
applied  
sciences

Article

Synthesizing Individual Consumers′ Credit Historical Data
Using Generative Adversarial Networks

Nari Park † , Yeong Hyeon Gu † and Seong Joon Yoo *

����������
�������

Citation: Park, N.; Gu, Y.H.; Yoo, S.J.

Synthesizing Individual Consumers′

Credit Historical Data Using

Generative Adversarial Networks.

Appl. Sci. 2021, 11, 1126.

https://doi.org/10.3390/app11031126

Received: 28 December 2020

Accepted: 22 January 2021

Published: 26 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, Sejong University, Seoul 05006, Korea; nari.park@sejong.ac.kr (N.P.);
yhgu@sejong.ac.kr (Y.H.G.)
* Correspondence: sjyoo@sejong.ac.kr; Tel.: +82-10-8914-5266
† These authors contributed equally.

Abstract: The financial sector accumulates a massive amount of consumer data that contain the
most sensitive information daily. These data are strictly limited outside the financial institutions,
sometimes even within the same organization, for various reasons such as privacy laws or asset
management policy. Financial data has never been more valuable, especially when assessed jointly
with data from different industries, including healthcare, insurance, credit bureau, and research
institutions. Therefore, it is critical to generate synthetic datasets that retain the statistical or latent
properties of the real datasets as well as the privacy protection guaranteed. In this paper, we apply
Generative Adversarial Nets (GANs) to generating synthetic consumer credit data to be used for
various educational purposes, specifically in developing machine learning models. GAN is preferable
to other pseudonymization methods such as masking, swapping, shuffling, or perturbation, for
it does not suffer from adding more attributes or data. This study is significant because it is the
first attempt to generate the synthetic data of real-world credit data in practical use. The results
find that synthetic consumer credit data using GAN shows a substantial utility without severely
compromising privacy and would be a useful resource for big data training programs.

Keywords: consumer credit historical data; synthetic data generation; generative adversarial networks;
artificial intelligence data mining; financial big data

1. Introduction

Personal data provide a wide range of economic and social benefits, namely, by
enabling service providers to design customized services, helping commercial and public
sectors with the decision-making process. In particular, the financial industry accumulates
accurate and reliable personal data and credit card information in volume every day. When
joined with logistics, healthcare, insurance, credit bureau, or any up/downstream sectors,
it is expected to generate more value. Besides, it is possible to innovate financial services
to become more customer-oriented through developing customized financial products
and credit rating models for financial information that reflect personal characteristics in
consumption, savings, and investment behavior.

However, disclosing such sensitive information without proper remedy would result
in unlawful discrimination, for instance, charging higher rates on loans or insurance premi-
ums. For this reason, many state and local governments proposed regulations and guide-
lines on data protection and dissemination in the last couple of years. The guideline lists
the measures to meet the principles, pseudonymization methods, and non-identification
adequacy metrics to reduce the exposure risks [1]. Nevertheless, even if anonymized, it is
not all impossible to re-identify a specific individual from a dataset, even in a 1% subset of
the data released [2]. The anonymization and utility trade-off would be more challenging
when considering a large dataset or datasets, with many attributes, having intra-record
and inter-record correlations. As an alternative, synthetic data generation was introduced
to overcome the limitations.
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Rubin (1987) first introduced the concept of synthetic data and considered all the
observations that are not part of the sample as missing data and tried to impute them using
multiple imputations [3]. The random samples from the imputed data are then ready to
be released to the public. Since then, many parametric and non-parametric methods to
generate synthetic data have been introduced. Aside from it, many methodologies have
been developed: a classical statistical method in which synthetic data are sampled from the
posterior probability distribution resulted from the estimator at which the joint probability
density function becomes the maximum; Bayesian inference where the posterior probability
distribution is estimated by the conditional distribution of specific observation, for which
the prior probability distribution and likelihood functions are derived from all observa-
tions [4]; non-parametric methods that generate synthetic data with randomly selected
samples from the observations without estimating the posterior probability distribution;
tree-based algorithms that define the models for each section by repeatedly splitting nodes
in sub-nodes; and more. Synthetic data generated in various ways depending on the
research and data types have been used not only in imputing the missing data and pro-
tecting sensitive information but in dealing with imbalanced data such as fraud detection,
spam classification, customer churn prediction, or in saving budget to run a costly big
data solutions.

As data structure becomes intricate, conventional statistical techniques that generate
synthetic data by sampling from a multivariate joint probability distribution between
several variables cannot easily estimate an appropriate distribution for all cases. For ex-
ample, in cases of a Markov model hidden in time-series data or variables with non-linear
correlations, one can use copulas to model and estimate the distribution of random vectors
by estimating marginals and copula separately. However, the results become affected by
user-defined distributions, and if defined wrong, the resulting distribution is no longer
reliable. Non-parametric techniques like tree-based methods, samples are drawn from the
posterior probability distribution estimated directly from the observations. Its splits may
vary with additional data and the order in which variables are generated. Accordingly, re-
searchers have turned to randomization, namely Generative Adversarial Network (GAN),
and it has already shown remarkable performances in image processing.

As stated by Assefa (2019), the most common needs of the synthetic data in finance
would be the following [5]: (1) It lacks historical data of certain events, such as fraudulent
activities, recessions, or new trends of consumer behavior affected by both internal or
external factors. The synthetic dataset could produce as much data of such rare events for
simulations and training machine learning algorithms; (2) As data will be more valuable
when assessed jointly with other industries, data sharing without exposure risk is not an
option, but a necessity; (3) The vast amount of data would not be available for sharing if
the infrastructure like cloud services or computing powers is not ready, and the synthetic
dataset can be used in training models and applied on real data onsite.

2. Related Work

Torres (2018) explains the synthetic data generation using GAN in six steps [6]. First,
data preprocessing begins by detecting 2D data schema, structure, and types. Second,
analyzing patterns by measuring the co-relations between the data attributes. It is for a
better quality of the synthetic dataset by determining the order in which the attributes
should be generated. Next, a feature engineering process is performed on input data for
a machine learning model and statistical functions. This encoding process transforms
the data on different spaces, normalizes the distribution, or converts categorical data into
vectors. Such encoded data then randomly selected as an input data set, the model is trained
for the user-defined iteration, and the weights and loss determine the best performing
model. It is followed by training and validating the models with the encoded input data.
To be noted here is that the error between the output and original data is usually measured
with cross-entropy. In contrast, GAN uses Wasserstein distance as its loss function for
stability. Finally, the data production is executed with the best performing model, and a
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feature reversing engineering is carried out to present the output data in the same format
as the input data.

Park (2018) proposed table-GAN by adding a classifier in addition to the Generator
and Discriminator for semantic integrity [7]. Saatchi (2017) suggested a Bayesian GAN
that explores the posterior distributions of the parameters for the Generator to solve
mode-collapse issues, which frequently occur in multimodal data, a sum of multiple
distributions [8]. It also applied stochastic gradient Hamiltonian Monte Carlo to find the
marginal distribution of weights.

To generate synthetic time-series data Hyland (2017) introduced RGAN and RCGAN
using patients′ health records [9]. Although both models used LSTM for the Generator and
Discriminator, RCGAN applied conditional GAN for additional information. ForGAN by
Koochali (2019) is not a synthetic data generating model, and yet, it still used conditional
GAN to forecast some sensor data and network traffic [10]. Zhang (2018) built a CGAN to
generate smart grid data, only that it used CNN instead of LSTM for time-series data [11].
The patterns and levels are user-defined statistical features, the sum of which represents
the time-series attributes. The idea of defining the attributes with their major components
and patterns helped assess consumer credit data by subgroups. Kumar (2018) applied the
a priori concept to GAN generating orders conditional to products [12].

GAN has delivered considerable achievements in domains where involve continuous
variables like pixel-based images. Discrete variables are challenging because they are often
non-differentiable, almost impossible to train a network using backpropagation [13–17].
medGAN, proposed by Choi (2018), combines autoencoder and GAN to generate high-
dimensional categorical electronic health records [18]. It implemented batch normalization
to improve efficiency in training and minibatch average to resolve mode-collapse.

Xu (2018) suggested a Python package TGAN (Tabular GAN) that generates synthetic
table data consisted of both continuous and discrete variables [19]. For continuous variables,
it first extracts the multiple distributions using Gaussian Mixture Model and creates a
dataset through clustering. In the case of discrete variables, it converts the integer encoding
to a one-hot encoding, then adds a uniformly distributed noise and re-normalizes them
by smoothing to make them differentiable. It uses Kullback-Leibler divergence as its loss
function and trains the network by marginal probability distribution while minimizing
the loss. TGAN does not consider time-series data features, while this study is the first
empirical case that applied GAN on individual consumers′ credit historical data and
evaluated the model in a way credit bureau practitioner do.

This paper tries to generate synthetic consumer credit data for educational purposes,
analyzing and exploiting big data. Consumer credit data is an RDBMS consisted of four
tables, including car owner’s personal information, credit cards, loans, and delinquency
records. Unlike other datasets used in the above studies, consumer credit data contains
many car owners who have multiple credit history over the decades. Maintaining the
statistical properties of the entire dataset and reserving each car owner’s historical credit
data period by period would be challenging since the credit depends on the car owner’s
profile and the characteristics of the times. The multimodal data distributions and their
marginal probability distribution are essential features to capture to reserve the balance by
transaction period.

In this paper, we generate synthetic consumer credit historical data using GAN and
compare the resulting dataset to the original dataset by measuring the statistical properties,
consistency, and exposure risks. The next section reviews previous studies on synthetic
data generation with GAN in terms of data types and methodology. The methodology
in Section 3 describes the input data, data processing, the neural network architecture,
and the loss function. Section 4 compares the synthetic to the original with univariate and
multivariate distributions, the correlations between variables, delinquency rates at the
end of each year, and the number of unique and identical records. Finally, the last section
addresses the limitations of this study and future research suggested.
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3. Materials and Methods

This chapter describes the GAN architecture for synthetic consumer credit data, in-
cluding profile, credit card account, loan history, and delinquency history. It begins by
explaining the input data, data preprocessing, the neural network, and the loss function.

3.1. Consumer Credit Data

Korea Credit Information Services (KCIS) regularly collects credit information from
financial institutions and public agencies. Using this credit information, it constructs a
de-identified sample database and provides users for academic research purposes. This
study uses a sample dataset from 2015 to 2019, about 1.8 million individuals, to generate
synthetic data to instruct the service applicants. As seen in Table 1, car owner’s IDs are
all randomly generated identification. SECTOR ID indicates a financial institution where
credit cards, loans, and delinquencies are issued or outstanding as of the date. Institution
ID is randomly generated for each car owner only to distinguish the corporations within
the car owner′s records so that even if two car owners have borrowed from the same
corporation, the two may have different Institution IDs. All three IDs jointly work as the
join keys. It should be noted that the statistical analytics results do not represent that from
the original datasets as the original dataset is not allowed nor accessible off-site for privacy
issues; we used the non-parametrically generated synthetic data as our original data.

Table 1. Consumer Data Tables and columns.

Table Information

Personal information ID (randomly generated), Birth Year, Gender

Loans Date, ID, SECTOR ID, INST ID (randomly generated for each car
owner), Loan Type, Loan Term, Issue Date, Balance

Delinquencies Date, ID, SECTOR ID, INST. ID, Delinquency Type, Original
Delinquency Date, Balance

Credit Cards Date, ID, SECTOR ID, INST. ID, Credit Card Type, Cardholder Type,
Issue Date

3.2. Data Preprocess

As seen in Section 3.1, car owner’s credit data consists of four tables, joined by ID,
SECTOR ID, and Institution ID, and each car owner may have more than one record over
decades, showing many-to-many relationships among the tables.

First, we grouped the car owners into seven subgroups based on the accounts and
turned the snapshots into line-history tables so that each row represents one transaction.
Subgroups are as follows: (1) those with credit card account, (2) loan, (3) delinquencies—
collected from public agencies like civil courts, (4) credit cards and loans, (5) credit cards
and delinquencies, (6) loans and delinquencies, and finally, (7) those have all three records.
We then created a table by joining four line-history tables using the join keys (Table 2).
Still, a car owner may have more than one transaction, or one row. In doing this, we
replaced the balances, the dates, and the closing date with its average during the period,
ordinal numbers, and the duration of the account in months, respectively. We also created
a conditional attribute, the order of accounts for each car owner based on the earlier of the
Issue Date and Original Date.
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Table 2. Line-History Table.

No Column Description Type

1 ID Car owner ID -
2 BTH_YR Birth year Numerical
3 GENDER Gender Categorical
4 ORDER* Order of account Categorical
5 SECTOR_ID Financial sectors Categorical
6 INST_ID Financial institution Categorical
7 CR_CD_1 Credit card type Categorical
8 CR_CD_2 Cardholder type Categorical
9 CR_YM Credit card issue date Numerical
10 CR_DUR* Holding period(mo) Numerical
11 LN_CD_1 Loan type Categorical
12 LN_CD_2 0: Short-term; 1: Long-term Categorical
13 LN_AMT Average balance during the period Numerical
14 LN_YM Loan issue date Categorical
15 LN_DUR* Loan outstanding period(mo) Numerical
16 DQ_CD_1 Delinquency type Categorical
17 DQ_AMT Average balance during the period Numerical
18 DQ_YM Delinquency original date Numerical
19 DQ_DUR* Delinquency period(mo) Numerical

3.3. Neural Network Architecture

Conditional GAN is an extension of a GAN with a conditional variable y, which
can be any extra information fed into both the Discriminator and Generator as an input
layer [20,21]. As seen in Figure 1, random noise z, and the conditional variable, y, are
concatenated in the hidden layer of the Generator to generate fake data x′. This output
of the Generator x′, and the condition y, become an input for the Discriminator. The
loss function is a min-max simultaneous optimization between the Discriminator and
the Generator.
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Figure 1. Structure of Conditional GAN for synthetic consumer credit data.

Synthetic data generation begins by setting the order of accounts as the condition y.
For each subgroup, we train the Discriminator with the original data x, over its condition y,
random noise z, and its condition y′. Trained by the Discriminator, the Generator takes
random noise z, and its condition y′, as input and processes them to generate fake data x′

and y′, which become the input for the Discriminator. Then, the labeled data predicted as
real by the Discriminator are converted back to the form of the original data.

3.3.1. Input Data Embedding

We have divided the dataset into seven subgroups to keep the patterns that might
exist in those who have delinquencies and set the order of accounts as the conditional
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variable. As seen in Figure 2, the group with three loans seems to have most car owners
in their late 30 s to 50 s. On the other hand, the group with five loans has most in their
late 20 s and 50 s. A detailed discussion on this is beyond the scope of this paper, but it
is clear that one′s financial activities are highly associated with one′s age, the type of the
accounts, and its issue date and duration. With an assumption that the numerical variables
are multimodal distribution, we estimate the number of modes and cluster the numerical
variables using the Gaussian Mixture Model (GMM).
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As described in Figure 3, we cluster the numerical variables using GMM as fol-
lows: first, set the probability that a sample si,j,1, · · · , si,j,m, belongs to each cluster as
pi,j,1, · · · , pi,j,m, and the mean and standard deviation for each distribution as µi,j,1, · · · , µi,j,m
and σi,j,1, · · · , σi,j,m, respectively. Since pi,j,1, · · · , pi,j,m is a normalized probability dis-
tribution of the sum of m Gaussian distributions, we normalize a sample si,j, as vi,j, and
finally, a numerical sample si,j, is denoted with a vector pi,j, vi,j. For categorical variables,
we used a light version of Gumbel- SoftMax, adding a uniformly distributed noise to
one-hot vectors to make them dense or differentiable [15,17,22]. A categorical sample si,j,
after one-hot encoded and added by a noise drawn from a uniform distribution, is denoted
as di,j.

Afterward, we rebuild the table by binding the column vectors in the form of pi,j,1, . . . ,
pi,j,m, vi,j,1, . . . , vi,j,m, di,j. This form applies to the output of the Generator, and it becomes
an input for the Discriminator. Once labeled either real or fake, the vectors are converted
back to the original form of data; for numerical variables si,j = 2vi,j,kσi,j,k + µi,j,k, where k
lies between 1 to m, inclusive; for categorical variables, by simply taking the index of the
largest element of di,j.



Appl. Sci. 2021, 11, 1126 7 of 15Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 15 
 

 

Figure 3. Data preprocessing and embedding. 

3.3.2. Generator 

The Generator takes the normalized vector 𝑣𝑖,𝑗  and its cluster information vector 

𝑝𝑖,𝑗, as its input and predicts the probability distributions for categorical data, 𝑑𝑖,𝑗. For 

subgroups with two or more accounts, we used LSTM as there is a causality. For example, 

the group with cards and loans had issued the credit card, then the loan occurred through 

the same account, or those with loans and delinquencies must have had outstanding loans 

before the account turned into delinquent. In any case, the balance may not be summed 

up to the preceding account. The inputs to each LSTM could be either a random vector 𝒛, 

𝑡𝑎𝑛ℎ(𝑊ℎℎ𝑡−1), or 𝑡𝑎𝑛ℎ(𝑊ℎℎ′𝑡−1), where ℎ𝑡−1 is a hidden vector at 𝑡 − 1, ℎ′𝑡−1 is its em-

bedding vector, and 𝑊ℎ is the weight of the layer. 

Figure 4 shows how the Generator is trained using the output of the Discriminator. 

The Generator itself does not yield the loss directly; in fact, its output feeds into the Dis-

criminator, and the generator loss penalizes the Generator for generating data classified 

as fake. Weight adjustment begins with the Discriminator output goes back through the 

Discriminator into the Generator. 

ℒG = 𝐸𝒛~𝑃𝑍(𝒛)
[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝒛|𝒚)))] + ∑𝐾𝐿(𝒙′, 𝒙), (1) 

 

Figure 4. Generator training. 

Figure 3. Data preprocessing and embedding.

3.3.2. Generator

The Generator takes the normalized vector vi,j and its cluster information vector
pi,j, as its input and predicts the probability distributions for categorical data, di,j. For
subgroups with two or more accounts, we used LSTM as there is a causality. For example,
the group with cards and loans had issued the credit card, then the loan occurred through
the same account, or those with loans and delinquencies must have had outstanding
loans before the account turned into delinquent. In any case, the balance may not be
summed up to the preceding account. The inputs to each LSTM could be either a random
vector z, tanh(Whht−1), or tanh(Whh′t−1), where ht−1 is a hidden vector at t− 1, h′t−1 is its
embedding vector, and Wh is the weight of the layer.

Figure 4 shows how the Generator is trained using the output of the Discriminator.
The Generator itself does not yield the loss directly; in fact, its output feeds into the
Discriminator, and the generator loss penalizes the Generator for generating data classified
as fake. Weight adjustment begins with the Discriminator output goes back through the
Discriminator into the Generator.

LG = Ez∼PZ(z)
[log(1− D(G(z|y)))] + ∑ KL

(
x′, x

)
, (1)
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3.3.3. Discriminator

The structure of the Discriminator is a fully connected multilayer perceptron with an
activation function of LeakyReLU for a weighted penalty and Adam optimizer. Trained
with both the real and fake data with labels, it attempts to classify the incoming labeled
data as real or fake out of the given batches of labeled data, containing both the randomly
generated and the samples from the real data.

LD = Ex∼PX(x)
[log(D(x

∣∣∣y))]+Ez∼PZ(z)
[log(1− D(G(z

∣∣∣y)))], (2)

3.3.4. Loss Function

We used Adam optimizer when training our model and added the optimized Kullback–
Leibler (KL) divergence as a constraint so that it would converge more stably [19]. KL-
Divergence, instead of cross-entropy, was used because it gives a relative distance in a
mixture of categorical and clustered continuous variables. We compute the final objective
function as follows by optimizing (1) and (2):

minGmaxD = Ex∼pX(x) [logD(x|y)] + Ez∼pZ(z) [log(1− D(G(z|y)))] + ∑ KL
(

x′, x
)
, (3)

It infers the probability of true or false when a dataset is assigned to a conditional
variable y, which is the order of the accounts. Theoretically, KL divergence is not a
distance but a measure for how two distributions are different. The concept is widely
used as a distance measure because the more two distributions are different, the higher the
divergence, and the divergence becomes 0 only when the two are identical. However, one
should be aware of the fact that it is not symmetric DKL(p ‖ q) 6= DKL(q ‖ p), where p is
the probability distribution of the original dataset, and q is the probability distribution of a
synthetic dataset.

4. Results

While other neural networks train with a loss function until it converges, GAN
trains the Generator with the Discriminator classifying the outputs of the Generator as
real or fake. As the evaluation of the Generator solely depends on the performance of
the Discriminator, when the Discriminator fails, there is no way to assess the quality
of the Generator objectively. Moreover, as Snoke et al. (2017) suggested, the agencies
who provide the synthetic data will not know what analyses users would carry out and
therefore, the utility measure should be analyses-specific [23]. For that reason, we first
examined the statistical confidentiality and the normalized mutual information, then
inspected how consistent the synthetic data compared to the original data using the
analysis approaches credit ratings agencies practice. We also used a few standalone
machine learning algorithms to predict delinquency and compared the confusion matrix
and accuracy for data consistency.

4.1. Statistical Confidentiality

Snoke et al. (2017) introduces general statistical utility measures, including propensity
scores and interval-overlap [23]. However, we concluded that in this consumer credit
case, such statistical measures would not be sufficient considering exposure risks alto-
gether. To be specific, previously known methods are applied to cross-sectional data, an
observation on a sample at one given time, but consumer credit observes a group sample
over a successive period. Even if the propensity scores and interval-overlap agree at 5%
confidence interval, it does not necessarily mean that they are distributed accordingly to
the corresponding period. Therefore, for the statistical confidentiality, we only compare the
distributions of the attributes from the original and synthetic data to see if the model can
generate the mixture of Gaussian distribution.

As shown in Figure 5, the distributions of attributes in the synthetic dataset fit very
close to the distributions of the original dataset. It is also notable that they show sharper
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peaks than those in the original dataset. It seems to be that applying a GMM to data
generation has highlighted its features of the multimodal distribution.
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4.2. Normalized Mutual Information

Next, we compared the Normalized Mutual Information (NMI), quantifying the
mutual dependence between two random variables to scale between 0, where there is no
mutual information, and 1, there is a perfect correlation. NMI normalizes two variables
and measures the KL divergence between their joint distribution and their products, or
marginal distributions. If two variables are independent, their joint probability is equal to
the marginal distribution. Therefore, the divergence is 0, and there is no mutual information
between them. As the KL divergence grows from zero, two variables are dependent; thus,
they share mutual information.

Figure 6 shows the NMI of the group with three loans. While the term of the loan, set
to either 0 or 1 depending on whether it is shorter than six months, shows relatively low
mutual information, mutual information among the rest of the variables are well-reflected.
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4.3. Data Consistency

For data fidelity, we compared the percentage of overdue by sector, loan type, number
of credit cards, and its holding period at the end of the years from 2016 to 2018. The left
column of Figure 7 shows the delinquency rate by sector at the end of each year. The
balances are relatively well maintained. The delinquency rate is quite higher than the
original data; however, the synthetic dataset reflects the overall trends throughout the
outstanding period. Sectors 17 and 21 are indicating third-tier financial institutions and
savings banks, respectively. It seems to be that the number of unsecured loans made by
third-tier institutions is relatively small and, therefore, difficult to predict its probability
distribution more precisely.
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The right column of Figure 7 shows the delinquency rate by loan types at the end
of each year from 2016 to 2018, except for the loan type 170 and 510, which are loans for
a lump-sum deposit for housing and used car mortgage, respectively, their trends are
consistent with each other. Although the rate is slightly higher than the original dataset,
the synthetic dataset replicates the overall trends throughout the outstanding period.

As seen in Figures 8 and 9, the delinquency rates by the credit card holding period
and the number of credit cards, respectively, from the synthetic dataset are higher than the
original dataset. However, the overall trends are consistent with the original dataset.
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Figure 9. The delinquency rate by the number of holding credit cards at the end of the years from
2016 to 2018.

We found that the delinquency rates are exaggerated throughout the period from
2016 to 2018, no matter under which condition. It seems to account for that the risk of
delinquency is low in the early period and increasing throughout the whole period. We
assume that the algorithm might have highlighted such features, ignoring rare cases, and
emphasizing the regular ones.

In addition to this, we tried to evaluate the synthetic dataset using Logistic Regression,
Decision Tree, and Support Vector Machine algorithms. Although those models are not
generally used standalone to forecast or classify, for the scope of this study is to generate a
dataset preserving the statistical properties of the original data, comparing the datasets
using the above standalone models would suffice to say that the two datasets agree at a
reasonable level. We created new columns—the number and amount of loans, non-bank
loans, and collateral-free loans—for each car owner for predictor variables, as listed in
Table 3, since creditors, or models, should not discriminate against borrowers on a loan
application or interest rates based on one′s characteristics such as age, sex, or race. The
results show that the algorithm′s performances on original and synthetic datasets are
considerably close enough that the synthetic dataset can be used as training data as in
Figure 9.
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Table 3. Predictor variables to forecast delinquency.

Column Description

num_NBLN_COM Number of non-bank institutions
num_NCLN_COM Number of institutions made unsecured loans

MAX_LN_DUR The maximum loan outstanding period
MIN_LN_DUR The minimum loan outstanding period

num_LN Number of total loans outstanding
amt__LN Total amount of loans outstanding

num_NBLN Number of non-bank loans
amt_NBLN Amount of non-bank loans
num_NCLN Number of unsecured loans
amt_NCLN Amount of unsecured loans

dlq 0 = Not delinquent loan, 1 = Delinquent loan

Table 4 shows the confusion matrices from the forementioned standalone machine
learning algorithms. For each model, a confusion matrix with two rows and two columns
reporting the number of true negative, false positive, true positive, and false negative,
respectively from top left, clockwise. The synthetic dataset tends to yield more correct
prediction on the loans that are not delinquent while yielding more wrong prediction on
the loans that are delinquent than the original data. It indicates that the synthetic data
has selected and generated the features of non-delinquent loans better than it has on the
features of delinquent loans.

Table 4. Confusion matrices for original and synthetic data.

Model Data Actual Predicted 0 Predicted 1 Total

Logistic
Regression

Original
Actual 0 709 191 900
Actual 1 255 632 887

Total 964 823 1787

Synthetic
Actual 0 771 129 900
Actual 1 321 566 887

Total 1092 695 1787

Decision Tree

Original
Actual 0 675 225 900
Actual 1 227 660 887

Total 902 885 1787

Synthetic
Actual 0 629 271 900
Actual 1 281 606 887

Total 910 877 1787

LDA
(Latent

Dirichlet
Allocation)

Original
Actual 0 770 130 900
Actual 1 287 600 887

Total 1057 730 1787

Synthetic
Actual 0 769 131 900
Actual 1 328 559 887

Total 1097 690 1787

Support
Vector

Machine

Original
Actual 0 732 168 900
Actual 1 227 660 887

Total 959 828 1787

Synthetic
Actual 0 771 129 900
Actual 1 305 582 887

Total 1076 711 1787

Finding a significant difference between two confusion matrices could be not only
difficult, but risky as uninformative as it can be. A statistical difference might advise one
cell of the matrix is different but does not provide enough information which metric or
metrics are different. Therefore, we used standard approach that uses a single value metric
to reduce each matrix into one value, and then to compare the values. Table 4 compares
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the same model on different datasets, the original and synthetic data, using precision,
recall, and F1 metrics. Not to mention that we are not trying to compare the performance
of the algorithms, but how algorithms work on two different datasets and check if they
yield similar performance. Precision is the ratio of the actual delinquent loans to the loans
that are predicted to be delinquent. Once a loan is predicted to be delinquent, the agency
should start managing it by reminding the borrowers or offering other payment methods
with lower interest rates, which are costly. Recall measures how many of the loans that are
delinquent over the loans that are predicted not to be delinquent. Although this seems to
be the situation most agencies want to avoid, higher recall does not always come before
higher precision in this case for banks would not want to miss customers by rejecting a loan.
To get a tradeoff between precision and recall, we use their harmonic mean, or F1-Score. In
Table 5, the F1-Score is no more than 5% point in all models for each category, 0 and 1. We
conclude that the synthetic data could be used for training in developing machine learning
models without distortion of reality.

Table 5. Forecast accuracy comparison.

Model Data Actual Precision Recall F1-Score Support

Logistic Regression
Original Actual 0 0.74 0.79 0.76 900

Actual 1 0.77 0.71 0.74 887

Synthetic Actual 0 0.71 0.86 0.77 900
Actual 1 0.81 0.64 0.72 887

Decision Tree
Original Actual 0 0.75 0.75 0.75 900

Actual 1 0.75 0.74 0.74 887

Synthetic Actual 0 0.69 0.70 0.70 900
Actual 1 0.69 0.68 0.69 887

LDA (Latent Dirichlet Allocation)
Original Actual 0 0.73 0.86 0.79 900

Actual 1 0.82 0.68 0.74 887

Synthetic Actual 0 0.70 0.85 0.77 900
Actual 1 0.81 0.63 0.71 887

Support Vector Machine
Original Actual 0 0.76 0.81 0.79 900

Actual 1 0.80 0.74 0.77 887

Synthetic Actual 0 0.72 0.86 0.78 900
Actual 1 0.82 0.66 0.73 887

4.4. Disclosure Risk

Soria-Comas (2017) explains the trade-off between overfitting and variance in data
utility and disclosure risk [24]. In this, differential privacy is a relative measure that
guarantees a similar variation in the neighboring datasets. As synthetic data mimics the
original dataset distribution more closely, the errors would be lesser, or the disclosure risk
would increase.

Fully synthesized data, where there is no direct mapping between real and synthetic
datasets, disclosure risks are considered low since each combination of variables in fully
synthetic data does not correspond to any individual. Moreover, even if an identical row is
observed, it does not guarantee that the record belongs to an individual unless the rest of
the individual′s historical data must be consistent as well.

Also, the original dataset used for this study had already been de-identified for privacy
issues; the number of the unique records identically generated would be the exposure risk
measure [25,26]. Out of over 1.7 million car owners, 843 car owners′ records, or 0.049%,
matched the original records identically and uniquely. Among them, 88.3% were the credit
card records only, most of which have a very low probability of re-identification.

5. Conclusions

We generated synthetic consumer credit data with the order of accounts as a condition.
The results show that the univariate and multivariate distributions of the synthetic dataset
are more peaked than the original dataset due to GMM. NMI comparison shows that
the mutual dependence among the variables is similar. The prediction of delinquency
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using standalone machine learning algorithms worked at a comparable level. Finally, the
data fidelity shows that the overdue difference is within 5% points with consistent trends.
Besides, the exposure risk as low as 0.05%, which would not deteriorate the sample, the
synthetic consumer credit data generated using GAN could be a useful resource for big
data training programs in financial sectors.

It remains to note that this paper does not cover the individuals′ accounts as the
time-series data other than setting the order of accounts as a condition. In other words, we
assumed that consumers’ economic activities would show similar patterns such as the age
range they first open an account or their first loan and its purpose. Future work should focus
on clustering the samples into consumer groups to strengthen the assumption. Moreover,
inspired by Papadopoulos et al. (2019), we continue working on rearranging individuals′

records as layers and generating compositional layer-based synthetic data [27,28]. Another
limitation of our study is that we consider the uniqueness of individuals’ records as the
exposure risk measure. As introduced in Jordan (2019), we plan to apply the differential
privacy algorithm to the extent of a pre-determined threshold for disclosure risk and data
post-process [29,30].
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