xt)p(xt+1|xt, ut ) , where
πθ(ut|xt ) is the policy (or probability) of choosing action ut in state xt with the parameter θ.
A real trajectory of robot interaction with the environment τ is an experience or a sampling
trajectory which is stored in the replay buffer for policy learning.

The goal of reinforcement learning is to optimize the parameter θ in policy πθ(ut|xt )
that maximizes the expectation of the cumulative reward, which is an optimization problem
of Equation (1) [26]:

θ∗ = argmax
θ

Jπ(θ) = argmaxEτ∼pθ(τ)
[R(τ)] = argmax∑

τ
R(τ)pθ(τ)

R(τ) = ∑t γtrt
(1)

where rt is the reward at time t, and the discount factor γ is a real value in [0, 1].
The following of this section focuses on the policy gradient approach, which is widely

used in model-free RL and is advantageous in solving high-dimensional robotic problems.
The policy gradient method estimates the gradient of Jπ(θ) and then updates the

parameters θ using the mini-batch gradient descent. Because policy and environment
dynamics are independent of each other, the formula for policy gradient is as follows.

∇θ Jπ =
∫
∇θ pθ(τ)R(τ)dτ =

∫
pθ(τ)R(τ)∇θ log pθ(τ)dτ

= Eτ∼pθ(τ)
[R(τ)∇θ log pθ(τ)]

= Eτ∼pθ(τ)
[∑

t
∇θ log πθ(ut|xt )R(τ)]

≈ 1
N

N
∑

n=1

Tn
∑

t=1
R(τn)∇θ log πθ(un

t |xn
t )

(2)

Then, we can update θ iteratively by calculating ∇θ Jπ using (un
t , xn

t , R(τn)) tuples,
which is called the minimum decision unit (MDU) in this paper. The gradient descent
method is used to update θ:

θt+1 = θt + α∇θ Jπ (3)

In practice, small changes in θ can lead to dramatic changes in πθ(ut|xt ). To achieve a
stable improvement in the performance of the policy, it is necessary to limit the Kullback-
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Leibler(KL) divergence before and after the policy update to a certain threshold value. The
corresponding optimization goals are:

maxEτ∼pθ(τ)
[R(τ)]

s.t. KL(πθ(·|xt )
∥∥π

θ̃
(·|xt ) ) ≤ ε

(4)

where π
θ̃
(·|xt ) is the pre-update policy. Based on this idea, methods such as Natural

Policy Gradient(NPG), Trust Region Policy Optimization(TRPO) [27] and Proximal Policy
Optimization(PPO) [28] have emerged. Among them, the PPO algorithm simplifies the
optimization problem containing the KL divergence constraint, and the learning process of
the policy is more stable.

3. Methods

Our goal was to train a policy network and use it to control the robot to realize the
walking skill. The WNEPO proposed in this paper can improve the sample efficiency
for robot skill learning, as shown in Figure 1. In this section, we will introduce WNEPO
in detail.

To achieve end-to-end control of the robot, the policy πθ(ut|xt ) is expressed as:

πθ(ut|xt ) ∼ N(µπ(xt), Σπ(xt)) (5)

We use a neural network to model πθ(ut|xt ). µπ(xt) and Σπ(xt) are the outputs of
the neural network, and the two respectively represent the mean and variance used to
determine a normal distribution. That is, when the robot is in the state xt, the action
ut output by the policy network obeys the normal distribution. The state xt of the robot can
be measured directly by sensors, and this paper considers the sensor observation ot = xt
and the action ut ∈ RE to be the torque applied to the joints.

Since the policy πθ(ut|xt ) is modeled with a neural network, it is usually necessary to
construct a large-scale training set first to update the parameters θ. However, in the case of
unknown environment dynamics, the sample size obtained from the collection is small and
insufficient to train a good performance neural network. To address this issue, we divided
the optimization of the policy network into two stages: the imitation phase and the practice
phase. In the imitation phase, the policy network learns in a supervised learning manner
from the near-optimal trajectories generated by optimizing the linear Gaussian controller.
In this way, a policy network with good performance can be trained in the case of small
sample size. When the performance of the policy network is close to the linear Gaussian
controller, the training process will switch to the next phase. In the practice phase, the
network interacts with the environment in a self-exploratory manner. With the help of the
weighted replay buffer, the update of the policy network will be more stable.

In the two phases above, a mini-batch of MDUs is sampled randomly from the
weighted replay buffer to train the network. Weighted replay buffer plays a key role in the
fast and stable learning of a policy network. The following will first discuss the idea of the
weighted replay buffer. Then, the details of policy network learning in the imitation phase
and the practice phase are analyzed respectively.

3.1. Experience Scoring Algorithm

The original GPS and PPO use random experiences in the replay buffer and discard the
old memory according to the first-in-first-out order. This strategy of storing and updating
historical data has two major disadvantages: (1) it does not distinguish the quality of
the memory experience and uses it indiscriminately, which results in the low efficiency
of the replay buffer; (2) discarding memory experiences according to the time sequence
and losing the early high-value memory experiences may cause instability of the policy
network learning process.

In order to resolve these problems, the experience scoring algorithm is proposed. The
experience scoring algorithm evaluates the quality of the experience so as to make more
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effective use of the trajectories in the replay buffer. For a trajectory τ, we evaluate its quality
from the following three aspects:

1. Cumulative discounted reward R(τ). The ultimate goal of reinforcement learning is
to obtain the maximum cumulative expected reward. It is intuitive to use R(τ) as an
indicator to measure the quality of experience data. For one trajectory, the greater the
final cumulative expected reward, the better the overall performance of this episode,
and the more valuable it is to learn from.

2. The variance varτ(r) of all single step rewards. If the single step reward value is much
larger than the average value, it will guide the network update direction from the
positive direction more effectively. If the single step reward value is much smaller
than the average value, it can guide the network update from the opposite direction
more effectively. The reward information close to the average value is less efficient
for network updates. The analogy is that people can accumulate more life experience
in great success or frustration. However, experiences with too large var(r) may lead
to more radical network updates and increase the instability of network updating.

3. Episode length Tτ . There is a correlation between Tτ and R(τ), but not a positive one.
For example, an episode in which the single step reward is always low but lasts for a
long time has a larger Tτ and a smaller R(τ). In this way, even if there is a large Tτ , it
will not be considered as a valuable trajectory.

The quality W of a trajectory τ can be calculated by the weighted sum of the three
evaluation indicators above:

W(τ) = α1R(τ) + α2varτ(r) + α3Tτ (6)

α1, α2 and α3 are parameters that need to be tuned according to the task.
Figure 2 shows how the weighted replay buffer works based on the experience scoring

algorithm. The left side of Figure 2 shows the update process of the traditional experience
replay buffer, which stores and discards data similarly to the data structure of a queue,
meeting the principle of first-in-first-out. The right side of Figure 2 describes the updating
process of the weighted replay buffer. In the weighted replay buffer, the trajectory is the
smallest unit to be discarded rather than the MDUs in the traditional replay buffer. More
importantly, the data with the highest score are discarded in the weighted replay buffer
rather than the data stored first. Besides, the length of the traditional replay buffer is
fixed, while the length of the weighted replay buffer is variable. When a new experience
with length l is stored in a full traditional replay buffer, the first MDUs will be discarded.
However, if this new trajectory is put into the full weighted replay buffer, a complete
trajectory with the lowest score will be discarded.

Figure 2. Comparison of updating processes between traditional replay buffer (left) and weighted replay buffer (right).
The yellow line represents the new experiences that will be stored. The green line and the red line represent the experiences
that need to be discarded in the traditional replay buffer and the weighted replay buffer, respectively.
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3.2. Weighted Near-Optimal Experiences Policy Optimization

After initialization, the policy network learns from the linear Gaussian controller in
a supervised learning manner. The linear Gaussian controller is constantly updated in
the interaction with the environment, and the near-optimal experiences are stored in the
weighted replay buffer. The goal of policy network learning in this phase is to achieve the
performance of the linear Gaussian controller. We transformed the original optimization
problem as follows.

min
p,πθ

Ep(τ)[l(τ)]

s.t.p(ut|xt ) = πθ(ut|xt )∀xt, ut, t
(7)

where p(ut|xt ) = N(Ktxt + kt, Ct). The optimization problem is decomposed into two
sub-optimization problems using the Bergman Alternate Direction Multiplier Method
(BADMM) [29]:

p← argmin
p

T
∑

t=1
Ep(xt ,ut)[l(xt, ut)− λt] + Ep(xt)πθ(ut |xt)[λt] + vtφt(p, π)

θ ← argmin
θ

T
∑

t=1
Ep(xt ,ut)[l(xt, ut)− λt] + Ep(xt)πθ(ut |xt)[λt] + vtφt(π, p)

λt ← λt + αvt(πθ(ut|xt )p(xt)− p(ut|xt )p(xt))
φt(p, π) = Ep(xt)[DKL(p(ut|xt )‖π(ut|xt ))]

(8)

To facilitate the updating of the Lagrange multiplier λt, the equation constraint
p(ut|xt ) = πθ(ut|xt ) in Equation (8) can be relaxed to the point where the first-order
moments of both are equal. Thus, the final optimization problem is:

p← argmin
p

T
∑

t=1
Ep(xt ,ut)

[
l(xt, ut)− uT

t λt
]
+ vtφt(p, π)

θ ← argmin
θ

T
∑

t=1
Ep(xt)πθ(ut |xt)

[
uT

t λt
]
+ vtφt(π, p)

λt ← λt + αvt(Eπθ(ut |xt)p(xt)[ut]− Ep(ut |xt)p(xt)[ut]), ∀t

(9)

Before policy network optimization, two sections must be achieved iteratively: dy-
namics model fitting and linear Gaussian controller optimization.

3.2.1. Dynamics Model Fitting

When the robot interacts with the environment, the stochastic, uncertain nature
of the environment itself makes the environment dynamics non-stationary. How the
environment dynamics are modeled determines the quality of the trajectory. The universal
approximation theorem [30] of neural networks makes it possible to fit any environment
dynamics, but training a neural network requires a large number of training samples,
which somewhat defeats the purpose of this paper to solve the sample inefficiency problem
of robotic skill learning. Considering that linear models can adapt to the environment
better than neural networks, but are less generalizable, a Gaussian distribution can be used
to represent the uncertainty of the dynamic model. Therefore, this paper uses a linear
time-varying system to model the environment.

Assuming that the observed state is Markovian, then the environment dynamics
model satisfies:

p(xt+1|xt, ut ) ∼ N( fxt xt + fut ut + ft, Ft) (10)

To estimate parameters { fxt , fut , Ft} of the environment dynamics model, a linear Gaus-
sian controller is used to interact with the environment to obtain trajectories
τ = {x1, u1, x2, u2, . . . , xT , uT}, which, in turn, can construct the input sets
X = {x̃1, x̃2, . . . , x̃T−1} and output sets Y = {y1, y2, . . . , yT} and fxut = [ fxt , fut ] ∈ RD×N .
Where x̃t = [xt; ut] ∈ RN , yt = xt+1 ∈ RD, N = D + E. D is the dimension of the system
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state space and E is the dimension of the system action space. Based on the linear mean
square estimation theory [31], it is known that:

fxut = cov(yt, x̃t)[cov(x̃t, x̃t)]
−1 (11)

In the above equation, the covariance cov(yt, x̃t) = E[yt x̃t
T ]− E[yt]E[x̃t

T ]. The other
parameters are calculated as follows:

ft = E[yt]− fxutE[x̃t]
Ft = D(yt − fxut x̃t − ft)

= cov(yt, yt) + fxutcov(x̃t, x̃t) f T
xut

(12)

3.2.2. Linear Gaussian Controller Optimization

If the linear Gaussian controller parameters change too much after the update, it will
not be conducive to the convergence of the controller parameters and may also cause
unpredictable damage to the robot. Therefore, the KL divergence of the controller before
and after the update should be less than a certain threshold value ε:

min
T
∑

t=1
Ep(xt ,ut)

[
l(xt, ut)− uT

t λt
]
+ vtφt(p, π)

s.t. DKL(p(ut|xt )‖ p̂(ut|xt ) ) ≤ ε

(13)

where p̂(ut|xt ) is the controller before the parameter update. Then, we convert the above
equation to the Lagrangian dual form [29]:

p← argmin
T
∑

t=1
Ep(xt ,ut)

[
l(xt, ut)− uT

t λt
]
+ vtφt(p, π) + ηtφt(p, p̂)− ηtε

ηt ← ηt + βt(φt(p, p̂)− ε)
(14)

where ηt is the Lagrange multiplier. Set the cost function c(xt, ut) equal to:

c(xt, ut) = l(xt, ut)− uT
t λt − vt log πθ(ut|xt ) + (ηt + vt) log p(ut|xt )− ηtε (15)

Therefore, Equation (14) can be abbreviated as:

p← argmin
T
∑

t=1
Ep(xt ,ut)[c(xt, ut)]

ηt ← ηt + βt(φt(p, p̂)− ε)
(16)

Since we have fitted the system dynamics model p(xt+1|xt, ut ), the parameters of the
linear Gaussian controller p(ut|xt ) ∼ N(Ktxt + kt, Ct) can be calculated using differential
dynamic planning. Define the state value function V(xt) for any moment t as [32]:

V(xt) = min
ut
{Q(xt, ut)}

Q(xt, ut) = c(xt, ut) + V(xt+1)
(17)

In the equation above, xt+1 = fxt xt + fut ut + ft. To find the local minimum of
V(xt), the action value function Q(xt, ut) is expanded by second-order Taylor at xt = 0,
ut = 0, with:

Q(xt, ut) =
1
2

[
xt
ut

]T

Qxu,xut

[
xt
ut

]
+ Qxut

[
xt
ut

]
+ const (18)
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where Qxut is the partial derivative of Q(xt, ut) over xt and ut sequentially, and Qxu,xut is
the Hessian matrix.

Qxu,xut =

[
cxxt cxut
cuxt cuut

]
+

[
fxt

fut

]T[ Vxxt+1 Vxxt+1
Vxxt+1 Vxxt+1

][
fxt

fut

]
,

Qxut =

[
Qxt
Qut

]
=

[
cxt
cut

]
+

[
fxt

fut

]T

Vxt+1

(19)

To obtain a minimum value for the state value function V(xt), the partial derivative
of Equation (19) with respect to ut is:

ut = −Q−1
uut(Quxtxt + Qut) (20)

The parameters of the linear Gaussian controller at moment t are:

Kt = −Q−1
uutQuxt, kt = −Q−1

uutQut, Ct = Q−1
uut (21)

Then, substitute Equation (20) for Equation (17):

Vxt = Qxt −QuQ−1
uutQuxt, Vxxt = Qxxt −QxutQ−1

uutQuxt (22)

All parameters of a linear Gaussian controller can be calculated iteratively.

3.2.3. Policy Network Optimization

For the imitation phase, since the policy πθ(ut|xt ) obeys a Gaussian distribution
N(uπ(xt), Σπ(xt)) and the linear Gaussian controller p(ut|xt ) also obeys the distribution
N(µπ(xt), Ct), the optimization problem in Equation (9) can be further written as follows.

min 1
2M

M
∑

i=1

T
∑

t=1
Ep(xt)πθ(ut |xt)

[
2λT

t µπ(xt)− log|Σπ(xt)|
]

+Ep(xt)πθ(ut |xt)

[
tr
[
C−1

ti Σπ(xt)
]
+ ũTC−1

ti ũ
] (23)

where µ̃ = µπ(xt)− µ
p
ti(xt), and M is the number of trajectories sampled by the system. To

simplify the solution of the objective function, the variance Σπ(xt) of the policy is assumed
to be independent of the state xt. A partial derivative of the above equation yields:

Σπ(xt) =

[
1

NT

N

∑
i=1

T

∑
t=1

C−1
ti

]−1

(24)

Simplifying the optimization issue to:

min
θ

1
2N

N

∑
i=1

T

∑
t=1

Ep(xt)πθ(ut |xt)

[
2λT

t µπ(xt) + µ̃TC−1
ti µ̃

]
(25)

It can be seen that when the output µπ(ot) of the policy is consistent with the output
µ

p
ti(xt) of the controller, the corresponding policy parameters θ are the optimal solution to

this optimization problem.
For the practice phase, we adopt the PPO-clip algorithm [28]. The whole idea of this

approach is to find a functional relationship between policy change and value, take the new
policy that can improve the old policy the most and prevent the policy from being updated
too much by truncating the policy. In the training process of this phase, the experiences
in the weighted replay buffer contains the near-optimal trajectories output by the linear
Gaussian controller, as well as the data generated when the policy network interacts with
the environment.

We describe the implementation steps of WNEPO as follows:
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(1) Initialize the linear Gaussian controller and policy network;
(2) Control the robot to walk with the linear Gaussian controller and record the experi-

ences in the weighted replay buffer;
(3) Use experiences stored in the weighted replay buffer to update the linear Gaussian

controller and policy network in a supervised learning manner;
(4) Check whether the cumulative reward obtained by the linear Gaussian controller

converges; if it converges, skip to step (5), otherwise return to step (2);
(5) Control the robot to walk with the policy network and record the experiences in the

weighted replay buffer;
(6) Use the PPO algorithm to update the policy network until the cumulative

reward converges.

The output of the WNEPO algorithm is a policy network, which can directly control
the robot to complete the desired task. The implementation steps described above are an
experience-based circular process. The pseudo code of the WNEPO algorithm is shown in
Algorithm 1.

Algorithm 1. WNEPO: A two-phase framework for efficient robotic skills learning

1: Initialize p(ut|xt) , πθ(ut|xt ), π′θ(ut|xt ), weighted replay buffer D
2: Initialize λt, K, J, α
3: For k ∈ {1, . . . , K}:
4: Initialize Dp

5: Interacting with the environment M times with p(ut|xt )
6: collect Dp =

{
τ

p
1 , . . . , τ

p
M
}

, update D ← D + Dp

7: fit dynamics p(xt+1|xt, ut ) to D
8: For j ∈ {1, . . . , J}:
9: Update the linear Gaussian controller p(ut|xt) with Equation (16)
10: If

∣∣∣Ep(ut |xt)[l(τ)]− Ep′(ut |xt)[l(τ)]
∣∣∣ > α:

11: Optimize πθ(ut|xt ) with Adam according to Equation (25)
12: Else:
13: Interacting with the environment N times with πθ(ut|xt )
14: collect Dπ =

{
τπ

1 , . . . , τπ
N
}

, update D ← D + Dπ

15: Randomly pick minibatch sequences (xi , uu, ri , xi+1) from D
16: Update θ based on PPO
17: Update λt ← λt + αvt(Eπθ (ut |xt)p(xt)[ut]− Ep(ut |xt)p(xt)[ut])

18: End For
19: End For

4. Experiments

In this section, we will answer the following three questions by carrying out simulation
experiments on a MATLAB platform: (1) Can a biped robot learn walking skills only from
the imitation phase without any prior knowledge? (2) Can the WNEPO algorithm make
the robot learn better walking skills in a shorter time? From the perspective of RL, are
asymptotic performance and sample efficiency better? (3) How do weighted near-optimal
experiences affect the performance of different algorithms?

4.1. Experiment Setup
4.1.1. Description of the Environment

The WNEPO proposed in this paper will be validated with a simulation experiment
of a biped robot, which was built using MATLAB’s Simscape toolbox. The biped robot is
shown in Figure 3. The robot was required to stay upright during walking and walk as far
as possible in a straight line within a limited time, during which the motors of each joint
execute the torque output by the policy network.
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Figure 3. Simulation environment. The robot’s body and ground can be regarded as the environment.
The motor at the three joints (ankle, knee and hip) of each leg can be regarded as the agent. Our task
is to make the motor output an appropriate torque to control the robot to walk along a straight line.

The robot had two legs and a torso, and each leg contained three joints (ankle, knee
and hip). Torque ui ∈ [−3, 3] (Nm) was applied to each joint of the leg, i = 1, 2, . . . , n. The
key physical property parameters of the robot are shown in Table 2.

Table 2. Physical property parameters of the biped robot.

Parameter Leg_Radius Lower_Leg_Length Upper_Leg_Length Torso Foot

Value 0.75 cm 10 cm 10 cm 5 × 8 × 8 cm3 5 × 4 × 1 cm3

Parameter Density Torso_Offset_x Torso_Offset_z Joint_Damping Joint_Stiffness

Value 1.05 g/cm3 −1 cm −2 cm 0.001 Ns/cm 0

The environment provided 29 observations for action decision, including: (1) Y (lateral)
and Z (vertical) translations of the torso center of mass; (2) X (forward), Y (lateral) and Z
(vertical) translation velocities; (3) Yaw, pitch and roll angles of the torso; (4) Yaw, pitch and
roll angular velocities of the torso; (5) Angular positions and velocities of the three joints
(ankle, knee and hip) on both legs; (6) Action values from the previous time step.

The contact between the robot feet and the ground adopted a point-to-surface contact
mode, and the contact stiffness and damping were 500 (N/m) and 50 (Ns/m), respectively.
In order to make the walking task closer to a real situation, Gaussian white noise was
added to the contact stiffness and damping.

4.1.2. Parameter Specification

PPO has strong robustness, so the neural network structure and other hyperparameters
had little influence on the training process. Various network structures, including a three-
layer network and a four-layer network, were tested, and there was no significant difference
in the training effect, so the default network structure commonly used by PPO, i.e., the
policy network and the critic network, both use two hidden layers, with 300 and 400 nodes,
respectively. The output layer of the network is six nodes, representing the moments
applied to a total of six joints in both legs; the output layer of the evaluation network has
only one node and is a score of the current state.

Set the capacity of weighted replay buffer D to 600 and mini-batch size to 500. The
maximum episode is 5000. The values of α1, α2 and α3 are 0.4, 0.5 and 0.1, respectively.

The reward function rt = −l(xt, ut) with the following expression:

rt = vx − 3y2 − 50ẑ2 + 25
Ts
T f
− 0.02∑

i
(ui

t−1)
2

(26)
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where vx is the displacement in the x-direction, y is the distance of the trajectory from
the preset line, ẑ is the normalized vertical translation displacement of the robot center of
mass, Ts is the sample time of the environment and Tf is the final simulation time of the
environment. Tf was set to 10 s in this simulation.

Both the policy and value networks were trained using Adam, with a learning rate of
0.0001 for the policy network and 0.002 for the value network. The order of the trajectory
data in the experience pool was not scrambled in order to ensure that the complete sequence
fragments could be taken for the estimation of the generalized advantage function.

4.1.3. Comparison Methods

WNEPO can be regarded as the combination of model-free and model-based RL,
which can give full play to the advantages of sample efficiency of model-based RL and
the asymptotic performance of model-free RL. In order to evaluate the performance of
WNEPO, we compared it with the following algorithms:

• iLQG [19]. iLQG is a typical model-based RL algorithm. When the environment
dynamics are known, the optimal analytical solution can be obtained.

• GPS [6]. GPS is a state-of-the-art algorithm combining model-based RL with model-
free RL.

• WE-GPS. Replaces the experience pool in GPS with a weighted replay buffer.
• PPO [28]. State-of-the-art model-free on-policy RL algorithm. This paper does not

consider off-policy RL methods because off-policy RL usually encounters higher risks,
which is not suitable for robot skills learning [33].

• In practice, the last point can make a big difference if mistakes are costly—e.g., you
are training a robot not in simulation, but in the real world. You may prefer a more
conservative learning algorithm that avoids high risk if there is real time and money
at stake if the robot were to be damaged.

• WE-PPO. Replaces the replay buffer in PPO with a weighted replay buffer.
• GPS-PPO. GPS is used to update the policy network offline, and then, the PPO

algorithm is used to train the policy network online. The only difference between GPS-
PPO and WNEPO is that GPS-PPO directly uses the online interactive data between
the policy network and the environment instead of the experiences in the weighted
replay buffer to update the policy.

4.2. Result
4.2.1. Evaluation of Walking Skills Learned from the Imitation Phase

The optimization process of the linear Gaussian controller p(ut|xt ) is shown in the
following Figure 4.

At the beginning of the iteration, an accurate dynamics model was unavailable and
the output torque was small. The agent only explored near the initial configuration to
avoid possible damage to the robotic system. After a period of interaction, the controller
tried to control the robot to walk, but it was unable to complete the walking task because
the dynamics model was inaccurate. Therefore, the trajectories generated by the controller
were far from optimal. With the increase in samples in the weighted experience replay
buffer, the dynamics model was fitted more and more accurately. After eight iterations
(k ≥ 8), the robot could walk a distance, although the behavior seemed unnatural. After
12 iterations (k ≥ 12), the average cumulative reward of the linear Gaussian controller had
nearly converged.
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Figure 4. The optimization process of the iterative linear Gaussian controller (iLQG). With the
increase in interaction data between the iLQG controller and the environment, more experiences are
used to fit the dynamics, and the average cumulative reward of the iLQG agent is multiplying. When
the interaction experiences accumulated to a certain amount, the performance improvement of iLQG
is unobvious.

In the process of the iLQG interacting with the environment, the policy network is
simultaneously trained using samples obtained from the iLQG’s experiences. Since the
average cumulative reward of the iLQG controller almost converges when k = 12, we
evaluated the walking skills learned by the policy network at this time. The training
process of the policy network can be regarded as a typical regression problem. We used
root-mean-square error(RMSE) loss function to evaluate how well the policy network
imitates the iLQG controller. The RMSE curve of policy network training is shown in
Figure 5 for when k = 12. It can be seen that the policy network converges when epoch = 9,
which means that the performance of the policy network is close to the iLQG controller.
Next, we used the policy network to control the robot directly, and we take a trajectory as
an example to analyze the movement of the biped robot.

Figure 5. RMSE loss curve in policy network training. In this paper, we set epoch = 20.

Walking gait refers to the posture and behavior characteristics of walking, including
the continuous activities of hip, knee and ankle. Figure 6 shows the joint forces exerted
on the six joints of the biped robot during walking. It can be seen from the figure that the
torque exerted on the ankle joint is periodic, because the two feet alternately support the
robot to move forward during the movement. The torque applied to the knee joint does not
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change periodically because the robot needs to adjust the torque of the knee joint in real
time to ensure body balance. The torque exerted on the hip joint is the smallest, and the
direction of the torque applied to the left hip joint and the right hip joint is always opposite,
which is consistent with the characteristics of human walking.

Figure 6. The torque applied to the leg joints during a walk. The three pictures on the left show the torque applied to the left hip
joint, left knee joint and left ankle joint from top to bottom. The three pictures on the right show the torque applied to the right
hip joint, right knee joint and right ankle joint from top to bottom. The abscissa represents the movement time in seconds.

Figure 7 shows the motion of the robot. Figure 7a shows the lateral offset. It can be
found that the robot moves in the positive direction of the y-axis in the process of moving
forward. The maximum offset is 0.36 m, which can be ignored compared with the total
distance. Figure 7b shows how the center of gravity changes over time. At the beginning
of the movement, the center of gravity changes greatly because the robot needs to adapt to
the state change from the initial standing state to the walking state. However, after 5 s, the
change in gravity center is controlled in the range of 0.005 m, which indicates that the robot
can deal with the uncertainty of the environment and effectively adjust its own posture to
complete the walking task. Figure 7c shows that the robot’s speed is uneven during the
forward process, which may be caused by the lateral offset of the robot. The robot needs to
make a trade-off between moving forward and maintaining body balance.

Figure 7. The state of the robot during one trajectory. The three figures from top to bottom are the lateral deviation, the
change in gravity center and the forward speed of the robot.
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Even so, the robot can walk a longer distance and move more smoothly at this time. It
can be considered that the trajectories generated by the linear Gaussian controller at this
moment are near-optimal. In the next subsection, we will use more indicators to evaluate
whether the robot walking skills can be further improved in practice phase.

4.2.2. Asymptotic Performance and Sample Efficiency

When the performance of the linear Gaussian controller tends to converge, we enter
the practice phase from the imitation phase. The role of the iLQG controller now is to
expand the weighted replay buffer D to provide high-value trajectories for policy network
training. Different from the traditional PPO, the experiences used for policy network
optimization are not only from the interaction between the robot itself and the environment
but also from the near-optimal trajectories generated by the iLQG controller.

Figure 8 demonstrates the training process of different algorithms. It shows that the
iLQG controller has the fastest convergence rate and can achieve a reward expectation
of close to 170 using fewer training samples and less computational power. The method
proposed in this paper can hardly surpass the performance of the linear Gaussian controller
during the imitation phase. This result is intuitive because the learning samples determine
the upper limit of the model performance. GPS and WE-GPS encounter the same situation
in the training process.

Figure 8. Comparison of our method and prior methods on bipedal robot walking task.

The policy network can achieve higher reward than iLQG after switching to the
practice phase. In the practice phase, the performance of GPS and WE-GPS is limited by the
performance of the linear Gaussian controller. WNEPO can use the exploration mechanism
of model-free RL to let the robot experience more situations that have not been seen before.
This will help the neural network to search the global optimal policy better, which makes it
more robust than the linear Gaussian controller when facing unseen situations. WNEPO
obtains higher reward than the current best-performing on-policy model-free RL method,
PPO. The reason is that the parameter update process of the policy network uses both
near-optimal experiences and online interactive experiences.

The comparison of these algorithms in learning walking skills is shown in Table 3. In
this experiment, we required the robot to keep upright and walk as far as possible in 10 s.
When all the policies converged, 30 trials were run under different environment parameters
(contact stiffness and damping), and the average value was calculated. WNEPO achieved
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the best asymptotic performance and achieved the longest walking distance with the least
control output.

Table 3. Comparison of asymptotic performance and sample efficiency.

Index iLQG GPS WE-GPS PPO WE-PPO WNEPO GPS-PPO

Distance (m) 4.56 4.49 4.51 4.83 4.91 4.95 2.63
Avg. steps for

task completion 77.9 78.0 78.2 75.6 72.1 71.4 Failure

Convergence
episodes

(approximate)
1100 1400 1300 3700 3300 1900 Not converged

At the same time, we know from Table 2 that the sample efficiency of WNEPO is
significantly improved compared to PPO. Although the sample efficiency of WNEPO is
worse than that of GPS, our biggest concern is to better learn motor skills, so more online
interaction is obviously desirable.

Finally, we will discuss the role of the weighted replay buffer in WNEPO. The role of
the weighted replay buffer in the imitation phase can be reflected by comparing the perfor-
mances of WNEPO and GPS. It can be seen that the weighted replay buffer helps to make
the performance of the policy network closer to the iLQG controller. This phenomenon
can be explained as the experience of a high score helping the policy network not to be
trapped in low-reward states. The role of the weighted replay buffer in the practice phase
can be illustrated by the performance of GPS-PPO in Figure 8. The online interaction of
GPS-PPO makes the training process fluctuate greatly, and there is still no convergence
until the maximum number of episodes is reached. It can be inferred that the use of a
weighted replay buffer can improve training stability in the practice phase. The results in
Figure 8 also show that the weighted replay buffer can improve the performances of GPS
and PPO. The weighted replay buffer is a plug-and-play module which can be widely used
for other RL algorithms.

5. Conclusions

In this paper, a two-phase framework for efficient learning of robot skills is proposed
based on reinforcement learning, which we call WNEPO. WNEPO can be regarded as
the combination of model-free RL and model-based RL. In the imitation phase, the policy
network uses the near-optimal experiences of the linear Gaussian controller to update the
parameters, which is more efficient than PPO. By continuing to train the policy network
with the model-free RL algorithm in the practice phase, the robot can better learn walking
skills than with other algorithms. The weighted replay buffer proposed in this paper plays
a key role in the policy network training process. The weighted replay buffer is used to
store the historical experience data with high scores so as to improve the training stability
and strengthen the exploration of high-reward areas.

The advantage of our method is that the environment dynamics do not need to be
known in advance and highly robust skills can be learned through fewer interactions
with the environment. The weighted replay buffer proposed has been proved to be a
plug-and-play module that can be used in other RL algorithms.

In order to further tap into the potential of the weighted replay buffer, in future work,
we will conduct a theoretical analysis on the tuning method of the three parameters in the
experience-scoring algorithm. In addition, we will also test the effect of the WNEPO algo-
rithm in other robot skill-learning situations, such as high-dimensional manipulation tasks.
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