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Abstract: In recent years, wind energy has become a competitively priced source of energy around
the world, which has created increasing challenges for system operators. Accurate wind power
generation forecasting plays an important role in power systems to improve the reliable and efficient
operation. Therefore, numerous artificial intelligent methods such as machine learning and deep
learning have been considered as solutions for accurate wind power forecasts. In addition to
deterministic forecasting, the probabilistic forecasting becomes more important, because it indicates
the level of uncertainty. In this paper, a hybrid forecasting model considering different Numerical
Weather Prediction (NWP) models and the XGBoost training model is proposed for short-term wind
power forecasting. The proposed forecasting algorithm includes data preprocessing, in which an
autoencoder model is used to reduce the dimension of 20 NWP ensembles. The performance of
the proposed method is investigated using historical wind power measurements and NWP results
by the Taiwan Central Weather Bureau (CWB); the NWP includes spot wind speeds from WRFD,
RWRF, and ensemble wind speeds from WEPS. Based on the forecasting results, the proposed model
produces better performance and forecasting accuracy among other forecasting models, which reveals
the importance of data preprocessing using autoencoders and the use of deep learning models in
deterministic or probabilistic forecasts.

Keywords: wind power forecasting; deterministic forecasting; probabilistic forecasting; numerical
weather prediction (NWP); data preprocessing; XGBoost; autoencoders

1. Introduction

Wind is one of the prominent renewable energy resources because it is more accessible,
inexhaustible, fairly cheaper, environmentally friendly, and clean. In some regions where
wind power resource is enormous, the yield of wind electricity begins to account for a
significant proportion [1]. For instance, in Taiwan, about 6.5 GW of offshore wind power
will be integrated by 2030. However, the generation of wind power is facing primary
problems on its uncertainty and intermittency. Power fluctuations from wind turbines
are caused by season, temperature, air pressure, and so on [2]. The variability of grid-
connected wind power has led to numerous challenging tasks, including optimal unit
scheduling, power system inertia, sizing of energy storage system, determination of energy
reserves, energy market policies, and reliability assessment [3]. Power system inertia is
important for maintaining grid stability. A power system with insufficient inertia can suffer
from the problems on transient frequency stability. In the past, the primary resources for
providing inertia come from synchronous generators. However, as the penetration of wind
power generation increases, the rotating inertia contributed by synchronous generators
could be reduced, increasing the risk of power system operations. Therefore, wind power

Appl. Sci. 2021, 11, 1100. https://doi.org/10.3390/app11031100 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3707-4770
https://orcid.org/0000-0003-2289-5768
https://doi.org/10.3390/app11031100
https://doi.org/10.3390/app11031100
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11031100
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/1100?type=check_update&version=2


Appl. Sci. 2021, 11, 1100 2 of 19

forecasting (WPF) is one of the most efficient ways to reduce the uncertainty on power
system operations.

Traditional single-value predictions, also called deterministic forecasting, cannot pro-
vide uncertainty information. By contrast, probabilistic forecasting is able to provide
the set of potential values within which the observation is supposed to lie with a cer-
tain probability [4]. There are a variety of probabilistic wind power forecasting methods;
they are divided into three main groups [5]: predicted error approach, direct approach,
and approaches based on the NWP data. Traditional predicted error approaches were
mainly divided into two techniques: parameter-based approach and bootstrap. Regard-
ing the parameter-based approach, several studies described the forecasting uncertainty
with suitable probability density functions (PDF) that are generated by historical forecast-
ing errors. For example, Gaussian distribution or beta distribution is the most popular
assumption for a PDF. The bootstrap approaches, such as the standard bootstrap, pair
bootstrap, and moving block bootstrap, estimate the distribution of forecasting errors by
resampling the original data, and an artificial intelligent model can be used to generate
forecasting results. For the direct approach, the lower and upper bounds for prediction
intervals are trained and constructed by artificial intelligent (AI) technologies. However,
the AI model itself is not able to provide Predicted Intervals (PIs). To solve that problem,
many developed optimizations were developed. For instance, the lower upper bound
estimation (LUBE)-based neural network with a modified bat algorithm (MBA) [6] was
used to maximize PI coverage probability (PICP) and minimize PI normalized average
width (PINAW). Similarly, quantum-behaved particle swarm optimization (QPSO) was
also utilized to optimize PIs [7].

In terms of NWP, spot NWP models consider the physical parameters of weather vari-
ables and are widely developed by meteorologists. Most commercial wind power forecast-
ing methods utilized single-value NWP wind forecasts as input data [8,9]. Ensemble NWPs
have been developed widely to provide an assessment of weather uncertainty by varying
initial weather parameters in a lower resolution [10]. Moreover, reference [11] proved that
the combination of deterministic and probabilistic models enhances wind power forecasts.
In this work, NWP ensembles include 20 wind speed members, which would reduce
the training speed of the model. Consequently, an autoencoders model was developed
for dimensional reduction, which reduces the original NWP ensembles wind speeds and
accelerates the model training.

Data preprocessing is one of the most important parts for wind power forecasting to ex-
tract the features [12,13], data modification [14], or dimension reduction [15]. The Weather
Research and Forecasting (WRF) model is a next-generation mesoscale numerical weather
prediction system. It includes deterministic WRF (WRFD), radar WRF (RWRF), and a WRF
ensemble prediction system (WEPS). For short-term predictions, the inputs of the forecast-
ing model can comprise historical wind power and different NWP results, including spot
NWPs (WRFD and RWRF) and ensemble NWP (WEPS). Therefore, data preprocessing can
be applied to wind power, WRFD, RWRF, and WEPS. Furthermore, there are numerous
methods to increase the forecasting performance based on NWP adjustments [12,13].

This paper considers the short-term wind power forecasting, which is important for
the intraday trading and the management of the transmission systems. Since the used
NWP WEPS wind speeds are generated every three hours, thus, this paper considers the
three-hour-ahead short-term wind power forecasting.

Additionally, this work develops a hybrid model for probabilistic wind power fore-
casting. It considers different NWP data, dimensional reduction for ensemble NWPs,
and XGBoost. The forecasting module, i.e., prediction interval, in this work uses lower
upper bound estimation based on Long Short-Term Memory (LSTM) [16–18]. According to
the forecasting results, the proposed forecasting model outperforms traditional models in
term of accuracy and reliability.

The rest of this paper is structured as follows. Chapter 2 is a literature review for wind
power forecasting using NWP data. Chapter 3 provides a brief overview of assessment
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indices for deterministic and probabilistic forecasts to understand the forecast quality by
its sharpness and reliability. Chapter 4 introduces the methodologies, including XGBoost
and Autoencoders. Chapter 5 is the process of the proposed forecasting method. Chapter 6
provides the preprocessing of the dataset in the forecasting process. Chapter 7 introduces
the proposed probabilistic forecasting model. Chapter 8 discusses the forecasting results
among different methods. Chapter 9 gives the conclusion of this paper.

2. Literature Review for Wind Power Forecasts Using NWP Data
2.1. Overview of Wind Power Forecasting Methods

Wind power forecasts are classified by various methods according to time horizons or
methodologies. The classification based on time horizon is different in various research
studies. However, it can be divided mainly into four main categories:

− Very short-term forecasting: from a few seconds to 30 min ahead; it is for real-time
system operations.

− Short-term forecasting: from 30 min to several hours ahead; it is for economic dispatch
and load management.

− Medium-term forecasting: from several hours to one day ahead; it is for unit commit-
ment and electricity market operation.

− Long-term forecasting: more than one day ahead; it is for power system risk assess-
ment and energy planning.

In terms of forecasting methodologies, most of the wind power forecasting approaches
are divided into persistence methods, Numerical Weather Prediction (NWP) methods,
statistical methods, artificial intelligence methods, spatial correlation methods, and hybrid
methods [19].

2.2. Numerical Weather Prediction (NWP)

NWP plays an important role in wind power forecasting. Thus, the inputs of the wind
power forecasting model should involve NWP data. Figure 1 shows a typical probabilistic
model for wind power generation based on the input of deterministic NWPs, in which
both measured data from wind farms and deterministic NWPs are considered. NWP-based
forecasts can be obtained either by prediction error approaches or direct approaches [20].

Figure 1. Schematic diagram of probabilistic approaches based on deterministic Numerical Weather Prediction (NWP).

Many forecasting approaches with ensemble NWPs have been utilized to provide the
probability of wind uncertainties. A typical ensemble NWP model may include a unique
conversion model, multi-conversion forecasting model, or dimensional reduction model,
as shown in Figure 2.



Appl. Sci. 2021, 11, 1100 4 of 19

Figure 2. Schematic diagram of probabilistic approaches based on ensemble NWPs.

In [5], the authors used a dimensional reduction method to extract the features of
ensemble NWP data and constructed a short-term probabilistic forecasting engine using a
LUBE-based neural network. However, this work only considered a single NWP model.
The study in [13] proposed an approach that improves short-term wind power forecasting
by the combination of a K-means algorithm, artificial neural network, and Bayes infor-
mation criterion that is used for identifying and mining bad data of NWPs. However,
the proposed model includes many parameters, which requires a long time for computation
and analyses in real applications. In [20], a hybrid approach was developed using K-means
cluster analysis and a generalized regression neural network (GRNN) model that is based
on NWP data. However, other advanced clustering methods may surpass the K-means
algorithm and obtain better forecasting results.

All the above works considered the improvement of the input data before they are
input into wind power forecasting models. This paper continued the previous work
in [21] and improved the performance of probabilistic wind power forecasting considering
various NWP models. Finally, a comprehensive analysis about the forecasting results was
performed.

3. Assessment Indices for Deterministic and Probabilistic Forecasts
3.1. Root Mean Squared Error (RMSE)

A variety of statics have been proposed and employed to evaluate the forecast per-
formance, but no single one is accepted as the universal standard [22]. There are many
criteria for rating network effectiveness’s assessment, such as Root Mean Squared Error
(RMSE), Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), and Mean
Absolute Error (MAE). All of those indexes have been utilized for deterministic forecasts.
For a short-term wind power forecast, RMSE is generally chosen to be the comparison
index among different methods, which can be illustrated by:

RMSE =

√
1
n

n

∑
i=1

(P − P0)
2 (1)

where n is the number of data, P0 is real-time power, and P is forecasting wind power.

3.2. Reliability: Prediction Interval Coverage Probability (PICP)

To avoid under- or over-confidence, the value PICP is determined to represent the
percentage of observations or actual wind power values that fall within a range between
lower bounds and upper bounds, where the subscript t refers to the number of a sample
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or a time step. Greater PICP implies that there are more targets in the corresponding PIs.
PICP is calculated as follows:

PICP =
1
N

N

∑
t=1

ct (2)

where N is the total number of samples and ct is a Boolean value, which is defined as:

ct =

{
1, yt ∈ [Lt, Ut]
0, yt /∈ [Lt, Ut]

(3)

where yt, Lt, and Ut are the observation value, the lower bound, and the upper bound,
respectively, with the same number of timestep t. A confidence level refers to the percentage
of all possible samples that can be expected to include the real population parameter.
For example, a 50% confidence level implies that 50% of the confidence intervals would
include the real population parameter. Generally, PICP must be close to the confidence
level that is predetermined in the probabilistic model.

3.3. Sharpness: Prediction Inteval Normalized Average Width (PINAW)

Obviously, widening the PIs leads to the increase of PICP, but it is not useful for
decision-making. As a result, a measure of the average width of PIs, namely PINAW,
is defined as:

PINAW =
1

NR

N

∑
t=1

(Ut − Lt) (4)

where R is the range of underlying targets that are used to normalize predicted intervals.

3.4. Aggregative Index: Coverage Width Criterion (CWC)

PINAW and PICP represent the reliability and the sharpness of PIs, respectively.
In fact, it is necessary to find an index that considers both aspects. Therefore, the CWC is
the index that is used for this work. It is calculated as:

CWC = PINAW(1 + γ(PICP, µ)e−η(PICP−µ)) (5)

where µ is the confidence level for PIs. When µ is greater than PICP, a penalty coefficient η
is activated to maximize the difference between PICP and µ. γ (PICP, µ) is described as
follows:

γ(PICP,µ) =
{

0, PICP ≥ µ

1, PICP < µ
. (6)

4. Methodology

The major objective of this paper is to develop a new probabilistic wind power fore-
casting method, which is based on XGBoost, LUBE based on LSTM, and the preprocessing
process by Autoencoder.

4.1. XGBoost

The decision tree is selected by XGBoost as its based learner [23]. The error between the
predictive value and the target is reduced by adding more new based learners. Summation
of all the base learners achieves the final predictive values. The XGBoost algorithm can be
considered as an additive model consisting of M decision trees, which are given by:

Yi =
M

∑
m=1

fm(xi), fm ∈ F (7)
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where f is a decision tree, and F represents the function of all decision trees. In the regression
process, the object function of the additive model becomes

bj(θ) =
n

∑
i=1

l(yi, Yi) +
M

∑
m=1

Ω( fm) , θ = ( f1, f2, . . . , fM) (8)

where l denotes loss function and Ω is the regularization term.
Vector mapping is used to improve the decision tree for each regularization term Ω(f).

Ω(f) can be represented by

Ω( f ) = γT +
1
2

λ
T

∑
j=1

ω2
j (9)

where T indicates the number of a decision tree’s leaf nodes; ω represents the vector of
score, and both γ and λ express the penalty factor.

XGBoost uses the forward stage-wise algorithm to simplify the complex of the model.
Every time the model adds a decision tree, it learns a new function and its coefficients
to fit the last step predicted residuals. Therefore, when the tth step learning happens,
the predictive value of xi is Yt

i = Yt−1
i + ft(xi). Therefore, the object function should be

expressed by

Obj(θ)t =
n

∑
i=1

l
(
yi, Yt

i
)
+

t

∑
m=1

Ω( fm) =
n

∑
i=1

l
(

yi, Yt−1
i + ft(xi)

)
+

t

∑
m=1

Ω( fm) . (10)

The greedy algorithm is applied in the XGBoost model to build the decision tree;
by building decision trees continually, a complete XGBoost model is established. Further-
more, the randomization technique is also implemented in XGBoost to reduce overfitting
and increase training speed, and the sparsity-aware algorithm is used to effectively elimi-
nate missing values from the computation of the loss gain of split candidates. Numerous
parameters have been tuned for XGBoost in this work, which include the learning rate,
the minimum sum of weights of all observations required in a child, the maximum depth
of the tree, and the subsampling rate. These important parameters will be mentioned
in Chapter 7. The process of tuning is to select the best parameters for an algorithm to
optimize the performance.

4.2. Autoencoders

An autoencoder is a type of unsupervised artificial neural network (ANN), which com-
presses the data into a lower dimension and then reconstructs the input back. The au-
toencoder is trained to learn the representation of the input data in a lower dimension
by focusing on the important features, getting rid of noise and redundancy. It is based
on Encoder–Decoder architecture, as shown in Figure 3, where an encoder encodes the
high-dimensional data and reconstructs the original high-dimensional data. Moreover,
the autoencoders are feed forward deep learning models, which represents the learning
flexibility [24–26].
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Figure 3. Schematic structure of an autoencoder with three fully connected hidden layers.

The structure of an autoencoder is similar to that of a feedforward neural network
(Multi-Layer Perceptron). In terms of its simplest form, an autoencoder uses hidden layers
to recreate the inputs. The algorithm of an autoencoder is described in two parts:

Part 1: Encoder function (Z = f(X)) that converts X to Z codings.
Part 2: Decoder function (X’ = g(Z)) that produces a reconstruction of the inputs (X’).
The encoder and the decoder can be defined as transitions φ and ψ, such that:

φ : X −→ F (11)

ψ : F −→ X (12)

φ, ψ = argminφ,ψ||X− (φ ◦ ψ)X||2. (13)

In the simplest case, given one hidden layer, the encoder stage of an autoencoder takes
the input x ∈ Rd = X and maps it to z ∈ Rp = F :

z = σ(Wx + b). (14)

This image z is usually referred to as code. Hence, an element-wise activation function σ,
for example, sigmoid or rectified linear unit, a weight matrix W, and a bias vector b. Weight
and bias are normally initialized randomly and then updated iteratively during training
through back-propagation. Then, the decoder stage of the autoencoder maps z to the
reconstruction X’ of the same shape as x.

To reduce the dimension of the learning model, this study has reduced the size of
the code that adequately represents X. An undercomplete autoencoder whose internal
representation has a smaller dimensionality than the input data is represented in Figure 3.

To learn the neuron weights, the autoencoder seeks to minimize the loss function,
such as RMSE, which penalizes X’ for being dissimilar from X:

minimize L = f
(
X, X′

)
. (15)

5. Preprocessing of Datasets

Normally, data derived from the wind farm contain many outliers, noisy data, and miss-
ing values. These unreasonable data decrease the prediction accuracy. Data preprocessing
can provide a strong preliminary interpretation of the dataset; consequently, data prepro-
cess is the first stage in a typical forecasting algorithm.

− Data cleaning: original data have many outliers, and these data are unreasonable and
need to be cleaned.
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− Filling missing data: It is necessary to fill missing data while some measured wind
data collected from the wind farm were lost. In this study, missing data are filled by
linear interpolation. Thus, the accuracy of the forecasting model can be significantly
improved.

− Data normalization: Different variables have different units; that is, the process of
data normalization is important. The following formula was used to transform all
data values within the range 0 I:

Di,n =
Di −min(Dtrain)

max(Dtrain)−min(Dtrain)
. (16)

Every country has developed their own NWP systems, including global and regional
models. This work utilizes historical wind power data recorded at Taiwan’s wind farms and
the NWP wind-speed forecasts by Taiwan’s central weather bureau. The state-of-the-art
NWP system is essential for the weather forecasts and climate applications. In particular,
NWP also plays an important role in the application for renewable energy. The Taiwan
CWB has developed the global and regional NWP systems for 30 years [21]. In this paper,
three CWB NWP systems were used to evaluate the potential for forecasting wind power,
which are called WRFD, RWRF, and WEPS. It consists of the complex model of WRF. In
a WEPS model, it generates ensemble wind speeds (20 different NWP outputs) every
three hours. An example of a 20-WEPS member of wind speeds is shown in Figure 4.

Figure 4. Example of a 20-WEPS member of ensemble wind speeds. WEPS: Weather Research and
Forecasting (WRF) ensemble prediction system.

The proposed dimensional reduction module is called the autoencoder-based deep
learning method. The lower-bound and upper-bound NWP values are obtained from
20 members of ensemble wind speeds by dimensional reduction. It converts 20 NWP
ensemble values to two values (lower and upper bound) to enhance the forecasting accuracy.
The autoencoder is trained using both encoder and decoder. To obtain the dimension
reduction, the layer between the encoder and decoder is set to two. Then, the middle
layer is used as an output layer, as shown in Figure 5. Figure 6 shows the overall results
after the preprocessing process, which points out the accuracy and stability of the new
dataset. In this study, high dataset stability is defined if the data go through the processes
of removing noises, filling missing data, and using the algorithm of the autoencoder.
These processes are critical to improve the performance of a forecasting model.
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Figure 5. Construction of an autoencoder for preprocessing ensemble wind speeds.

Figure 6. Results of data preprocessing using WEPS ensemble members.

6. The Structure of Proposed Model for Probabilistic Wind Power Forecasting

Figure 7 shows the proposed 3 h-ahead probabilistic wind power forecasting model.
There are three main processes: preprocessing of dataset, deterministic wind power fore-
casting using XGBoost, and probabilistic wind power forecasting based on LUBE-LSTM
(Lower Upper Bound Estimations–Long Short-Term Memory) model. The LUBE method
was selected because it is advantageous to wind power forecasting; several previous stud-
ies [5,6,27] have verified its effectiveness on forecasts. LUBE can be directly constructed
using the LSTM model, enabling predictors to select more input variables and generate
two outputs (lower and upper bounds). For probabilistic forecasts, lower bound and upper
bound are significant to build PIs.
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Figure 7. Block diagram of the proposed probabilistic forecasting.

The outputs of the LUBE-LSTM model provide a lower bound and upper bound
on wind power forecasts. Figure 8 depicts the overall steps of the proposed forecasting
method. There are nine steps for the proposed forecasting method.

Figure 8. Flow chart of probabilistic forecasting.

Step 1: The input data include historical wind power measurements, spot NWPs (WRFD,
RWRF), and NWP ensemble wind speeds (WEPS).
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Step 2: Splitting data into a training set and testing set, the dataset is shown in Table 1.

Table 1. Input data description.

Used Data Input Data Time

Historical data
from wind farm Wind Power (W) Every hour from

7/2019 to 3/2020

Data from NWPs

RWRF (m/s)
WRFD (m/s)

WEPS ensemble wind speed
(m/s)

Every hour from
7/2019 to 3/2020

Every 3 h from
7/2019 to 3/2020

Step 3: Since the value of wind speeds varies dramatically, the normalization must be used
for calibrating them into the range of zero to unity.

Step 4: The preprocessing process for the original data includes a dimension reduction using
autoencoder and wind power curve calibration. The detail about the calibration of
a wind power curve was proposed in our previous work [21]. In real operations,
wind power curtailment is commonly implemented by wind farm operators because
of some emergency conditions, resulting in deviations from a normal power curve.
For instance, the manual operation of wind turbines by operators sometimes reduces
wind power generation. However, in the process of model training, these abnormal
operating points should be removed to avoid training errors.

Step 5: Deterministic forecasting is implemented every 3 h by XGBoost, as shown in Figure 9.

Figure 9. Proposed three-hour-ahead deterministic forecasting model.

Step 6: Tuning parameters after training model by XGBoost.
Step 7: Obtain all of the errors from previous generated power. Then, construct the prob-

ability density function (PDF) of the errors. The lower bound and upper bound
are obtained from the forecasting errors, which are associated with the highest
probability. Next, compute the lower and upper bounds of the produced power
as follows:

WPup = WPf orecast + EupWPlow = WPf orecast + Elow (17)

where Eup and Elow are the upper bound and lower bound of the forecasting errors,
respectively; WPup and WPlow are the upper bound and lower bound outputs of
the LSTM model; and WPforecast is the deterministic forecasting obtained from the
XGBoost model.

Step 8: Train the model with the above lower and upper bounds of wind power as the
output. Different inputs are shown in Figure 10. The data in February were used for
prediction, and the data in January were used as validation data. The historical data
from July 2019 to December 2020 were used as the training data.
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Figure 10. Proposed three-hour-ahead probabilistic forecasting model.

Step 9: The performance of the model is assessed by using the mentioned criteria, i.e., PICP,
PINAW, and CWC.

7. Forecasting Results

In this work, the proposed forecasting model was applied to the Hu-Si wind farm on
Penghu Island, Taiwan. The Hu-Si wind farm has six wind turbines, and the capacity of
each turbine is 0.9 MW.

Figure 11 shows the three-hour-ahead deterministic forecasting results by XGBoost
with data preprocessing and tuned parameters. Table 2 lists four important parameters
in the XGBoost model. Accordingly, the blue line in Figure 11 denotes forecasting values,
while the orange line stands for actual values.

Figure 11. Testing sample of three-hour-ahead by the proposed model.
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Table 2. Important default values and tuned parameter settings of the proposed model.

Parameter Default Proposed Model

Min_child_weight 1 10
Max_depth 6 20
Subsample 1 0.8

Lamda 1 0.7

It can be seen clearly that the proposed XGBoost approach can track the actual data
well. The error created from the proposed XGBoost is small; the RMSE on the training set
and forecasting set are 0.177 MW and 0.352 MW, respectively.

To demonstrate the superiority of the proposed method, the forecasting results by the
proposed method are compared with those by other forecasting models:

− Method 1a,b: Proposed model with different NWPs scenarios: (a) RWRF and WEPS,
(b) WRFD and WEPS.

− Method 2: XGBoost with standard dimension reduction.
− Method 3: ANN model with standard dimension reduction.

Method 1a,b was selected in order to demonstrate the importance for considering
various NWP models. This study focuses on the importance of various NWP methods
on wind power forecasting. In the proposed method, the inputs include WRFD, RWRF,
and WEPS, while the inputs of Method 1a only include RWRF and WEPS, and the inputs
of Method 1b include WRFD and WEPS. The purpose for distinguishing different NWP
inputs is to demonstrate and compare the forecasting results by considering different NWP
models; Method 2 was selected to highlight the importance of the dimension reduction
technique; Method 3 was selected to reveal the importance of the training AI method.

Figures 12–14 present the results of probabilistic forecasting for the Hu-Si wind farm
in the prediction intervals from 50 to 90% considering different NWP models as Method 1.
Figures 15 and 16 display the comparison of wind power forecasts by the proposed model
with Method 2 and Method 3, respectively. To examine the accuracy of PIs (PI validity)
and demonstrate the efficiency of the proposed method (method performance), Tables 3–7
summarize the values of PICP, PINAW, and CWC, respectively.

Figure 12. Three-h-ahead probabilistic forecasting results by proposed method. WRFD, deterministic WRF; RWRF, radar
WRF; WEPS.
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Figure 13. Three-h-ahead probabilistic forecasting results by Method 1a (RWRF, WEPS).

Figure 14. Three-h-ahead probabilistic forecasting results by Method 1b (WRFD, WEPS).
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Figure 15. Comparison of wind power forecasting results by the proposed method and Method 2.
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Figure 16. Comparison of wind power forecasting results by the proposed method and Method 3.
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Table 3. Three-hour-ahead Predicted Intervals (PIs) using the proposed model that considers WRFD,
RWRF, and WEPS.

Confidence Level (%) PICP PINAW CWC

50 52.55 7.68 7.68
60 63.26 10.41 10.41
70 76.53 12.94 12.94
80 83.16 16.71 16.71
90 90.82 20.95 20.95

Table 4. Three-hour-ahead PIs using RWRF and WEPS (Method 1a).

Confidence Level (%) PICP PINAW CWC

50 48.93 8.90 19.38
60 64.08 12.75 12.75
70 72.88 16.33 16.33
80 80.70 19.80 19.80
90 89.00 24.40 90.30

Table 5. Three-hour-ahead PIs using WRFD and WEPS (Method 1b).

Confidence Level (%) PICP PINAW CWC

50 58.08 8.90 8.90
60 74.74 13.09 13.09
70 80.30 15.63 15.63
80 82.32 18.86 18.86
90 90.90 24.05 24.05

Table 6. Three-hour-ahead PIs using Method 2.

Confidence Level (%) PICP PINAW CWC

50 54.55 9.43 9.43
60 66.07 13.30 13.30
70 71.43 15.88 15.88
80 80.30 19.59 19.59
90 92.07 22.07 22.07

Table 7. Three-hour-ahead PIs using Method 3.

Confidence Level (%) PICP PINAW CWC

50 46.50 9.02 46.50
60 66.69 12.84 12.84
70 75.17 15.99 15.99
80 80.80 18.17 18.17
90 86.82 22.43 490.20

8. Discussions

The forecasting results can be compared in terms of forecasting validity, performance,
and stability. Typically, PICPs represents the characteristics of reliability (PI validity),
while PINAWs and CWCs represent the performance of forecasting methods (Accuracy).

In terms of PI validity, when PICP is greater than the related confidence level, PIs are
theoretically valid. Otherwise, PI values are questionable. Table 3 shows that the PIs using
the proposed method satisfy this requirement. Table 5 (Method 1b) and Table 6 (Method 2)
also demonstrate that the PIs are valid. However, some of the PICPs that are obtained using
Method 1a and Method 3 are smaller than the related confidence level, revealing that the
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selected input is not appropriate. Based on the results in Table 7 (Method 3), it is important
to use a better dimension reduction technique or another powerful training model such as
machine learning or deep learning.

In terms of forecasting performance, Table 3 reveals that the average of CWCs obtained
by the proposed method is the smallest. Therefore, the proposed method has the highest
forecasting performance with the preprocessing technique based on autoencoders and
wind power curve calibration, which is followed by Method 1b and Method 2 shown in
Tables 5 and 6.

In terms of forecasting stability, by the proposed method, the mean of CWCs is
always smaller than that using other methods (Methods 1a,b, 2, and 3). Additionally,
the CWCs using Method 1a and Method 3 are large at some confidence levels because the
obtained PICPs cannot reach up to the corresponding confidence levels, indicating that the
forecasting stability by these models is low.

Based on the forecasting results, the PIs obtained by the proposed method are more
efficient and insightful for decision-making than other methods.

9. Conclusions

Wind power forecasting plays a vital role in dealing with the intermittency and
uncertainty characteristics of wind. Power system operations require a high accuracy
forecasting model, since probabilistic wind power forecasts and NWP calibrations are still
very challengeable. In this paper, a hybrid model has been proposed for three-hour-ahead
wind power forecasting, which includes a dimensional reduction using autoencoders in
the preprocessing step, the XGBoost training model for deterministic forecasting, and the
consideration of different NWP models such as WRFD, RWRF, and WEPS. For evaluating
the developed method, actual measured data from the Hu-Si wind farm located on Penghu
island, Taiwan have been used for testing, and RMSE, PICP, PINAW, and CWC have been
applied to identify the model performance.

This study demonstrates that the use of the machine learning model for training
as well as the deep learning model for preprocessing input data is very important to
improve forecasting performance. In addition, different NWP models should be considered
in the forecasting module. Finally, the forecasting results herein in both deterministic
and probabilistic forecasts show that the proposed model has better accuracy, stability,
and reliability than other methods for short-term wind power forecasting.
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