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Abstract: Acoustic shadows are common artifacts in medical ultrasound imaging. The shadows
are caused by objects that reflect ultrasound such as bones, and they are shown as dark areas in
ultrasound images. Detecting such shadows is crucial for assessing the quality of images. This will
be a pre-processing for further image processing or recognition aiming computer-aided diagnosis.
In this paper, we propose an auto-encoding structure that estimates the shadowed areas and their
intensities. The model once splits an input image into an estimated shadow image and an estimated
shadow-free image through its encoder and decoder. Then, it combines them to reconstruct the input.
By generating plausible synthetic shadows based on relatively coarse domain-specific knowledge on
ultrasound images, we can train the model using unlabeled data. If pixel-level labels of the shadows
are available, we also utilize them in a semi-supervised fashion. By experiments on ultrasound
images for fetal heart diagnosis, we show that our method achieved 0.720 in the DICE score and
outperformed conventional image processing methods and a segmentation method based on deep
neural networks. The capability of the proposed method on estimating the intensities of shadows
and the shadow-free images is also indicated through the experiments.

Keywords: ultrasound images; shadow detection; shadow estimation; deep learning; auto-encoders;
semi-supervised learning

1. Introduction

Ultrasound (US) imaging is a popular modality of medical imaging. It is the first
choice of diagnostic imaging because of these advantages: (i) it is noninvasive and has no
side effects like X-rays and computed tomography (CT), (ii) equipment for US is smaller
and cheaper than that of CT and magnetic resonance imaging (MRI), and (iii) it has higher
temporal resolution (typically around 10–100 frames per second [1]) than CT and MRI.
US imaging is used for a wide range of medical fields [1]; typically it is employed to
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examine superficial organs, intra-abdominal organs, hearts, and fetuses. On the other hand,
US imaging suffers from low spatial resolution (typically around 10 µm–1 mm [2]) and
artifacts. Resulting images are often very noisy, and small findings and structures can be
difficult to see.

To alleviate noise in US images and to support diagnosis, a number of technologies
have been proposed. Recent equipment for US imaging comes with several techniques
to improve the quality of US images [3]. For example, emitting sound waves from mul-
tiple different angles [4] and utilizing low-frequency bands that are hard to attenuate [5].
From the perspective of image processing, image enhancement methods have also been
proposed [6,7].

Despite these techniques, acoustic shadows [8] (hereinafter simply referred to as
shadows) that are common artifacts in US images are problematic. Shadows are shown
as dark areas in US images. They are mainly caused by bones and air which reflect or
absorb US emitted by probes. We cannot retrieve information of the areas that US does not
reach, and thus, the areas are dark and dimmed. In some senses, shadows can be features
for making a diagnosis; comet-tail artifact is known as a feature for finding gallstones [9],
for example. However, we focus on situations that we are interested in structures of the
organs such as fetal heart diagnosis. Because the regions of shadows have less information
than shadow-free areas, clinicians can hardly make the right diagnosis if target organs
are covered by shadows in such situations. Moreover, such shadows can degrade the
performance of the image recognition methods for US images [10–15] although they are
advancing lately with the rise of deep neural networks (DNNs) [16]. The only way to
fundamentally avoid shadows is to move the probes so that the sound waves do not run
into the obstacles. Shadows are basically unavoidable, but detecting such shadows is
useful for assessing the quality of US images; whether the images can be used for diagnosis
or image recognition techniques. Especially, for computer-aided diagnosis systems that
detect structures such as [17], shadows can be critical for its performance. If shadows are
detected while the US images are taking, we can notify the examiners whether the quality
of the images is adequate or instruct them to retake the images if needed. Hence, shadows
themselves have almost no information, but detecting them is crucial.

In this paper, we propose a shadow estimation method based on auto-encoding
structures [18], a form of DNNs. The auto-encoding structures are constructed and trained
to encode input images to feature vectors, decode the feature into images of estimated
shadows and images of estimated shadow-free input, and then combine them to reconstruct
the input. The structures enable us to obtain estimated shadows and estimated clean
images at the same time. The primal target of the method is to estimate shadows, and
the estimated clean images are supplementary outputs. The method is trained to localize
shadows and estimate their intensity (or brightness) rather than just segmenting them as a
pixel-wise binary classification (i.e., segmentation). Estimating the intensity is novel and
motivated by the fact that shadows are often semi-transparent. By knowing the intensities
of shadows, we can ignore detected shadows if they have low intensities. Considering the
semi-transparency of shadows, labeling is quite difficult because the correct intensity of
shadows are unknown; even annotating binary labels is difficult because of the ambiguity
and variety of shadows. To address this problem, we introduce synthetic shadows as
pseudo labels. If the target and method of the examination are fixed (i.e., the domain of US
images is fixed), we can get to know the possible shapes of shadows. Based on the prior
knowledge, we generate and inject simulated shadows with random shapes and intensities
into the images and make the method learn them. In this way, shadows with any intensity
can be learned without giving labeled data. Additionally, we also utilize pixel-wise binary
labels if available in a semi-supervised fashion. An algorithm that estimates the intensity
of the labeled shadows is proposed and the labels are turned into semi-transparent ones.
We applied the proposed method to US images for fetal heart diagnosis and evaluated the
performance. As a segmentation method, our method outperformed previous methods
based on image processing in a situation without labels. Besides, in situations with labels,
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it achieved comparable performance against a reference segmentation method based on
DNNs. The effectiveness of the estimated shadow intensity was shown by the correlation
between the estimation and the brightness of the input. The quality of the estimated input
without shadows was also evaluated qualitatively.

2. Related Work

The necessity of detecting shadows in US images is known and methods that are based
on rather traditional image processing have been proposed [19,20]. In [19], procedures of
US image generation and the causes of shadows are modeled. The US images are analyzed
along the scanlines and shadows are detected as ruptures of brightness. Segmentation
based on random walks is employed in [20]. The idea of this method is that the upper
parts of the images are more reliable because the probes are close. The method basically
estimates confidence maps of US images but it can be considered as a shadow detection
method. This random walk method has been improved by focusing on shadows caused by
bones [21]. In recent years, DNN based methods have also been proposed and improved
detection performance [22,23]. Generally, DNNs require many labeled data to achieve
high performance but pixel-level labels of shadows are expensive. In [22,23], weakly
supervised learning is applied to resolve this problem. Assuming that the image-level
labels are low cost, many US images are annotated whether they have shadows or not.
They illustrated that shadows can be detected effectively by training DNNs using these
weakly labeled examples and a small amount of pixel-level annotated data. Since the
image-level labels are actually also expensive and difficult to collect due to ambiguity
and semi-transparency of shadows, in this study, we focus on utilizing unlabeled data
supported by coarse domain-specific knowledge. A combination of the traditional shadow
detecting method [19] and DNN based segmentation for US images is also proposed [24].
It shows that the segmentation results can be improved by knowing the presence of
shadows and it is important to detect shadow precisely.

Auto-encoders [18] are popular unsupervised learning methods for DNNs. They con-
sist of encoders and decoders, and the encoders compress an input into a latent vector and
the decoders reconstruct it to the input. In this way, DNNs can learn features of training
data like the principal component analysis [25]. Auto-encoding structures are simple,
but there are many variants and applications [26,27] thanks to DNNs’ high expression capa-
bility. Semi-supervised learning is one of the applications [27,28]. By efficiently extracting
features from much unlabeled data in an unsupervised manner, classification problems
are solved using a small amount of labeled data. Encoder-decoder structures, which are
constructed just like auto-encoders but do not reconstruct the input, are often used for seg-
mentation [29]. Especially, U-Net [30] is known as a standard method for medical images
and it is applied to US images as well [12,31]. Encoder-decoder structures can be employed
to generate images. For example, in [32], a two-way encoder-decoder structure generates
relighted photos that come with lighting with desired direction and color temperature.
It is trained in a supervised fashion to generate an intermediate shadow-free image and
prior image of the desired lighting and to combine them into a final relighted output. We
employ a similar structure for shadow estimation in US images, but we train it also as an
auto-encoder to effectively utilize unlabeled data.

3. Materials and Methods

In this section, we introduce a DNN that has an auto-encoding structure for estimating
US shadows and the datasets for evaluating the method. We describe the structure and
propose a training method with unlabeled data based on our preliminary work [33]. Then
the proposed method is extended to additionally use data with pixel-level labels in a
semi-supervised fashion.
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3.1. Datasets

We evaluate the performance of our method on US images of fetal heart diagnosis.
Data for the experiments were acquired in Showa University Hospital, Showa University
Toyosu Hospital, Showa University Fujigaoka Hospital, and Showa University Northern
Yokohama Hospital. All the experiments were conducted in accordance with the ethical
committee of each hospital. We collected 157 videos of 157 women who are 18–34 weeks
pregnant. All the data are taken by convex probes with fetal cardiac preset on Voluson E8
or E10 (GE Healthcare, Chicago, IL, USA).

We converted 107 of the videos into 37,378 images and used them as an unlabeled
dataset. From the remaining 50 videos, experts extracted 445 images with shadows and
annotated them at a pixel-level. Annotated 445 images were split into a training dataset
with 259 images, a validation dataset with 91 images, and a testing dataset with 95 images
(corresponding to 30, 12, and 8 videos, respectively).

3.2. Restricted Auto-Encoding Structure for Shadow Estimation

Let x ∈ [0, 1]H×W be an input grayscale US image with a size of H ×W. Its brightness
is assumed to be normalized to [0, 1]. We introduce an encoder DNN E : [0, 1]H×W → Rm

and a decoder DNN D : Rm → [0, 1]H×W×2, where m is the number of dimensions of a
latent vector. Note that the decoder D outputs an image with two channels. An auto-
encoding procedure that reconstructs the input x into x̂ is defined as

x̂ = ŝ� ĉ, (1)

x̃ := D(E(x)), ŝ := x̃1, ĉ := x̃2, (2)

where �, x̃i, ŝ and ĉ are element-wise product, the i-th channel of x̃, the estimated shadow
image, and the estimated clean image without shadows, respectively. For each element in
the estimated shadow ŝ, 1.0 means that no shadows expected in the pixel, and the lower
the value, the intensity of the estimated shadow is higher. Figure 1a shows the proposed
auto-encoding structure.

The reconstruction x̂ is given as Equation (1) because we assume that the input image
with shadows is generated as an element-wise product of an ideal shadow-free input image
and an image of semi-transparent shadows. This is different from the actual generation
process of US images but we model US images with shadows in this way for simplicity.

3.3. Training Using Unlabeled Data with Synthetic Shadows

Since the proposed model is based on auto-encoders, it is basically trained by mini-
mizing a reconstruction loss given as

Lrecon(x, x̂) :=
1

HW

H

∑
h=1

W

∑
w=1

(x̂hw − xhw)
2, (3)

which is also known as the mean squared error (MSE). Of course, we cannot make the
model split the input into the estimated shadow and the estimated clean image only by the
reconstruction loss. To address this, we introduce synthetic shadows and a loss function
that uses them as pseudo labels.

Annotating shadows is costly because the pixel-level label is expensive in the first
place, and additionally, shadows are ambiguous. It is difficult to make a standard for
labeling shadows that come in various intensities and are often blurred. However, the pos-
sible shapes of shadows are known when the domain is fixed; the target to be diagnosed
and equipment such as probes are set. Once the shapes are determined, we can generate
random plausible synthetic shadows in a rule-based manner. Then the synthetic shadows
can be injected into the input image and can be used as pseudo labels. In this study,
we focus on convex probes [1] that generate shadows shaped annular sectors. Details of
the algorithm for generating shadows are described in Appendix A.
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�

Reconstruction x̂

Reconstruction loss

(a)

Synthetic
shadow s

Input x

�
Input with
a synthetic
shadow x′

E D
Shadow image ŝ
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Figure 1. Overview of our shadow estimation method. (a) shows the proposed auto-encoding structure.
(b) and (c) illustrate the learning process for unlabeled data and pixel-level labeled data, respectively.
For unlabeled data, the estimated shadow ŝ is compared to the synthetic shadow with respect to the
region that the synthetic shadow exists. For labeled data, the label is made semi-transparent based on
the estimated intensity of labeled shadows, and ŝ is compared to it.
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Figure 1. Overview of our shadow estimation method. (a) shows the proposed auto-encoding struc-
ture. (b,c) illustrate the learning process for unlabeled data and pixel-level labeled data, respectively.
For unlabeled data, the estimated shadow ŝ is compared to the synthetic shadow with respect to the
region that the synthetic shadow exists. For labeled data, the label is made semi-transparent based
on the estimated intensity of labeled shadows, and ŝ is compared to it.

Assuming that a synthetic shadow image s ∈ [0, 1]H×W is given, we inject it to an
input image x as follows;

x′ = x� s, (4)

and we use x′ as a new input to the model. A loss function for training the model to predict
shadows is defined as

Lsynth(s, ŝ) :=
1

HW

H

∑
h=1

W

∑
w=1

1[shw 6= 1](ŝhw − shw)
2, (5)
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where 1[·] is a function that returns 1 when the condition is met and returns 0 otherwise.
Note that the loss Lsynth evaluates the area that the synthetic shadow exists. This is because
we do not know whether the original input already contains shadows. If the masking
term 1[shw 6= 1] is omitted, the model learns the region without the synthetic shadow as
a shadow-free region regardless of the presence of real shadows. Thanks to the mask,
we can train the model to estimate the intensity of the synthetic shadow, but the whole
estimated shadow tends to be dark. To prevent the estimated shadow ŝ from being too
dark and to make the default output white, we also introduce an auxiliary regularization
loss defined as

Lsynthreg(ŝ) :=
1

HW

H

∑
h=1

W

∑
w=1
|ŝhw − 1|. (6)

A linear combination of the three losses introduced above is a loss for training with
unlabeled US images. That is, the loss function is given as

Lunlabeled(x, s, x̂, ŝ) := λreconLrecon(x, x̂) + λsynthLsynth(s, ŝ) + λsynthregLsynthreg(ŝ), (7)

where λrecon, λsynth, λsynthreg > 0 are hyperparameters that decide the weight of each loss.
This training procedure using unlabeled data and the synthetic shadows is illustrated in
Figure 1b.

3.4. Use of Pixel-Level Labels and Extension to Semi-Supervised Learning

Pixel-level labels for US shadows are expensive as mentioned above, but if available,
they can contribute to the improvement of the estimation performance. We assume that
we have some pixel-level labeled data which labels are binary; whether each pixel is in
shadows or not. Ideally, we expect labels that express semi-transparency of shadows but the
correct intensities of shadows are unknown even for experts. Hence, we introduce a method
to effectively utilize the binary labels for the proposed shadow estimation framework.

Let l ∈ {0, 1}H×W be a pixel-level binary label that represents where shadows exist.
For each element in l, 0 and 1 correspond to a shadowed pixel and a shadow-free pixel,
respectively. Recall that the proposed auto-encoding model is based on the idea: each
input US image is considered to be generated by an element-wise product of the ideal
shadow-free image and the shadow image. If the ideal shadow-free image x∗ for an input
x is available, we can calculate the intensity of the labeled shadow by

l∗hw :=


xhw
x∗hw

(lhw = 0)

1 (lhw = 1)
. (8)

However, x∗ is actually unknown. Here, we estimate x∗ as a mean brightness over the
shadow-free area that is written as

x̂∗ :=
1

∑i,j Mij

H

∑
i=1

W

∑
j=1

Mijxij, (9)

where M ∈ {0, 1}H×W is a mask that represents the region without shadows. The mask M
is given as

Mhw :=

{
1 (lhw = 1 and xhw > T)
0 (otherwise)

, (10)

where T ∈ [0, 1] is a given threshold to ignore almost completely black areas that have no
shadows. In US images, liquids are shown in black. By thresholding, we can reject such
areas and estimate x∗ more precisely. Besides, for simplicity and stability of the training,
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we assume that the intensity of each labeled shadow is constant. Hence, Equation (8) is
rewritten and the resulting label with the estimated intensity is

l′hw :=


1
x̂∗
· ∑z∈S(xhw)

z
|S(xhw)|

(lhw = 0)

1 (lhw = 1)
, (11)

where S(xhw) is a subset of {xij}(i = 1, . . . , H, j = 1, . . . , W) that consists of xij inside the
shadow that contains xij. Calculation of l′ is summarized in Algorithm 1.

Algorithm 1 Estimation of shadow intensities using a pixel-level binary label.

Input: A US image x ∈ [0, 1]H×W , a pixel-level label of shadows l ∈ {0, 1}H×W , and a

threshold T.

Output: Semi-transparent label l′ ∈ [0, 1]H×W

1: M← l � 1[x > T]

2: x∗ ← 1
∑i,j Mij

∑H
i=1 ∑W

j=1 Mijxij

3: l′ ← l

4: for each labeled shadow lc in l (i.e., each connected component lc in l with a value 0)

do

5: for each coordinate (i, j) that corresponds to lc do

6: l′ij ← l′ij +
xij

x̂∗ |lc |
7: end for

8: end for

Using the estimated semi-transparent label l′, we can construct a loss function based
on Equation (5) as follows;

Llabel(l′, ŝ) :=
1

HW

H

∑
h=1

W

∑
w=1

(ŝhw − l′hw)
2. (12)

In contrast to Equation (5), we do not need the masking term anymore because the
label l′ tells not only shadowed areas but also shadow-free areas. Besides, the regularization
term given by Equation (6) is neither needed. The resulting loss function for labeled data is
given as

Llabeled(x, l′, x̂, ŝ) := λreconLrecon(x, x̂) + λlabelLlabel(l′, ŝ), (13)

where λrecon, λlabel > 0 are hyperparameters. Figure 1c illustrates the training procedure
with labeled data.

By switching Equations (7) and (13) according to the existence of labels, we can train
the proposed model in a semi-supervised fashion that effectively utilizes both unlabeled
data and labeled data. Assume that an unlabeled dataset Dunlabeled = {x1, . . . , xNunlabeled}
and a labeled datasetDlabeled = {(x1, l1), . . . , (xNlabeled , lNlabeled)} are given, where Nunlabeled
and Nlabeled are the number of unlabeled data and that of labeled data, respectively. Then,
a mini-batch B ⊂ Dunlabeled ∪Dlabeled can be drawn. The loss for the mini-batch is given as

L(B) = 1
|B|

 ∑
x∈B|unlabeled

Lunlabeled(x, s, x̂, ŝ) + ∑
(x,l)∈B|labeled

Llabeled(x, l′, x̂, ŝ)

. (14)

Note that s and l′ should be generated for each sample in the batch.
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4. Results
4.1. Setting

The encoder E and the decoder D were constructed just like U-Net [30]. Details of
the architecture are described in Appendix B. The model was optimized by Adam [34].
The size of the mini-batch was 32 and the number of training epochs was 10. The pa-
rameters of Adam were set to default except for the learning rate α that was set 10−4

initially and decayed to 10−5 through 10 epochs of training. The weight for the recon-
struction error λrecon was fixed to 1.0. Other hyperparameters were set by grid search
using the validation data. The search spaces of the hyperparameters are following:
λsynth = λlabel ∈ {10−2, 10−1, 1, 10, 102, 103}, λsynthreg ∈ {10−3, 10−2, 10−1, 1, 10}, and
vmin ∈ {0.1, 0.5} in Algorithm A1. Note that λsynthreg was set to zero in the semi-supervised
situations because we empirically found that the labels play the same role as the regular-
ization term. The selected hyperparameters are shown in Appendix C. To stabilize the
training, in semi-supervised situations, the labeled training dataset was oversampled so
that the number of the labeled data was almost equal to the size of the unlabeled dataset.
Specifically, the labeled data was simply repeated bNunlabeled/Nlabeledc times.

As a reference DNN based segmentation method, we used vanilla U-Net [30]. It was
trained on pixel-wise cross-entropy and optimized by Adam with α = 10−4. The size of the
mini-batch was 32. Because U-Net only uses the labeled dataset, the number of training
epochs was set so that the number of iterations equals that of the proposed method to
prevent underfitting. We empirically confirmed that the training of U-Net converged with
this setting.

For both the proposed method and U-Net, the parameters of the models were saved
every epoch. Then, the parameters that perform best for the validation dataset were
selected. In addition, random cropping is applied to input data and they are resized to
128× 128 for both the methods.

The geometrical method [19] and the random walk method [20] are also used as
references of methods that do not use labels. The parameters were in accordance with the
original papers. Because the geometrical method outputs shadow detection results along
scattered scanlines, we applied morphological closing filters to the results for adjusting to
pixel-level detection.

We show the experimental results on the testing dataset in the following sections.
For all the experiments, the testing images are cropped so that they contain no meta-
data and resized to 128× 128. Quantitative results for the validation dataset is shown in
Appendix D.

4.2. Shadow Detection

We evaluated the proposed method as a shadow detection method. In situations with
labels, we investigated the performance on different numbers of labeled data. The numbers
of labeled training data were set to 0, 42 (from 5 videos), 90 (from 10 videos), 177 (from
20 videos), and 259 (from all 30 videos). Since the proposed method estimates intensities of
shadows as ŝ, a threshold to convert ŝ to binary was searched using the validation dataset.
The threshold is selected from {0.001, 0.002, . . . , 0.999}. For the random walk method [20]
which estimates confidence maps, we also searched and applied a threshold in the same
way as the proposed method. The selected thresholds are shown in Appendix C. The
detection performance was evaluated by the DICE score [35] which is also known as F1
measure. Table 1 shows the results in the DICE score. Figures 2 and 3 shows examples of
shadow detection of the methods that do not use labels and the methods that use labels,
respectively (for additional results, see Figures A2 and A3).
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Table 1. Results of shadow detection evaluated in the DICE score. The scores are calculated for each testing image, and
means over them are shown. The numbers in parentheses are the standard deviations.

Number of Labeled Images

Method 0 42 (5 Videos) 90 (10 Videos) 177 (20 Videos) 259 (30 Videos)

Geometric method [19] 0.193 - - - -
(±0.210)

Random walk [20] 0.450 - - - -
(±0.142)

U-Net [30] - 0.610 0.655 0.681 0.698
(±0.184) (±0.170) (±0.136) (±0.137)

Ours 0.578 0.666 0.686 0.707 0.720
(±0.164) (±0.142) (±0.148) (±0.113) (±0.151)

Input
Ground

truth

Geom.
method

[19]
Random
walk [20] Ours

Figure 2. Examples of shadow detection results for the methods that do not use labels. The lower
side of each example shows detection results, and the upper side shows them overlayed to the
input image. For overlayed images, blue corresponds to low intensities and red corresponds to
high intensities.



Appl. Sci. 2021, 11, 1127 10 of 20

U-Net Ours

Input
Ground

truth 42 labels 90 labels 177 labels 259 labels 42 labels 90 labels 177 labels 259 labels

Figure 3. Examples of shadow detection results for the methods that use labels. The lower side of each example shows detection results, and the upper side shows them overlayed to the
input image. For overlayed images, blue corresponds to low intensities and red corresponds to high intensities.
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In the unlabeled situation, we can see that the proposed method outperformed the
other two methods from Table 1. The standard deviation was large for the geometric
method. The score of the geometric method is low but Figure 2 shows that performed
well in some examples. The random walk method scored better than that of the geometric
method and detected shadows that the geometric method could not. However, the outputs
of the random walk method tended to simply reflect the distance from the probe. The pro-
posed method estimated the shapes of the shadows well although the estimation results
tend to be blurred. Figure 2 also indicates that the proposed method successfully estimated
the intensities of the shadows.

In terms of the methods that use labeled data, that is, U-Net and the proposed method
in semi-supervised situations, the proposed method performed slightly better than U-Net
as Table 1 shows. We could see no clear trends for the standard deviations. The differences
in the DICE score were larger when the numbers of labeled data were smaller. Figure 3
shows that the two methods detected shadows in almost the same performance. The
proposed method expressed the intensities of the shadows while U-Net output the detection
result in maps that are almost binary.

4.3. Shadow Intensity Estimation

We evaluated the performance of the proposed method in the estimation of intensities
of shadows. Since we do not have the ground truth for shadow intensities, as a novel
indicator, we calculated the correlations of the brightness of the input image and the
estimation with respect to the area labeled as shadows. More specifically, given an input
image x, a pixel-label l, and a shadow estimation ŝ, the indicator is calculated as follows;

ρ(x, l, ŝ) :=
∑H

h=1 ∑W
w=1(1− lhw)(xhw − x̄)(ŝhw − s̄)√

∑H
h=1 ∑W

w=1(1− lhw)(xhw − x̄)2
√

∑H
h=1 ∑W

w=1(1− lhw)(ŝhw − s̄)2
, (15)

x̄ =
∑H

h=1 ∑W
w=1(1− lhw)xhw

∑H
h=1 ∑W

w=1(1− lhw)
, s̄ =

∑H
h=1 ∑W

w=1(1− lhw)ŝhw

∑H
h=1 ∑W

w=1(1− lhw)
, (16)

which is Pearson’s correlation coefficient [36] that is masked using the label l. Table 2 shows
the results. Since the conventional methods are designed for detecting shadows and not
estimating their intensities, the coefficients for them were just for benchmarks. It illustrates
that the proposed method achieved the largest coefficients for all the numbers of labeled
data. This indicates that our method estimated the shadow intensities the most precisely
among the methods we examined. The coefficients of U-Net are lower than that of the
proposed method but it was stable. The methods based on image processing, the geometric
method and the random walk, performed worse. Especially, the estimation of the random
walk method is the worst and had almost no correlations to the input image, despite
its better performance for shadow detection than the geometric method. The standard
deviation of the random walk method was larger than other methods and the method
seemed to be unstable for this indicator.
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Table 2. Evaluation of the estimation of shadow intensities. Scores are the correlation coefficient calculated by Equation (15).
The coefficients are calculated for each testing image, and means over them are shown. The numbers in parentheses are the
standard deviations.

Number of Labeled Images

Method 0 42 (5 Videos) 90 (10 Videos) 177 (20 Videos) 259 (30 Videos)

Geometric method [19] 0.152 - - - -
(±0.182)

Random walk [20] −0.047 - - - -
(±0.290)

U-Net [30] - 0.308 0.267 0.262 0.247
(±0.150) (±0.144) (±0.158) (±0.172)

Ours 0.351 0.388 0.414 0.358 0.349
(± 0.155) (±0.150) (±0.159) (±0.149) (±0.162)

4.4. Shadow Removal

The proposed method estimated shadows and shadow-free variants of the input
images at the same time. We evaluated the quality of the estimated shadow-free images
subjectively.

Figure 4 shows the examples of shadow removal performed by the proposed method
(for additional results, see Figure A4). We observed that the areas with low-intensity
shadows were efficiently enhanced. Additionally, the quality of the enhancement seemed
better when the performance of shadow detection was better. In contrast, the shadows
with high intensities tended to be just filled with blurred texture.

Estimation results

Input &
label No labels 42 labels 90 labels 177 labels 259 labels

Figure 4. Examples of shadow removal results of the proposed method. The lower side of each
example shows the labels and the detection results The upper side shows the input images and the
estimated shadow-free images.
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5. Discussion

Among the shadow detecting methods which do not use labels, the proposed method
detected shadows the most correctly. The other two methods could suffer from the differ-
ence of domains; the domains for which the methods were built and the domain of fetal
heart diagnosis that we used in this paper. Besides, the standard deviation of the DICE
score for the geometric method was large. This means that its detection performance varies
among the testing images. This is probably because the method heavily depends on the
domain for which it is designed. In that sense, our method has an advantage because it
is data-driven. Although the proposed method also uses domain-specific knowledge, it
only requires rough possible shapes of shadows that are determined mainly by the type of
the probe. In the situations that the labels are available, the proposed method achieved
comparable detection performance to U-Net which is a popular segmentation method for
medical images. When only 42 labeled images were used for training, our method was
better than U-Net. The auto-encoding structure possibly helped detection by extracting
features by the unlabeled data. The maximum number of labeled data, 259 from 30 videos,
was relatively small in the context of DNNs, but both the proposed method and U-Net
performed well. In terms of detecting shadows, the dataset was clean and in a narrow
domain, and it might be easy to detect shadows. From the perspective of data collection, we
revealed that a couple of hundred of labeled data is enough for one domain. The amount is
reasonable when it comes to accumulating data of different multiple domains.

One of the advantages of the proposed method is that it can estimate the intensities
of shadows. Although we cannot obtain the ground truth of the intensities, our method
estimated images of shadows which intensities are highly correlated to the brightness of
the shadowed areas of the input images, at least. The correlation coefficients were higher
than the other methods we used in the experiments. From the intensities of shadows,
we can assess the quality of US images using them. If we detect shadows in a binary
segmentation manner, the sizes of shadowed areas can be used for quality inspection. Our
method can provide additional information, the intensities of shadows, and we can check
US images based on it; an US image with large but light shadows should be allowed in
some situations, for example.

Although removing shadows is not the main target of our work, notably, our method
removed shadows of input US images without training on losses that directly lead the
decoder to output clean image as ĉ. This result could come from the model structure that
split the input into the estimated shadow and the estimated clean input and then compose
them into the reconstruction. Besides, the estimated clean images were clear, thanks to the
U-Net like structure that has skip-connections between the encoder and the decoder [37].
In a clinical sense, we cannot totally trust the estimated shadow-free images because the
shadowed areas are completed statistically. It means that the images of popular and healthy
cases are likely to appear even if the target of diagnosis has anomalies. However, generating
shadow-free images can work as a pre-processing for image recognition techniques.

6. Conclusions

We proposed an auto-encoding structure-based DNN that estimates acoustic shadows
in US images. The method estimates not only the location of shadows but also their
intensities. We also introduced the loss functions for training the model on both unlabeled
data and labeled data. For unlabeled data, synthetic shadows are generated using the
knowledge that the probes decide the shapes of shadows, and used as pseudo labels.
If binary pixel-level labels that tell us areas with shadows are given, they are effectively
utilized by converting them to labels with estimated intensities. By experiments on US
images for fetal heart diagnosis, we showed that our method detected shadows better
than the conventional methods in the situation without labels and did better to the DNN-
based segmentation method U-Net in the situations with labels available. In terms of
estimating the intensities of shadows, the proposed method performed the best. Moreover,
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we suggested the capability of our method in removing shadows as supplemental outputs,
not just estimating them.

Although our method employs the auto-encoding structure that extracts features from
input images, the difference in detection performance between fully-supervised U-Net
and semi-supervised our method was small. One possible reason for this result is that the
detection was easy; the images in the dataset were relatively clear and belonged to the
narrow domain. Applying to datasets that are in different domains or have more variations
of images has remained as one of the future work.

The proposed method can work with any US image recognition methods as a pre-
processing. We can reject low-quality data based on the estimated shadow images. The use
in such quality assessing ways is one of the possible future directions.
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Appendix A. Algorithm for Generating Synthetic Shadows

Algorithm A1 describes the process for generating synthetic shadows that correspond
to convex probes. The parameters in the algorithm were set p = [−128, 64], (dmin, dmax) =
(250, 290)[deg], (θmin, θmax) = (0, 10)[deg], (Rmin, Rmax) = (256, 256), rmin = 128, δθ = 1,
k = 10, σ = 1.55, and vmax = 1 in all the experiments. The parameter vmin is decided by
the grid search as described in Section 4.1.
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Algorithm A1 Generation of annular sector shaped synthetic shadows. A function U(·, ·)
draws a sample from a uniform distribution.

Input: Parameters for annular sectors (center coordinate p ∈ R2, range of direction

dmin, dmax, range of angle θmin, θmax, range of outer radius Rmin, Rmax, and minimum in-

ner radius rmin), blurring parameters δθ , k, σ, and range of shadow intensity vmin, vmax.

Output: Image of a synthetic shadow s ∈ [0, 1]H×W .

1: d← U(dmin, dmax).

2: θ ← U(θmin, θmax).

3: R← U(Rmin, Rmax).

4: r ← U(rmin, R).

5: v← U(vmin, vmax).

6: s← 0H,W (a zero matrix shaped H ×W).

7: for i = −(k− 1)/2, . . . , (k− 1)/2 do

8: Let sk ∈ [0, 1]H×W be a image that filled with 1 inside an annular sector which center

is p, outer radius is r, angle is d + (iδθ), and direction is θ, and 0 otherwise.

9: s← s + sk.

10: end for

11: s← v(s/ max(s)).

12: s← 1− s.

13: Apply Gaussian blur with variance σ2 to s.

Appendix B. Details of DNNs

The encoder and the decoder of the proposed method had almost the same structure
as U-Net [30]. Its network architecture is shown in Figure A1. To stabilize the training,
we used leaky ReLU [38] as an activation function for convolution layers.

Figure A1. Detailed architecture of the encoder and the decoder for the proposed method.

Appendix C. Selected Hyperparameters

The hyperparameters for the experiments are shown in Table A1. These are selected
by the grid search as described in Section 4.1.
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Table A1. Hyperparameters selected in the experiments by the grid search.

Number of Labeled Images

Hyperparameter 0 42 (5 Videos) 90 (10 Videos) 177 (20 Videos) 259 (30 Videos)

Threshold for random walk [20] 0.996 - - - -
Threshold for the proposed method 0.865 0.870 0.890 0.894 0.885
λsynth = λlabel 0.996 1 1 10 10
λsynthreg 0.996 10−3 0 0 0
vmin 0.996 0.1 0.5 0.1 0.5

Appendix D. Additional Results

Figures A2 and A3 shows the additional examples of the shadow detection results.
Figures A2 and A3 correspond to Figures 2 and 3, respectively. Table A2 shows the shadow
detection results in the the DICE scores for the validation dataset. Its trend is similar to
that for the testing dataset that is shown in Table 1.

Table A3 shows the result of the shadow intensity estimation for the validation dataset.
The results are similar to these for the testing dataset that are shown in Table 2.

Figure A4 shows the additional examples of the shadow removal results. It corre-
sponds to Figure 4.

Input
Ground

truth

Geom.
method

[19]
Random
walk [20] Ours

Figure A2. Additional examples of shadow detection results for the methods that do not use labels.
The lower side of each example shows detection results, and the upper side shows them overlayed to
the input image. For overlayed images, blue corresponds to low intensities and red corresponds to
high intensities.
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Table A2. Results of shadow detection for the validation dataset evaluated in the DICE score. The
scores are calculated for each validation image, and means over them are shown. The numbers in
parentheses are the standard deviations.

Number of Labeled Images

Method 0 42 (5 Videos) 90 (10 Videos) 177 (20 Videos) 259 (30 Videos)

Geometric method [19] 0.201 - - - -
(±0.213)

Random walk [20] 0.349 - - - -
(±0.151)

U-Net [30] - 0.539 0.575 0.636 0.657
(±0.220) (±0.215) (±0.176) (±0.181)

Ours 0.491 0.615 0.640 0.676 0.692
(±0.180) (±0.176) (±0.201) (± 0.157) (±0.172)

Table A3. Evaluation of the estimation of shadow intensities for the validation dataset. Scores are the
correlation coefficient calculated by Equation (15). The coefficients are calculated for each validation
image, and means over them are shown. The numbers in parentheses are the standard deviations.

Number of Labeled Images

Method 0 42 (5 Videos) 90 (10 Videos) 177 (20 Videos) 259 (30 Videos)

Geometric method [19] 0.194 - - - -
(±0.131)

Random walk [20] −0.054 - - - -
(±0.295)

U-Net [30] - 0.282 0.267 0.262 0.210
(±0.170) (±0.158) (±0.168) (±0.187)

Ours 0.353 0.426 0.420 0.338 0.310
(±0.190) (±0.131) (±0.140) (±0.153) (±0.168)

U-Net Ours

Input
Ground
truth

42 la-
bels

90 la-
bels

177
la-

bels

259
la-

bels
42 la-
bels

90 la-
bels

177
la-

bels

259
la-

bels

Figure A3. Additional examples of shadow detection results for the methods that use labels. The
lower side of each example shows detection results, and the upper side shows them overlayed to
the input image. For overlayed images, blue corresponds to low intensities and red corresponds to
high intensities.
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Estimation results

Input &
label No labels 42 labels 90 labels 177 labels 259 labels

Figure A4. Additional examples of shadow removal results of the proposed method. The lower side
of each example shows the labels and the detection results. The upper side shows the input images
and the estimated shadow-free images.
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