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Abstract: In this study, a new inverse design method is proposed for the full 3-D inverse design
of S-ducts using curvature-based dimensionless pressure distribution as a target function. The
wall pressure distribution in a 3-D curved duct is a function of the centerline curvature and the
cross-sectional profile and area. A dimensionless pressure parameter was obtained as a function of
the duct curvature and height of the cross-sections based on the normal pressure gradient equation.
The dimensionless pressure parameter was used to eliminate the effect of the cross-sectional area
on the wall pressure distribution. Full 3-D inverse design of an S-shaped duct was carried out by
substituting the 3-D duct with a large number of 2-D planar ducts. The ball-spine inverse design
method with vertical spins was coupled with the dimensionless pressure parameter as a target
function for the design of the planar ducts. The inverse design process was performed in two steps.
First, the height of each cross-section was considered constant, and only the duct centerline was
allowed to be deformed by applying the difference between the dimensionless pressure on the upper
and lower lines of symmetry plane. Then, a constant curvature was considered for each centerline
in the equation, and the difference between the current and the target dimensionless pressure was
applied to each upper and lower line of the planar sections to correct the heights of the 2-D planar
sections, separately. The method was validated by choosing a straight duct as an initial guess, which
converges to the target S-shaped duct. The results showed that the method is an efficient physical-
based residual-correction method with low computational cost and good convergence rate. The
3-D wall pressure distribution of a high-deflected 3-D S-shaped diffuser was modified to eliminate
the separation, secondary flow, and outlet distortion. Finally, the geometry corresponding to the
modified pressure was obtained by the proposed 3-D inverse design method, which revealed higher
pressure recovery, lower total pressure loss, and lower outlet flow distortion and swirl angle.

Keywords: 3-D inverse design method; 3-D S-shaped duct; streamline curvature; dimensionless
pressure parameter; distortion; secondary flow

1. Introduction

The flow pattern in curved ducts such as S-shaped ducts is quite complex because of
the curvature, diffusion, and inflexion in the curvature. Any separation or secondary flow
inside a curved duct increases the total pressure losses and flow distortion at the outlet,
which deteriorates the performance of the downstream component.

One of the optimal shape design methods is surface shape design, which usually
involves finding a shape associated with a prescribed distribution of surface pressure or
velocity in fluid flow problems. However, the solution of a shape design problem is not
generally an optimum solution in a mathematical sense, which means that the solution
only satisfies a target pressure distribution that resembles a nearly optimum performance.
To solve shape design problems, there are two different approaches: coupled (non-iterative)
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and decoupled (iterative) approaches. A coupled approach uses an alternative formula-
tion of the problem, in which the surface coordinates appear explicitly or implicitly as a
dependent variable. A fully coupled method reformulates the governing equations in a
way that the shape, computational grid, and the fluid state are all updated simultaneously.
The main problems of the couple methods are the complexity of the governing equations
in viscous flows and complex geometries [1,2].

Stanitz [3] converted the physical space (x, y) into a computational space (u, w) to
regenerate an inverse design from of the Laplace equation in two-dimensional potential
flows. Stanitz [4] developed a prominent three-dimensional version of his method for in-
verse design in potential flow regimes. Zannetti [5] developed a similar formulation for the
Euler equations for the design of two-dimensional axisymmetric channels. Ahmed et al. [6]
employed 2-D boundary layer calculations combined with inviscid through flow meth-
ods to predict the flow without swirl in axisymmetric diffusers. Chaviaropoulos et al. [7]
formulated a fully coupled three-dimensional shape design problem for potential flow.
Chaviaropoulos et al. [8] applied the developed three-dimensional inverse design method
for 3-D ducts.

Ashrafizadeh et al. [9] proposed a direct shape design method. They showed that
a fully coupled formulation of a shape design problem could be solved in the physical
domain using a simple extension of commonly used CFD algorithms. Taiebi-Rahni et al. [10]
used a direct design approach for duct shape design with Euler equations. Ghadak [11]
extended the application of this method for the design of ducts with nonlinear coupled
Euler equations. Ashrafizadeh et al. [12] presented a new element-based finite-volume
discretization approach for the solution of incompressible flow problems on co-located
grids. The proposed method, which was called the method of proper closure equations
(MPCE), employed a proper set of physically relevant equations to the constraints of
velocity and pressure at an integration point.

The decoupled algorithms are mainly different from coupled ones due to their shape
modification strategy. In mathematical-based decoupled shape design algorithms, which
are commonly called optimization methods, the difference between the target and current
pressure distribution is defined as an objective function, and the minimum of this function
is sought using ideas rooted in calculus. In physical-based decoupled shape design algo-
rithms, assumptions are made, and the physical analogies are employed to guide the shape
evolution during the iterations.

Gradient-based optimization methods [13] generate information regarding the ob-
jective function gradients and use it to specify the search direction and its step size in
the design space. Evolutionary methods find the optimum solution based on repeated
function evaluations. ZiaeiRad et al. [14] developed an efficient algorithm for the design
optimization of the compressible fluid flow problem through a flexible structure. They
coupled a supersonic flow solver, an aeroelastic solver, and genetic algorithm to calculate
the optimum shape of a supersonic diffuser with flexible wall for a prescribed pressure
distribution. Gan et al. [15] optimized a three-dimensional S-shaped diffuser using multi-
objective optimization strategy and a modified shear stress transport (SST) turbulent model.
Optimization methods are generally computationally expensive and rather mathemati-
cally complex. However, they can be used to minimize different objective functions while
satisfying various constraints on the design variables.

Chiereghin et al. [16] coupled the free form deformation method with a multi-objective
genetic algorithm to optimize the shape of a diffusing S-duct. They controlled the number
of geometrical variables to limit the complexity of the flow simulation methods and obtain
acceptable optimization times. A fast multi-objective optimization method for S-duct scoop
inlets considering both inflow and outflow was developed and validated by Zeng et al. [17].
They developed an automated optimization system integrating the computational fluid
dynamics analysis, non-uniform rational B-spline geometric representation technique, and
non-dominated sorting genetic algorithm to minimize the total pressure loss and distortion
at the exit of diffuser. D’Ambros et al. [18] performed the multi-objective optimization of
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an S-shaped duct based on a Tabu search algorithm. They used a free-form deformation
approach with 36◦ of freedom. A substantial improvement in the values of both objective
functions was reported, but 1300 simulations were needed to obtain the results.

Physical-based decoupled shape design algorithms are rather mathematically simple,
and a linear relation is often established between the boundary node displacement (∆ri)
and the local surface pressure mismatch (∆pi) to update the shape. Residual-correction
methods have also been developed to solve shape design problems. Barger and Brooks [19]
related the boundary curvature to the tangential velocity mismatch on a wall for an inviscid
low. Garabedian and McFadden [20] proposed a residual-correction method called the GM
method to design a part of a transonic airfoil geometry. Malone et al. [21] developed a
modified version called the MGM method to overcome some of the limitations of the GM
method. Dulikravich and Baker [22] proposed a method using elastic membranes, which
considerably increased the convergence rate of the MGM method.

Nili-Ahmadabadi et al. [23] presented the flexile string algorithm (FSA) as a residual-
correction method for duct design. They considered the duct wall as a flexible string that
is deformed under the difference between the target and computed pressure distribution.
The FSA was developed for inviscid compressible [24] and viscous incompressible internal
flow regimes [25].

Nili-Ahmadabadi et al. [26,27] developed the ball-spine algorithm (BSA) for the quasi-
3D design of a centrifugal compressor’s impeller. The wall is replaced by virtual balls
that freely move along the specified directions called spines. The difference between the
target and current pressure distribution at each modification step is applied to each ball as
a force that frequently deforms the wall. The BSA was developed for the inverse design of
the 90-degree bent between the radial and axial diffuser of a centrifugal compressor [28].
The BSA was also developed for the inverse design of airfoils in subsonic and transonic
external flow regimes [29]. Samadi et al. [30] incorporated the BSA into the FLUENT
software using User Defined Function (UDF) for the inverse design of an axisymmetric
duct. Hoghoughi et al. [31] applied the BSA for the aerodynamic design of the nozzle of a
wind tunnel to achieve uniform airflow with minimum turbulence intensity and flow angle.
Shumal et al. [32] developed the BSA for swirling viscous flow regime to improve the
performance of an axisymmetric 90-degree bend duct between the radial and axial diffuser
of a centrifugal compressor. Mayeli et al. [33] presented a novel iterative physical-based
method for solving inverse heat conduction problems. The method extended the BSA
concept to inverse heat conduction problems by employing a suitable physical-sense rule.

Madadi et al. [34] implemented the BSA for the quasi-three-dimensional design of an
S-shaped diffuser. They developed this method for the design of two-dimensional blades
with blunt [35] and sharp [36,37] leading edges, and for the quasi-three-dimensional design
of rotor and stator blades in axial compressors [38]. They designed a rotor blade with a
higher loading coefficient, which increased the outlet pressure of the third stage by 10%.
Hesami et al. [39] presented a novel shape design method for the numerical solution of
inverse heat convection problems (IHCPs) of nanofluids.

Safari et al. [40] presented another physical-based algorithm for external flows called
Elastic Surface Algorithm (ESA). In their method, the airfoil surface was considered as an
elastic beam that was deformed due to the stress provided by the difference between the
current and target pressure distributions. The internal stresses in the beam are then set to
zero in each modified shape and the process is repeated until the calculated shape satisfies
the target pressure distribution along the airfoil surface. Nasrazadani et al. [41] upgraded
the ESA for the sharp-edged blades in the cascade of axial compressors in a non-viscous
subsonic and transonic flow regime, which is capable of reaching sever pressure gradients
in the sharp edges.

The proposed method was the extension of the BSA inverse method for full 3-D
curved ducts. In the present work, the BSA was three-dimensionally developed for the
design of 3-D curved ducts with different cross-sectional shapes. For the flow inside
a three-dimensional duct, the wall pressure contour is affected by the cross-sectional
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area in addition to the curvature. The original BSA inverse design method diverges if
the wall nodes are corrected based on the difference of the target and current pressures.
Therefore, the current work defines a new dimensionless pressure distribution using the
flow curvature equation to eliminate the area effect on the wall pressure for the convergence
of the inverse design. By eliminating the area effect in the new dimensionless pressure,
the inverse design of a 3-D curved duct was accomplished by the correction of many
2-D longitudinal planar ducts. To show the capability of the proposed method, a high-
deflected 3-D S-shaped diffuser with separation and secondary flow was considered as an
initial guess for 3-D inverse design. The dimensionless pressure was three-dimensionally
modified so that the pressure loading decreased on the symmetry plane and increased on
adjacent 2-D planar planes to remove the separation and secondary flow.

2. Numerical Procedure
2.1. Flow Solver and Geometry Definition

In iterative inverse design methods, a shape modification algorithm is incorporated
into a flow solver, and the flow field is solved to obtain the wall pressure distribution at
each shape-modification step. In the current work, the equations of the flow inside the
duct geometry were numerically solved using an in-house 3-D Euler solver based on the
flux difference-splitting scheme of the Roe method [42]. A higher order of spatial accuracy
was obtained in all calculations using MUSL (monotone upstream centered scheme) for
conservation laws with a third-order interpolation.

Figure 1a shows the geometry and grid generation of a 3-D S-shaped diffuser. The
white dots on the wall surface indicate the control points (balls), which can be displaced
according to the inverse design algorithm. The grid size was optimized through a grid
refinement study. In this respect, the computational domain was meshed by O-grid
structured mesh with Nx × Nr × Nθ = 80× 10× 30, 100× 20× 30, and 100× 30× 40
in which Nx, Nr, and Nθ imply the number of nodes in the axial, radial, and angular
directions, respectively. The wall pressure distributions along the upper and lower lines
of the symmetry plane were obtained for various grid sizes and plotted in Figure 1b.
It is apparent that for grid sizes finer than Nx × Nr × Nθ = 100 × 20 × 30, the results
are identical.
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2.2. Inverse Design Method

The BSA inverse design method was upgraded for the 3-D design of an S-shaped
duct. All the previous developments of the BSA were limited to 2-D and quasi-3-D ducts
in which only the upper and lower lines of the symmetry plane were modified based on
the target pressure distribution. The BSA method is described here in brief, but it has
been previously described by details [26–29]. In the BSA, the wall surface is composed of
imaginary balls that can freely move along the specified directions called spines. Due to
the difference between the current and target pressure distribution, a force is applied to
each ball along the corresponding spine. As the difference between the current and target
pressure reaches zero, the balls stop moving, and the target shape is achieved. Figure 2
shows the whole procedure of the inverse design solution. The displacement of balls in
each shape modification step is calculated using Equation (1) as follows:

∆yi = C·∆Pi (1)

where ∆y is the displacement of each point along its spine, ∆P is the difference between
the current and target pressure, and C is the geometry correction factor. It is important to
find the optimum value for the geometry correction factor, which should be determined by
trial and error.
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In 3-D inverse design, the difference between the current and target pressure is not the
correct criterion for moving the balls due to the effects of area on the pressure contour. Thus,
a new dimensionless pressure parameter was defined based on the streamline curvature.
Similar to the 2-D inverse design, the axial length of the S-shaped duct was fixed as a
specific length to achieve a unique answer. Another characteristic that is required for the
inverse design of a 3-D duct is constant cross-sectional width along the duct. Another
constraint is that the outlet area of the duct should remain fixed to consider an unchanged
mass flow rate during the shape-modification process. As shown in Figure 3, the 3-D
diffuser can be considered as several 2-D planar ducts, and the control points are placed
on the upper and lower walls of these 2-D ducts. If the widths of all cross-sections are
considered to be fixed, all the spines should be vertical on the cross-section plane.

2.3. Filtering Operation

Since the wall is considered as a set of separate virtual balls, the wall curvature may be
discontinuous between adjacent nodes during the geometry correction process. To smooth
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the wall curvature, a Savitzky–Golay filter [43,44] was applied to the wall nodes after each
geometry correction step. The Savitzky–Golay filter method performs a local polynomial
regression in order to determine the smoothed values for each data point. The filtration
was performed using a second-order polynomial with 5 data points. The equation for this
particular Savitzky–Golay smoothing is defined as follows:

gi = 1/35

(
nR

∑
n=nL

Cn fn+i

)
(2)

where gi is the filtered value at the position i, f j is the unfiltered value at the position j,
nL and nR respectively, specify the data points on the left and right of the point that is
supposed to be smoothed, and Cn is the weighting function according to Table 1.
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Table 1. Weighting function for SG (Savitzky-Golay) using second-order polynomial and five data points.

nL nR n = −4 n = −3 n = −2 n = −1 n = 0 n = 1 n = 2 n = 3 n = 4

For the beginning points
0 4 − − − − 31 9 −3 −5 3

1 3 − − − 9 13 12 6 −5 −
For the middle points 2 2 − − −3 12 17 12 −3 − −

For the end points
3 1 − −5 6 12 13 9 − − −
4 0 3 −5 −3 9 31 − − − −

Table 1 shows the weighting function for the Savitzky–Golay smoothing scheme using
a second-order polynomial and five data points. The filtering operation was carried out
along the longitudinal direction of the duct and each cross-section Figure 4 because the
geometry was a three-dimensional shell. The filtering for all points of the longitudinal
sections (red points) was performed based on Equation (2) and Figure 4. The end point of
each longitudinal section was fixed due to the fixed outlet section. The filtering was also
performed at each cross-section (blue points) in which the upper and lower points of each
cross-section and the duct centerline were kept constant on the symmetry plane.
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3. Upgrading and Validating the 3-D BSA for Unique Solution

To validate a 3-D inverse design method, the target geometry is assumed to be known,
and the corresponding wall pressure distributions along all lines of the wall are considered
as the target pressure Figure 5. If an arbitrary geometry as an initial guess converges to the
target geometry through the inverse design procedure, the validation of the inverse design
method is correctly performed.
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Figure 5. Target geometry and corresponding wall pressure distribution.

In addition to the duct curvature, the area and the shape of the duct cross-sections
affect the pressure distribution and flow quality. The criterion of the ball displacement
in 2-D and quasi 3-D BSA inverse design method is the pressure difference according to
Equation (1). However, the pressure difference is not an appropriate criterion for the balls’
displacement in the 3-D inverse design. In other words, the pressure difference causes the
divergence in the 3-D inverse design due the effects of area on the pressure contour. For
example, although the symmetry planes of the initial and target geometry are the same in
Figure 6, the pressure difference due to the area difference causes the lower and upper lines
of the symmetry plane to shift and the solution to diverge. To upgrade the BSA for 3-D
design and to eliminate the area effects, a dimensionless pressure parameter was defined.
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Figure 6. Results of inverse design with different cross-sectional profiles for the initial guess and target geometry after
200 geometry corrections.

3.1. Definition of Curvature-Based Dimensionless Pressure Parameter for Upgrading the 3-D BSA

For an inviscid flow along a curved streamline with the curvature of (1/R),

∂p
∂n

= ρ
U2

R
(3)

where ∂p/∂n is the pressure gradient perpendicular to the streamline in the s-n coordi-
nate system. This is why the cross-sections are considered perpendicular to the diffuser
centerline according to Figure 7.
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For each longitudinal section of the S-shaped diffuser, such as section “A” Figure 7b,
the pressure difference between the upper and lower walls is due to the curvature and mean
velocity at each cross-section Figure 7b according to Equation (3). By discretizing Equation
(3) along the centerline of each longitudinal section, the following equation is obtained:

pup − pdown

2a
= ρ

U2

R
(4)

where pup and pdown are respectively the upper and lower pressures of the corresponding
points, which are obtained by intersection of the longitudinal section “A” and cross-section
“B”. In Equation (4), a is half of the distance between these two corresponding points
Figure 7c, and R is the curvature of the centerline at each longitudinal section.

The average pressure for the two corresponding points is defined as:

Pave =
Pup + Pdown

2
(5)

The dynamic pressure can be written as:

ρU2 = γPM2 = γP
2

γ− 1

[(
P0

P

) 1
3.5
− 1

]
(6)

Substituting Equations (5) and (6) into Equation (4) yields:

Pup − Pave

γPave
2

γ−1

[(
P0

Pave

) 1
3.5 − 1

] =
a
R

(7)

The left side of Equation (7) is defined as dimensionless pressure, which is a function
of the two parameters a and R. The dimensionless pressure eliminates the effect of the
cross-sectional area. Figure 8 shows the target geometry and the two different initial
guesses. The centerline curvature and the width of cross-sections are the same for all three
geometries. As can be seen, the second and target geometries have the same cross-sectional
areas while the first and target geometries have the same symmetry planes.
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Figures 9 and 10, respectively, compare the wall pressure and the dimensionless
pressure distributions on the symmetry planes of these three geometries. The wall pressure
distributions on the symmetry planes of the first and target geometry are different in
Figure 9 due to the difference in their cross-sectional areas. However, their dimensionless
pressures are the same in Figure 10 because both the centerline curvature and the parameter
a on the symmetry planes of the first and target geometry are the same. Therefore, if
the parameters a and R (centerline curvature) are equal for two different ducts, their
dimensionless pressure distributions will be the same, as indicated in Equation (7).
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Figure 9 also shows that the wall pressure distributions of the second and target
geometries on their symmetry plane are almost the same, which is the reason of their equal
distributions of cross-sectional area (A) and centerline curvatures (R). Figure 10 shows
that there is a small difference between the dimensionless pressure distributions for the
second geometry relative to the first and target geometry. This is due to the different
a parameter for the second geometry. Overall, Figure 10 proves that the dimensionless
pressure parameter removes the effect of cross-sectional area, and it can be used as an
appropriate criterion for the displacement of balls in the 3-D inverse design.

3.2. Correction of Cross Sections Based on Dimensionless Pressure

If R is assumed to be known and it is supposed to be unchanged, the following
equation can be obtained from Equation (7) for the target and current geometry:

CR

 (P−Pave)

γPave
2

γ−1

[(
P0

Pave

) 1
3.5−1

]
∣∣∣∣∣∣∣∣
Target

− (P−Pave)

γPave
2

γ−1

[(
P0

Pave

) 1
3.5−1

]
∣∣∣∣∣∣∣∣
Current


= aTarget − aCurrent = ∆ai

(8)

where ∆ai is the displacement of each wall point along its spine based on the dimensionless
pressure. The value of R for each point of the target geometry is assumed to be known and
considered to be the same for the current geometry. C is the geometry correction coefficient.
By this equation, the difference between the dimensionless pressure distributions of the
target and the current geometry is used for the correction of wall points. It should be
noted that the cross-sections must be perpendicular to the centerline of the diffuser in
this procedure.

3.3. Correction of Centerline Curvature Based on Dimensionless Pressure

If the distribution of the parameter a on the symmetry plane is assumed to be known,
and it is supposed to be unchanged during the geometry corrections, Equation (9) is
obtained from Equation (7) for the diffuser centerline based on the difference between the
upper and lower wall pressure distribution as follows: pup−pdown

γPave
2

γ−1

[(
P0

Pave

) 1
3.5−1

]
∣∣∣∣∣∣∣∣
Target

− pup−pdown

γPave
2

γ−1

[(
P0

Pave

) 1
3.5−1

]
∣∣∣∣∣∣∣∣
Current



= a
(

1
R

∣∣∣
Target

− 1
R

∣∣∣
Current

) (9)

By considering the balls on the main centerline of the duct, the value of R for each
point of the centerline is obtained at each geometry correction as follows:

1
R

∣∣∣∣
New

=
C
a

 pup − pdown

γPave
2

γ−1

[(
P0

Pave

) 1
3.5 − 1

]
∣∣∣∣∣∣∣∣∣
Target

−
pup − pdown

γPave
2

γ−1

[(
P0

Pave

) 1
3.5 − 1

]
∣∣∣∣∣∣∣∣∣
Current

+
1
R

∣∣∣∣
Current

(10)

where the coefficient C is the geometry correction factor. The curvature (1/R) is defined
as follows:

1
R

=
y′′(

1 + y′2
)3/2 ,

(
y, y′

)
end point = 0 (11)
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The curvature for all points of the centerline is obtained from Equation (10). If the duct
length and the x-coordinate of each point on the centerline are considered to be constant,
and the values of y and y′ are specified at the end point of the centerline, the values of y at
all points on the centerline are obtained by the second order Rung–Kutta method starting
from the end point.

3.4. Validation of 3-D Upgraded Inverse Design for 3D S-Duct with Specified
Centerline Curvature

Initially, it was assumed that the duct centerline curvature is specified, and the pro-
posed inverse design method is used to correct the cross-sections. The initial and target
geometries shown in Figure 6 were used for the validation to show the capability and
convergence of the method using the dimensionless pressure and eliminating the effects
of area.

With a specified centerline curvature, the cross-sections perpendicular to the centerline
are corrected according to Equation (8). The balls are placed along the upper and lower
walls of the 2-D planar ducts. The difference between the current and target dimensionless
pressure is applied to each upper and lower lines of the planar ducts separately to correct
the height distribution of the longitudinal sections. Figure 11 shows the convergence
process of the initial geometry to the target geometry after only 40 geometry corrections.
Figure 11a,b shows how the cross-sections and pressure distributions along the upper and
lines of the symmetry plane converge. Figure 11c compares the dimensionless pressure
distributions on cross-section “C” for the initial, target, and two intermediate modified
geometries. Since the curvature of the centerline for the initial geometry is known and
equal to that for the target geometry, the dimensionless pressures at points “A” and
“B” in Figure 11 for the initial and target geometry are equal. Thus, these points do not
shift during the inverse design process. However, according to Figure 11b, the amount
of pressure at these points varies due to the effects of area. For this reason, the use of
the pressure parameter causes divergence (Figure 6), while the use of the dimensionless
pressure parameter causes convergence for the geometry correction in the inverse design
of a 3-D duct.

3.5. Validation of 3D Geometry with Desired Centerline Curvature

The S-shaped duct with a predefined width and elliptic cross-sectional profiles was
chosen as the target geometry for the validation of the upgraded BSA. To do this, a
numerical simulation inside the target geometry was accomplished to obtain the walls
pressure distributions. This pressure distribution was first nondimensionalized and then
applied to the upgraded BSA as the target parameter. Figure 12 shows the initial guess and
target geometries with their upper and lower wall pressure contours on their symmetry
planes. The initial guess geometry is a straight duct with an arbitrary distribution of cross-
sectional area in which only its cross-sectional width is equal to that of the target geometry.

The 3-D inverse design of the S-shaped duct is started by replacing the 3-D duct with
a large number of 2-D planner ducts, as shown in Figure 3. The centerline curvature is
the same for all 2-D planar ducts, and the cross-section profile is modified by the change
of the parameter a for each 2-D planar duct. Because the control points are displaced
based on the dimensionless pressure difference, the cross-sections should be considered
perpendicular to the duct centerline. Since both parameters a and R are unknown for using
the dimensionless pressure, the inverse design was performed in two steps, alternately. In
this way, if one parameter is assumed to be known, another parameter is modified by the
inverse design.

First, the height and profile of each cross-section are considered to be constant, and
only the duct centerline is deformed according to Equation (10) by applying the difference
between the dimensionless pressures on the upper and lower lines of the duct symmetry
plane. Each ball is placed on the centerline with a fixed and specified x-coordinate according
to Figure 13. The curvature of the duct is modified for the symmetry plane according to
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Equation (10), and the cross-sections are placed perpendicular to the centerline along the
duct while maintaining the cross-sections’ profile and height.
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Figure 12. Geometries and wall pressure distributions on the symmetry plane of the initial and target geometry.
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Figure 13. Evolution of duct centerline curvature in the first step of inverse design.

Figure 14 shows how the current wall pressure on the symmetry plane approaches
the target wall pressure only after 10 geometry corrections, while its centerline is still a
little different compared to the target centerline. This occurs because parameter a is not the
same on the symmetry planes of the initial and target geometry, which means that their
parameter R should not be the same for pressure convergence according to Equation (9). In
other words, the ratio a/R, instead of R, changes until the difference of the dimensionless
pressure on the upper and lower lines of the symmetry plane in the current geometry
equals that in the target geometry.

In the second step, the curvature of the centerline is considered to be constant, and only
the cross-sections perpendicular to the centerline are modified according to Equation (8).
The balls are placed along the upper and lower walls of the 2-D planar ducts. The difference
between the current and target dimensionless pressure on each upper and lower line is
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applied to each upper and lower lines of the planar ducts separately to correct the height
distribution of the longitudinal sections. Figure 15 shows how the dimensionless pressure
and the profiles of the cross-sections change through the second step of the inverse design.
Figure 16 compares the geometry after 45 corrections and the target geometry, and their
wall pressure on the symmetry plane.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 30 
 

 
 

(a) Comparison of geometry after the first step of 
correction with the target geometry 

(b) Corresponding pressures along the upper 
and lower lines of symmetry plane 

Figure 14. Geometry and computed pressure along the upper and lower lines of symmetry plane 
for the geometry after the first step of correcting the duct curvature and for the target geometry. 

In the second step, the curvature of the centerline is considered to be constant, and only 
the cross-sections perpendicular to the centerline are modified according to Equation (8). 
The balls are placed along the upper and lower walls of the 2-D planar ducts. The 
difference between the current and target dimensionless pressure on each upper and 
lower line is applied to each upper and lower lines of the planar ducts separately to correct 
the height distribution of the longitudinal sections. Figure 15 shows how the 
dimensionless pressure and the profiles of the cross-sections change through the second 
step of the inverse design. Figure 16 compares the geometry after 45 corrections and the 
target geometry, and their wall pressure on the symmetry plane. 

 
 

(a) Evolution of cross section A (b) Dimensionless pressure of cross section A 

Figure 15. Dimensionless pressure and evolution of cross section A in the second step. 

After correcting the cross-sections, a new distribution of the parameter a on the 
symmetry plane is obtained, and the first and second steps are repeated until the target 
pressure is reached for all control points on the geometry wall. Figure 17 shows the 
geometry modifications based on the first and second steps, alternately. From iterations 
100 to 200, several geometry corrections for the centerline (first step) and several geometry 
corrections for the cross-sections perpendicular to the centerline (second step) are carried 
out to reach the target geometry. The 3-D inverse design flowchart for the S-shaped 
diffuser based on the upgraded BSA is shown in Figure 18. 

Target

Geo - 10

X (m)

W
al
lP

re
ss
ur
e
(b
ar
)

-0.2 0 0.2 0.4 0.6 0.8 10.9

1

1.1

1.2

1.3

1.4

Tareget Geometry

G - 10

Target
G - 45
G - 20
G - 10

Cross-section 'A'

Phi

Phi (Degree)

D
im
en

si
on

le
ss

Pr
es
su
re

0 30 60 90 120 150 180

-1

-0.5

0

0.5

Target
G - 45
G - 20
G - 10
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first step of correcting the duct curvature and for the target geometry.
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Figure 15. Dimensionless pressure and evolution of cross section A in the second step.

After correcting the cross-sections, a new distribution of the parameter a on the
symmetry plane is obtained, and the first and second steps are repeated until the target
pressure is reached for all control points on the geometry wall. Figure 17 shows the
geometry modifications based on the first and second steps, alternately. From iterations
100 to 200, several geometry corrections for the centerline (first step) and several geometry
corrections for the cross-sections perpendicular to the centerline (second step) are carried
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out to reach the target geometry. The 3-D inverse design flowchart for the S-shaped diffuser
based on the upgraded BSA is shown in Figure 18.
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4. Design Example

In order to show the capability of the proposed 3-D inverse design method, a high-
deflected 3-D S-shaped diffuser was first considered as the initial guess for 3-D inverse
design. After modifying the 3-D pressure contour on the wall, the 3-D geometry of the duct
was improved by applying the modified pressure contour to the upgraded 3-D inverse
design code. To evaluate the general parameters of the flow such as pressure recovery, total
pressure loss, and outlet flow distortion for the initial and designed ducts, the Reynods-
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Average Navier Stokes (RANS) equations with the k-ω SST turbulence model were solved
by Ansys Fluent 2020R2 software to compare their overall aerodynamic performances.

The short-offset S-duct inherently have complex three-dimensional flows, which
is a challenge for CFD to accurately simulate the secondary flow and flow separation.
The accuracy of CFD solutions mainly depend on the turbulence model that is em-
ployed. Previous studies show that k−ω SST is mostly used for S-duct numerical simu-
lation [17,18,45]. Zhang et al. [46] used k−ω SST turbulence model for S-duct numerical
simulation and the results agreed well with experimental data. Fiola and Agarwal [47]
compared the simulation results of diffusing S-duct using four different turbulence models.
They found that k−ω SST turbulence model gave best agreement with the experimental
data in predicting the pressure distribution along the duct, the separated flow region, and
the secondary flow.

The computational mesh that was used for the RANS flow solver was a hybrid mesh.
It consisted of the boundary layer mesh near the duct surface and the unstructured mesh
elements in the interior of the duct Figure 19. Fine grids were used near the wall (with
a first layer thickness of 5× 10−6 m) so that the value of y+ was less than 2 to accurately
capture the boundary layer (Figure 20). Several grid sizes were generated to ensure that the
simulation results were sufficiently grid-independent. Figure 21 shows how the pressure
recovery and DC (90) changed in terms of the number of mesh elements. It indicates
that the pressure recovery and outlet flow distortion became stable and remained nearly
unchanged for the values greater than 1.13 million mesh elements.
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Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 30 
 

Zhang et al. [46] used 𝑘 − 𝜔 SST turbulence model for S-duct numerical simulation and the 
results agreed well with experimental data. Fiola and Agarwal [47] compared the simulation 
results of diffusing S-duct using four different turbulence models. They found that 𝑘 − 𝜔 
SST turbulence model gave best agreement with the experimental data in predicting the 
pressure distribution along the duct, the separated flow region, and the secondary flow. 

The computational mesh that was used for the RANS flow solver was a hybrid mesh. 
It consisted of the boundary layer mesh near the duct surface and the unstructured mesh 
elements in the interior of the duct Figure 19. Fine grids were used near the wall (with a 
first layer thickness of 5 × 10  𝑚) so that the value of 𝑦  was less than 2 to accurately 
capture the boundary layer (Figure 20). Several grid sizes were generated to ensure that 
the simulation results were sufficiently grid-independent. Figure 21 shows how the pres-
sure recovery and DC (90) changed in terms of the number of mesh elements. It indicates 
that the pressure recovery and outlet flow distortion became stable and remained nearly 
unchanged for the values greater than 1.13 million mesh elements. 

 
Figure 19. Cross section mesh topology. 

 
Figure 20. Value of 𝑦  parameters plotted on S-duct surface. 

  
(a) (b) 

Figure 21. Pressure recovery (a) and distortion (b) as a function of number of mesh elements. 

0.97

0.972

0.974

0.976

0.978

0.98

0.4 0.6 0.8 1 1.2 1.4

Pr
es

su
re

 re
co

ve
ry

  (
P 02

/P
01

)

Number of cells (Million)

0.08

0.1

0.12

0.14

0.16

0.4 0.6 0.8 1 1.2 1.4

DC
 (9

0)

Number of cells (Million)

Figure 20. Value of y+ parameters plotted on S-duct surface.
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In order to generate the initial geometry, the quasi-3-D design of an S-shaped duct
was first accomplished for the symmetry plane of the duct using the reported method [34].
In the quasi-3-D design, all cross-sections were considered elliptical with a constant width,
and a suitable pressure distribution was applied on the upper and lower lines of the
symmetry plane [34].

Figure 22 shows the suitable pressure distribution along the upper and lower lines of
the symmetry plane [34]. Figure 23 shows the symmetry plane of the initial S-duct, which
was designed by the quasi-3-D inverse design method. The height-to-axial-length ratio
(aspect ratio) of the initially designed S-duct was equal to 0.34. Figure 24 shows the 2-D
streamlines on the symmetry plane of the initial 3-D duct, indicating no separation inside
the duct.
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Figure 22. Target pressure distribution along the upper and lower line of the symmetry plane of
S-duct (AR = 0.34).

The aspect ratio of the initially designed S-duct was increased by 20% to generate the
secondary geometry as a high-deflected 3-D S-shaped diffuser. The secondary geometry
was actually obtained by scaling the upper and lower symmetry lines of the initial duct and
using elliptical cross-sections with constant width. Figure 25 shows the symmetry plane
of the secondary duct, which had an aspect ratio of 0.41. The increase in aspect ratio and
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curvature of the duct leads to an increase in wall pressure gradients along the upper and
lower lines of all 2-D planar ducts, which increases the possibility of flow separation and
outlet flow distortion. The increase of aspect ratio also increases the difference between
the pressure along the upper and lower lines through the first and second bends, which
induces a secondary flow and increases the flow distortion at the duct outlet.
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Figure 26 shows the pressure distributions along the upper and lower lines of the
symmetry plane. The viscous flow solver numerically calculated the flow field inside the
secondary 3-D S-duct. Figure 27 shows the 3-D streamlines inside the secondary duct,
which indicates that the increase of aspect ratio induces secondary flow and separation
inside the duct and increases the flow distortion at the outlet.
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Figure 26. Pressure distribution along the upper and lower lines of the symmetry plane.
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According to Equation (4), an increase in the duct curvature increases the dimen-
sionless pressure difference between the upper and lower lines of the duct, in addition
to the increase of the corresponding pressure difference. To eliminate the separation and
reduce the secondary flow in the secondary duct with the aspect ratio of 0.41, the di-
mensionless pressure distributions on all wall lines in the high-positive-pressure-gradient
regions were modified and then applied to the proposed 3-D design method to correct the
cross-sectional profiles.
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The width of each cross-section was considered unchanged during the geometry cor-
rections as a design constraint. Equation (8) was used to modify the cross-sections because
the curvature of the centerline was known and considered equal to that of the secondary
duct. First, the dimensionless pressure distributions on the upper and lower symmetry
lines were modified to match the corresponding dimensionless pressure distribution of the
initial geometry in the region with a high positive pressure gradient.

Figure 28 compares the modified dimensionless pressure distributions on the upper
and lower symmetry lines with those of the initial and secondary ducts. The increase
of the aspect ratio in the secondary duct increases the dimensionless pressure difference
between the upper and lower symmetry lines. Figure 28 also shows that the modified
dimensionless pressure distributions on the upper and lower symmetry lines in the high-
positive-pressure-gradient regions match with the corresponding dimensionless pressure
distributions of the initial geometry that does not have separation. In other words, the
pressure loading on the symmetry plane decreases in the regions with a high positive
pressure gradient. Because the curvature of the centerline was considered equal to that of
the secondary duct, the decrease of the modified pressure loading on the symmetry plane
should be compensated by increasing the pressure loading on the other 2-D planar planes
in the high-positive-pressure-gradient regions. To do this, a correlation was needed to
obtain a constraint for the dimensionless pressure distribution of each cross-section.
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Figure 28. Modified dimensionless pressure distribution along the upper and lower lines of the
symmetry plane compared to the initial and secondary geometry.

If the dimensionless pressure is plotted on a plane normal to the flow of an S-shaped
duct, according to Equation (12), the sum of the dimensionless pressures is zero. In other
words, on the plane normal to the flow, the integral of the dimensionless pressure graph
becomes zero. Figure 29 shows the dimensionless pressure of the initial geometry in
section “A”.

180

∑
Phi=0
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Figure 29. Dimensionless pressure distribution of initial geometry in the cross-section normal to the flow.

For each cross-section normal to the centerline, the modified dimensionless pressure
of the upper and lower points (Phi = 0, 180) was obtained from Figure 28. The modi-
fied dimensionless pressures on the other 2-D planner ducts were obtained according to
Equation (12). Figure 30 compares the dimensionless wall pressure distributions of the
initial and secondary ducts with the modified dimensionless wall pressure distributions
on sections A, B, C and D as examples. The areas below all the dimensionless pressure
distributions are zero, according to Equation (12). Figure 30 also shows that although the
maximum pressure loadings for the modified distributions have decreased compared to
those of the upper points in the secondary duct, the pressure loadings of the other points
adjacent to the maximum values have increased to compensate the decrease of pressure
loading on the symmetry plane.

According to Figure 30, sections “A” and “B” are located at the first bend of the
S-shaped duct. In these two sections, the undesirable pressure gradient on the lower wall
(ϕ = 180) causes secondary flow. Therefore, the pressure on the bottom wall decreases, and
the pressure loading is transferred to the lateral points to decrease the pressure difference
of the top and bottom points on the sections “A” and “B”. In sections “C” and “D”, which
are located in the second bend of the duct, the situation is opposite. In other words, there is
an undesirable pressure gradient in the upper wall of the duct (ϕ = 0) in the second bend.
By reducing the pressure in the upper wall, the secondary flow is controlled.

The modified dimensionless pressure distributions were applied to the proposed 3-D
inverse design method to correct the secondary duct. The design process converged to
the favorable geometry only after 50 geometry corrections using the three-dimensionally
modified dimensionless pressure contours (Figure 31). Figure 32 compares the pressure
contours on the symmetry plane of the initial, secondary, and modified geometries. It
is clear that the difference between the pressure along the upper and lower symmetry
lines has decreased through the bends of the modified geometry. Figure 33 illustrates
the 2-D streamlines inside the symmetry plane and the 3-D streamlines inside the entire
duct, which were computed by the RANS flow solver. It is clear that the separation and
secondary flow have been eliminated from the three-dimensionally-modified duct.

Figure 34 compares the Mach number contours at the outlet of the secondary and
three-dimensionally-modified S-ducts with the same aspect ratio of 0.41. The uniformity of
the Mach number at the outlet an S-duct can strongly affect the performance of downstream
components such as an engine. Figure 34 clearly shows that the outlet Mach number of
the three-dimensionally-modified S-duct is more uniform than that of the secondary duct,
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which is the result of modifying the dimensionless pressure contours in high-pressure
regions and eliminating the separation and secondary flow inside the duct.
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Figure 30. Modification of the dimensionless pressure distribution along four cross-sections.
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Figure 31. Comparison between the cross-sections of the second and three-dimensionally-modified
S-duct (AR = 0.41).
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two other geometries on their symmetry plane.

The uniformity of the total pressure distribution at the outlet of an S-duct is important
for the performance of the downstream component. An expression for a distortion coeffi-
cient to quantify the flow irregularities or total pressure distortion at the duct outlet is DC
(90), which is defined as follows:

DC(90) =
Max|P02,ave − P02,ave,90|

1l2ρU2 (13)

where P02,ave is the average total pressure at the duct outlet and P02,ave,90 is the average total
pressure over a 90 degree sector of the engine face. For the three-dimensionally-modified
S-duct, DC (90) is equal to 0.085. In Figure 35, the total pressure contours on different
cross-sections are compared for the secondary and three-dimensionally-modified S-ducts.
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The total pressure loss decreased through the three-dimensionally-modified S-duct due to
the modified cross-sectional profiles, which were obtained by 3-D inverse design.
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To show the capability of the proposed method, the performance of the three-dimensionally-
modified S-shaped duct is compared with the results of D’Ambros et al. [18]. They per-
formed a multi-objective optimization with two objective functions to quantify the perfor-
mance of an S-Shaped duct during the optimization process. They used total pressure loss
and swirl angle as the objective functions. The swirl angle is defined as follows:

α = arctan
(

Vθ

Vx

)
(14)
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where Vθ as the tangential velocity is calculated as:

Vθ =
√

V2
y + V2

z (15)

They obtained two optimized geometries considering the two objective functions. The
solution with minimal total pressure loss was named optCP and the solution with minimal
swirl angle was named optα.
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Table 2 compares the performance of the modified S-duct with that of the secondary
duct and previous study. The modified S-duct had a more uniform flow and significantly
lower DC (90) at the duct outlet. The modified S-duct also had a lower pressure loss, a
higher pressure recovery coefficient and minimum swirl angle. The results also show
that pressure recovery and outlet flow distortion increased by 30% and decreases by
69%, respectively.

Table 2. Comparison between the performances of the secondary, three-dimensionally-modified
(AR = 0.41), and the optimized S-duct [18] (AR = 0.27).

Parameter
Present Study D’Ambros et al. [18]

Secondary 3-D-Modified optCP optα

Aspect ratio, AR = h/L 0.41 0.41 0.27 0.27
DC(90) = Max|P0,ave−P0,ave,90|

0.5ρU2 0.264 0.085 − −
Pressure recovery coefficient
CPR = P2−P1

P01−P1

0.393 0.473 0.491 0.491

Total pressure loss (P01 − P02)/P01(%) 3.01 2.12 2.52 2.75
Swirl angle α = arctan(Vθ/Vx) 1.096 0.861 3.256 1.411

Although the aspect ratio of the three-dimensionally-modified S-shaped duct in the
present work was 34% higher than that of the optimized S-shaped duct [18], it had a higher
performance compared to the optimized S-shaped duct [18]. Furthermore, the S-shaped
duct designed by the upgraded 3-D inverse design converged after only 50 geometry
corrections while the optimized S-shaped duct in [18] converged after 1300 iterations.
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5. Conclusions

In this research, an upgraded BSA was three-dimensionally developed for the inverse
design of 3-D S-ducts with different cross-sectional shapes. The pressure distribution on
the wall of a 3-D duct is influenced by the centerline curvature, area, and cross-sectional
shape. If the original BSA based on the pressure difference is used for the geometry
correction of a 3-D duct, the inverse design diverges. To converge the 3-D inverse design,
the displacement of the wall nodes was defined based on a new dimensionless pressure
parameter to eliminate the effect of area using the streamline curvature.

The proposed method was validated by a straight duct with arbitrary cross-sectional
area converging to the target geometry. Finally, the 3D inverse design was used to eliminate
the current separation and reduce the distortion in a diffuser due to increasing the aspect
ratio. The main results of this study are summarized as follows:

The 3-D diffuser was replaced by several 2-D planar ducts. Changing the upper and
lower lines of each planar duct changes the total cross-sectional area and thus affects the
pressure contour of the other 2-D planar ducts.

Due to the effect of cross-sectional area on the pressure contour, the use of the pressure
difference is not a suitable criterion for the displacement of control points in 3-D inverse
design and causes a divergent solution.

The pressure contour of a 3-D diffuser was nondimensionalized based on the flow
curvature equation. The dimensionless pressure is only a function of the duct curvature
and the height of the diffuser cross-sections so that the effect of the area is eliminated.

Using the dimensionless pressure, the duct curvature is corrected in a lower number
of iterations.

Dimensionless pressure is a suitable criterion for moving the control points and
correcting cross-sections in the inverse design of 3-D ducts.

Increasing the duct curvature increases the difference between the pressure along the
upper and lower lines in the bending areas and creates a secondary flow. By correcting the
dimensionless pressure in a high-pressure-gradient region and correcting the cross-section,
the pressure difference decreases, which improves duct performance.
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Abbreviations

a Half the cross-section height (m)
AR Aspect ratio, height to length duct
b Half the cross-section width (m)
BSA Ball-spine algorithm
C Geometry correction coefficient (m2s2/kg)
CPD Current Pressure Distribution
DC (90) Flow distortion
h Duct height (m)
L Duct length (m)
Nx Number of nodes in axial direction
Nr Number of nodes in radial direction
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Nθ Number of nodes in azimuthal direction
M Mach number
P Static pressure (Pa)
P0 Total pressure (pa)
Pdown Pressure of lower wall of 2D plannar duct
Pup Pressure of upper wall of 2D plannar duct
R Curvature of centerline
SSD Surface shape design
TPD Target Pressure Distribution
U Flow velocity (m/s)
Vx Velocity component in x-direction (m/s)
Vy Velocity component in y-direction (m/s)
Vz Velocity component in z-direction (m/s)
Vθ Tangential velocity (m/s)
W Width of duct (m)
x x coordinate
y y coordinate
z z coordinate
∆P Target and computed pressure difference (Pa)
α Swirl angle (degree)
θ Angle between force vector and spine (rad)
ϕ Circumferential location (deg)
ρ Density (kg/m3)
Subscripts
1 Inlet condition
2 Outlet condition
ave Average value
Comp Computed conditions
Target Target conditions
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