
applied
sciences

Article

Anticipatory Classifier System with Average Reward Criterion
in Discretized Multi-Step Environments

Norbert Kozłowski *,† and Olgierd Unold †

����������
�������

Citation: Kozłowski, N.; Unold, O.

Anticipatory Classifier System with

Average Reward Criterion in

Discretized Multi-Step Environments.

Appl. Sci. 2021, 11, 1098. https://

doi.org/10.3390/app11031098

Academic Editor: Grzegorz Dudek

Received: 28 October 2020

Accepted: 16 January 2021

Published: 25 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Engineering, Faculty of Electronics, Wroclaw University of Science and Technology,
50-370 Wroclaw, Poland; olgierd.unold@pwr.edu.pl
* Correspondence: norbert.kozlowski@pwr.edu.pl; Tel.: +48-792-922-331
† These authors contributed equally to this work.

Abstract: Initially, Anticipatory Classifier Systems (ACS) were designed to address both single and
multistep decision problems. In the latter case, the objective was to maximize the total discounted
rewards, usually based on Q-learning algorithms. Studies on other Learning Classifier Systems
(LCS) revealed many real-world sequential decision problems where the preferred objective is the
maximization of the average of successive rewards. This paper proposes a relevant modification
toward the learning component, allowing us to address such problems. The modified system is called
AACS2 (Averaged ACS2) and is tested on three multistep benchmark problems.

Keywords: learning classifier systems; anticipatory classifier systems; reinforcement learning; genetic
algorithms; OpenAI gym

1. Introduction

Learning Classifier Systems (LCS) [1] comprise a family of flexible, evolutionary,
rule-based machine learning systems that involve a unique tandem of local learning and
global evolutionary optimization of the collective model localities. They provide a generic
framework combining the discovery and learning components. Despite the misleading
name, LCSs are not only suitable for classification problems but may instead be viewed as
a very general, distributed optimization technique. Due to representing knowledge locally
as IF-THEN rules with additional parameters (such as predicted payoff), they have high
potential to be applied in any problem domain that is best solved or approximated through
a distributed set of local approximations or predictions. The main feature of LCS is the
employment of two learning components. The discovery mechanism uses the evolutionary
approach to optimize the individual structure of each classifier. On the other side, there is
a credit assignment component approximating the classifier fitness estimation. Because
those two interact bidirectionally, LCSs are often perceived as being hard to understand.

Nowadays, LCS research is moving in multiple directions. For instance, BioHEL [2]
and ExSTraCS [3] algorithms are designed to handle large amounts of data. They extend
the basic idea by adding expert-knowledge-guided learning, attribute tracking for hetero-
geneous subgroup identification, and a number of other heuristics to handle complex and
noisy data mining. On the other side, there are some advances made towards combining
LCS with artificial neural networks [4]. Liang et al. [5] took the approach of combining
the feature selection of Convolutional Neural Networks with LCSs. Tadokoro et al. [6] have
a similar goal—they want to use Deep Neural Networks for preprocessing in order to be
able to use LCSs for high-dimensional data while preserving their inherent interpretability.
An overview of recent LCS advancements is published yearly as a part of the International
Workshop on Learning Classifier Systems (IWLCS) [7].

In the most popular LCS modification-XCS [8], where the classifier fitness is based on
the accuracy of a classifier’s payoff prediction instead of the prediction itself, the learning
component responsible for local optimization follows the Q-learning [9] pattern. Classifier

Appl. Sci. 2021, 11, 1098. https://doi.org/10.3390/app11031098 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4873-6730
https://orcid.org/0000-0003-4722-176X
https://doi.org/10.3390/app11031098
https://doi.org/10.3390/app11031098
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11031098
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/1098?type=check_update&version=2

Appl. Sci. 2021, 11, 1098 2 of 16

predictions are updated using the immediate reward and the discounted maximum payoff
anticipated in the next time step. The difference is that, in XCS, it is the prediction of
a general rule that is updated, whereas, in Q-learning, it is the prediction associated with
an environmental state–action pair. In this case, both algorithms are suitable for multistep
(sequential) decision problems in which the objective is to maximize the discounted sum of
rewards received in successive steps.

However, in many real-world situations, the discounted sum of rewards is not the
appropriate option. This choice is right when the rewards received in all decision instances
are equally important. The criterion applied in this situation is called the average reward
criterion and was introduced by Puterman [10]. He stated that the decision maker might
prefer it when the decisions are made frequently (so that the discount rate is very close
to 1) or other terms cannot easily describe the performance criterion. Possible areas of
an application might include situations where system performance is assessed based
on the throughput rate (like making frequent decisions when controlling the flow of
communication networks).

The averaged reward criterion was first implemented in XCS by Tharakunnel and
Goldberg [11]. They called their modification AXCS and showed that it performed similarly
to the standard XCS in the Woods2 environment. Later, Zang et al. [12] formally introduced
the R-learning [13,14] technique to XCS and called it XCSAR. They compared it with XCSG
(where the prediction parameters are modified by applying the idea of gradient descent)
and ACXS (maximizing the average of successive rewards) in large multistep problems
(Woods1, Maze6, and Woods14).

In this paper, we introduce the average reward criterion to yet another family of
LCSs-anticipatory learning classifier systems (ALCS). They differentiate from others so that
a predictive schema model of the environment is learned rather than reward prediction
maps. In contrast to the usual classifier structure, classifiers in ALCS have a state prediction
or an anticipatory part that predicts the environmental changes caused when executing
the specified action in the specified context. Similarly, as in the XCS, ALCSs derive clas-
sifier fitness estimates from the accuracy of their predictions; however, anticipatory state
predictions’ accuracy is considered rather than the reward prediction accuracy. Popular
ALCSs use the discounted criterion in the original form, optimizing the performance in the
infinite horizon.

Section 2 starts by briefly describing the psychological insights from the concepts of
imprinting and anticipations and the most popular ALCS architecture-ACS2. Then, the RL
and the ACS2 learning components are described. The default discounted reward criterion
is formally defined, and two versions of undiscounted (averaged) criterion integration are
introduced. The created system is called AACS2, which stands for Averaged ACS2. Finally,
three testing sequential environments with increasing difficulty are presented: the Corridor,
Finite State Worlds, and Woods. Section 3 examines and describes the results of testing
ACS2, AACS2, Q-learning, and R-learning in all environments. Finally, the conclusions are
drawn in Section 4.

2. Materials and Methods
2.1. Anticipatory Learning Classifier Systems

In 1993, Hoffman proposed a theory of “Anticipatory Behavioral Control” that was
further refined in [15]. It states that higher animals form an internal environmental repre-
sentation and adapt their behavior through learning anticipations. The following points
(visualized in Figure 1) can be distinguished:

1. Any behavioral act or response (R) is accompanied by anticipation of its effects.
2. The anticipations of the effects Eant are compared with the real effects Ereal .
3. The bond between response and anticipation is strengthened when the anticipations

were correct and weakened otherwise.
4. Behavioral stimuli further differentiate the R− Eant relations.

Appl. Sci. 2021, 11, 1098 3 of 16

Sstart EantR Ereal> comparison <

reinforcement

differentiation

Figure 1. The theory of anticipatory behavioral control; the figure was adapted from [16], p. 4.

This insight into the presence and importance of anticipations in animals and man
leads to the conclusion that it would be beneficial to represent and utilize them in animals.

Stolzmann took the first approach in 1997 [17]. He presented a system called ACS
(“Anticipatory Classifier System”), enhancing the classifier structure with an anticipatory
(or effect) part that anticipates the effects of an action in a given situation. A dedicated
component realizing Hoffmann’s theory was proposed—Anticipatory Learning Process (ALP),
introducing new classifiers into the system.

The ACS starts with a population [P] of most general classifiers (‘#’ in a condition
part) for each available action. To ensure that there is always a classifier handling every
consecutive situation, those cannot be removed. During each behavioral act, the current
perception of environment σ(t) is captured. Then, a match set [M](t) is formed, consisting
of all classifiers from [P] where the condition matches the perception σ(t). Next, one
classifier cl is drawn from [M](t) using some exploration policy. Usually, an epsilon-greedy
technique is used, but [18] describes other options as well. Then, the classifier’s action cl.a
is executed in the environment, and a new perception σ(t + 1) and reward φ(t + 1) values
are presented to the agent. Knowing the classifiers’ anticipation and current state, the ALP
module can adjust the classifier cl’s condition and effect parts. Based on this comparison,
certain cases might be present:

• Useless-case. After performing an action, no change in perception is perceived from
the environment. The classifier’s quality cl.q decreases.

• Unexpected-case. When new state σ(t + 1) does not match the anticipation of cl.E.
A new classifier with a matching effect part is generated, and the incorrect one is
penalized with a quality drop.

• Expected-case. When the newly observed state matches the classifier prediction. Classi-
fiers’ quality is increased.

After the ALP application, the Reinforcement Learning (RL) module is executed (see
Section 2.3 for details).

Later, in 2002, Butz presented an extension to the described system called ACS2 [16].
Most importantly, he modified the original approach by:

1. explicit representation of anticipations,
2. applying learning components across the whole action set [A] (all classifiers from [M]

advocating selected action),
3. introduction of Genetic Generalization module for generating new classifier using

promising offsprings,
4. changing the RL module motivated by the Q-Learning algorithm.

Figure 2 presents the complete behavioral act, and Refs. [19,20] describe the algorithm
thoroughly.

Appl. Sci. 2021, 11, 1098 4 of 16

match set
generation

Population

C1 − A1 − E1
C2 − A2 − E2
C3 − A3 − E3
C4 − A2 − E4
C5 − A3 − E5
C6 − A2 − E6
C7 − A4 − E7
C8 − A1 − E8
C9 − A4 − E9

action set
generation

Match Set(t)

C1 − A1 − E1
C3 − A3 − E3
C5 − A3 − E5
C6 − A2 − E6
C8 − A1 − E8

Action Set(t)

C1 − A1 − E1
C8 − A1 − E8

action
selection

Match Set(t+1)

C2 − A2 − E2
C3 − A3 − E3
C4 − A2 − E4
C6 − A2 − E6
C7 − A4 − E7
C9 − A4 − E9

Genetic
Generalization

Mechanism

Anticipatory Learning
Process

Reinforcement
Learning

Environment

σ(t) α(t) = A1 σ(t+1)φ(t)

update

add,
delete

modify,
add,

delete

max fitness

ACS2
Figure 2. A behavioral act in ACS2; the figure was adapted from [16], p. 27.

Some modifications were made later to the original ACS2 algorithm. Unold et al.
integrated the action planning mechanism [21], Orhand et al. extended the classifier
structure with Probability-Enhanced-Predictions introducing a system capable of handling
non-deterministic environments and calling it PEPACS [22]. In the same year, they also
tackled an issue of perceptual aliasing by building a Behavioral Sequences—thus creating a
system called BACS [23].

2.2. Reinforcement Learning and Reward Criterion

Reinforcement Learning (RL) is a formal framework in which the agent can influence
the environment by executing specific actions and receive corresponding feedback (reward)
afterwards. Usually, it takes multiple steps to reach the goal, which makes the process
much more complicated. In the general form, RL consists of:

• A discrete set of environment states S,
• A discrete set of available actions A,
• A mapping R between a particular state s ∈ S and action a ∈ A. The environmental

payoff r ∈ R describes the expected reward obtained after executing an action in a
given state.

In each trial, the agent perceives the environmental state s. Next, it evaluates all
possible actions from A and executes action a in the environment. The environment returns
a signal r and next state s′ as intermediate feedback.

The agent’s task is to represent the knowledge, using the policy π mapping states to
actions, therefore optimizing a long-run measure of reinforcement. There are two popular
optimality criteria used in Markov Decision Problems (MDP)—a discounted reward and an
average reward [24,25].

2.2.1. Discounted Reward Criterion

In discounted RL, the future rewards are geometrically discounted according to
a discount factor γ, where 0 ≤ γ < 1. The performance is usually optimized in the infinite
horizon [26]:

lim
N→∞

Eπ

(
N−1

∑
t=0

γtrt(s)

)
(1)

The E expresses the expected value, N is the number of time steps, and rt(s) is the
reward received at time t starting from state s under the policy.

Appl. Sci. 2021, 11, 1098 5 of 16

2.2.2. Undiscounted (Averaged) Reward Criterion

The averaged reward criterion [13], which is the undiscounted RL, is where the agent
selects actions maximizing its long-run average reward per step ρ(s):

ρπ(s) = lim
N→∞

Eπ
(

∑N−1
t=0 rt(s)

)
N

(2)

If a policy maximizes the average reward over all states, it is a gain optimal policy.
Usually, average reward ρ(s) can be denoted as ρ, which is state-independent [27], formu-
lated as ρπ(x) = ρπ(y) = ρπ , ∀x, y ∈ S when the resulting Markov chain with policy π is
ergodic (aperiodic and positive recurrent) [28].

To solve an average reward MDP problem, a stationary policy π maximizing the
average reward ρ needs to be determined. To do so, the average adjusted sum of rewards
earned following a policy π is defined as:

Vπ(s) = Eπ

(
N→∞

∑
t=0

(rt − ρπ)

)
(3)

The Vπ(s) can also be called a bias or relative value. Therefore, the optimal relative
value for a state–action pair (s, a) can be written as:

V(s, a) = ra(s, s′)− ρ + max
b

V(s′, b)∀s ∈ S and ∀a ∈ A (4)

where ra(s, s′) denotes the immediate reward of action a in state s when the next state is s′,
ρ is the average reward, and maxb V(s′, b) is the maximum relative value in state s′ among
all possible actions b. Equation (4) is also known as the Bellman equation for an average
reward MDP [28].

2.3. Integrating Reward Criterions in ACS2

Despite the ACS’s latent-learning capabilities, the RL is realized using two classifier
metrics-reward cl.r and immediate reward cl.ir. The latter stores the immediate reward
predicted to be received after acting in a particular situation and is used mainly for model
exploitation where the reinforcement might be propagated internally. The reward parame-
ter cl.r stores the reward predicted to be obtained in the long run.

For the first version of ACS, Stolzmann proposed a bucket-brigade algorithm to update
the classifier’s reward rc [20,29]. Let ct be the active classifier at time t and ct+1 the active
classifier at time t + 1:

rct(t + 1) =

{
(1− br) · rct(t) + br · r(t + 1), if r(t + 1) 6= 0
(1− br) · rct(t) + br · rct+1(t), if r(t + 1) = 0

(5)

where br ∈ [0, 1] is the bid-ratio. The idea is that if there is no environmental reward at time
t + 1, then the currently active classifier ct+1 gives a payment of br · rct+1(t) to the previous
active classifier ct. If there is an environmental reward r(t + 1), then br · r(t + 1) is given to
the previous active classifier ct.

Later, Butz adopted the Q-learning idea in ACS2 alongside other modifications [30].
For the agent to learn the optimal behavioral policy, both the reward cl.r and intermediate
reward cl.ir are continuously updated. To assure maximal Q-value, the quality of a classifier
is also considered assuming that the reward converges in common with the anticipation’s
accuracy. The following updates are applied to each classifier cl in action set [A] during
every trial:

Appl. Sci. 2021, 11, 1098 6 of 16

cl.r = cl.r + β

(
φ(t) + γ max

cl′∈[M](t+1)∧cl′ .E 6={#}L
(cl′.q · cl′.r)− cl.r

)
cl.ir = cl.ir + β(φ(t)− cl.ir)

(6)

The parameter β ∈ [0, 1] denotes the learning rate and γ ∈ [0, 1) is the discount
factor. With a higher β value, the algorithm takes less care of past encountered cases. On
the other hand, γ determines to what extent the reward prediction measure depends on
future reward.

Thus, in the original ACS2, the calculation of the discounted reward estimation at
a specific time t is described as Q(t), which is part of Equation (6):

Q(t)← φ(t) + γ max
cl′∈[M](t+1)∧cl′ .E 6={#}L

(cl′.q · cl′.r) (7)

The modified ACS2 implementation replacing the discounted reward with the aver-
aged version with the formula R(t) is defined below (Equation (8)):

R(t) = φ(t)− ρ + max
cl′∈[M](t+1)∧cl′ .E 6={#}L

(cl′.q · cl′.r) (8)

The definition above requires an estimate of the average reward ρ. Equation (4)
showed that the maximization of the average reward is achieved by maximizing the
relative value. The next sections will propose two variants of setting it to use the average
reward criterion for internal reward distribution. The altered version is named AACS2,
which stands for Averaged ACS2.

As the next operation in both cases, the reward parameter of all classifiers in the
current action set [A] is updated using the following formula:

cl.r ← cl.r + β(R− cl.r) (9)

where β is the learning rate and R was defined in Equation (8).

2.3.1. AACS2-v1

The first variant of the AACS2 represents ρ parameter as the ratio of the total reward
received along the path to reward and the average number of steps needed. It is initialized
as ρ = 0, and its update is executed as the first operation in RL using the Widrow–Hoff
delta rule (Equation (10)). The update is also restricted to be executed only when the agent
chooses the action greedily during the explore phase:

ρ← ρ + ζ[φ− ρ] (10)

The ζ parameter denotes the learning rate for average reward and is typically set at
a very low value. This ensures a nearly constant value of average reward for the update of
the reward, which is necessary for the convergence of average reward RL algorithms [31].

2.3.2. AACS2-v2

The second version is based on the XCSAR proposition by Zang [12]. The only
difference from the AACS2-v1 is that the estimate is also dependent on the maximum
classifier fitness calculated from the previous and current match set:

ρ← ρ + ζ[φ + max
cl∈[M](t)∧cl.E 6={#}L

(cl.q · cl.r)− max
cl∈[M](t+1)∧cl.E 6={#}L

(cl.q · cl.r)− ρ] (11)

2.4. Testing Environments

This section will describe Markovian environments chosen for evaluating the intro-
duction of the average reward criterion. They are sorted from simple to more advanced,

Appl. Sci. 2021, 11, 1098 7 of 16

and each of them has different features allowing us to examine the difference between
using discounted and undiscounted reward distribution.

2.4.1. Corridor

The corridor is a 1D multi-step, linear environment introduced by Lanzi to evaluate
the XCSF agent [32]. In the original version, the agent location was described by a value
between [0, 1]. When one of the two possible actions (move left or move right) was executed,
a predefined step-size adjusted the agent’s current position. When the agent reaches the
final state s = 1.0 the reward φ = 1000 is paid out.

In this experiment, the environment is discretized into n unique states (Figure 3). The
agent can still move in both directions, and a single trial ends when the terminating state is
reached or the maximum number of steps is exceeded.

0 1 * n

Figure 3. The Corridor environment. The agent (denoted by “*”) is inserted randomly and its goal is
to reach the final state n by executing two actions-moving left or right.

2.4.2. Finite State World

Barry [33] introduced the Finite State World (FSW) environment to investigate the limits
of XCS performance in long multi-steps environments with a delayed reward. It consists of
nodes and directed edges joining the nodes. Each node represents a distinct environmental
state and is labeled with a unique state identifier. Each edge represents a possible transition
path from one node to another and is also labeled with the action(s) that will cause the
movement. An edge can also lead back to the same node. The graph layout used in the
experiments is presented in Figure 4.

0

1

s0
1

0

s1
0

1

s2
1

0

s3
0

1

s4 sr

0,1

s5

0,1

s6

0,1

s7

0,1

s8

0,1

s9

Figure 4. A Finite State World of length 5 (FSW-5) for a delayed reward experiment.

Each trial always starts in state s0, and the agent’s goal is to reach the final state sr.
After doing so, the reward φ = 100 is provided, and the trial ends. The environment
has a couple of interesting properties. First, it can be easily scalable, just by changing the
number of nodes, which will change the action chain length. It also enables the agent to
choose the optimal route at each state (where the sub-optimal ones do not prevent progress
toward the reward state).

2.4.3. Woods

The Woods1 [34] environment is a two-dimensional rectilinear grid containing a single
configuration of objects that is repeated indefinitely in the horizontal and vertical directions
(Figure 5). It is a standard testbed for classifier systems in multi-step environments. The
agent’s learning task is to find the shortest path to food.

There are three types of objects available-food (“F”), rock (“O”), and empty cell (“.”).
In each trial, the agent (“*”) is placed randomly on an empty cell and can sense the
environment by analyzing the eight nearest cells. Two versions of encoding are possible.
Using binary encoding, each cell type is assigned two bits, so the observation vector has

Appl. Sci. 2021, 11, 1098 8 of 16

the length of 16 elements. On the other hand, using an encoding with the alphabet {0, F, .},
the observation vector is compacted to the length of 8.

In each trial, the agent can perform eight possible moves. When the resulting cell is
empty, it is allowed to change the position. If its type is a block, then it stays in place, and
one time-step elapses. The trial ends when the agent reaches the food providing the reward
φ = 1000.

Version October 29, 2020 submitted to Appl. Sci. 7 of 17

0

1

s0
1

0

s1
0

1

s2
1

0

s3
0

1

s4 sr

0,1

s5

0,1

s6

0,1

s7

0,1

s8

0,1

s9

Figure 4. A Finite State World of length 5 (FSW-5) for a delayed reward experiment.

Each trial always starts in state s0, and the agent’s goal is to reach the final state sr. After doing204

so, the reward φ = 100 is provided, and the trial ends. The environment has a couple of interesting205

properties. First, it can be easily scalable, just by changing the number of nodes, which will change206

the action chain length. It also enables the agent to choose the optimal route at each state (where the207

sub-optimal ones do not prevent progress toward the reward state).208

2.4.3. Woods209

The Woods1 [26] environment is a 2-dimensional rectilinear grid containing a single configuration210

of objects that is repeated indefinitely in the horizontal and vertical directions (Figure 5). It is a211

standard testbed for classifier systems in multi-step environments. The agent’s learning task is to find212

the shortest path to food.213

There are three types of objects available - food ("F"), rock ("O") and empty cell ("."). In each trial,214

the agent ("*") is placed randomly on an empty cell and can sense the environment by analyzing the215

eight nearest cells. Two versions of encoding are possible. Using binary encoding, each cell type is216

assigned two bits, so the observation vector has the length of 16 elements. On the other hand, using an217

encoding with the alphabet {0, F, .}, the observation vector is compacted to the length of 8.218

In each trial, the agent can perform eight possible moves. When the resulting cell is empty, it is219

allowed to change the position. If its type is a block, then it stays in place, and one time-step elapses.220

The trial ends when the agent reaches the food providing the reward φ = 1000.221

...

.OOF..OOF..OOF..OOF..OOF..OOF..OOF..OOF..OOF..OOF..OOF.

.OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO.

.OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO.

...

...

.OOF..OOF..OOF..OOF..OOF..OOF..OOF..OOF..OOF..OOF..OOF.

.OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO.

.OOO..OOO..OOO..OOO..OOO..OOO*.OOO..OOO..OOO..OOO..OOO.

...

...

.OOF..OOF..OOF..OOF..OOF..OOF..OOF..OOF..OOF..OOF..OOF.

.OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO.

.OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO..OOO.

...

Figure 5. Environment Woods1 with an animat "*". Empty cells are denoted by "."

3. Results222

The following section describes the differences observed between using the ACS2 with standard223

discounted reward distribution and two proposed modifications. In all cases, the experiments were224

performed in an explore-exploit manner, where the mode was alternating in each trial. For better225

reference and benchmarking purposes, a vanilla implementation of Q-Learning and R-Learning226

algorithms was also presented. The most important thing was to distinguish whether the new reward227

Figure 5. Environment Woods1 with an animat “*”. Empty cells are denoted by “.”.

3. Results

The following section describes the differences observed between using the ACS2
with standard discounted reward distribution and two proposed modifications. In all
cases, the experiments were performed in an explore–exploit manner, where the mode was
alternating in each trial. Additionally, for better reference and benchmarking purposes,
basic implementations of Q-Learning and R-Learning algorithms were also introduced
and used with the same parameter settings as ACS2 and AACS2. The most important
thing was to distinguish whether the new reward distribution proposition still allows
the agent to successfully update the classifier’s parameter to allow the exploitation of the
environment. To illustrate this, figures presenting the number of steps to the final location,
estimated average change during learning, and the reward payoff-landscape across all
possible state–action pairs were plotted.

For the reproduction purposes, all the experiments were performed in Python lan-
guage. A PyALCS (https://github.com/ParrotPrediction/pyalcs) [35] framework was
used for implementing additional AACS2-v1 and AACS2-v2 agents (https://github.com/
ParrotPrediction/pyalcs) and all the environments used are implemented according to the
OpenAI Gym [36] in a separate repository (https://github.com/ParrotPrediction/openai-
envs). Publicly available interactive Jupyter notebooks presenting all results are available
for reproduction here (https://github.com/ParrotPrediction/pyalcs-experiments).

3.1. Corridor 20

The following parameters were used: β = 0.8, γ = 0.95, ε = 0.2, ζ = 0.0001. The
experiments were run on 10,000 trials in total. Because there is only one state to be
perceived by the agent, the genetic generalization feature was disabled. The corridor of
size ncorridor = 20 was tested, but similar results were also obtained for greater sizes.

The average number of steps can be calculated ∑
ncorridor
0 n

ncorridor−1 , which for the tested environ-
ment gives the approximate value of 11.05. It is seen that the average reward per step in
this environment should be close to 90.47.

Figure 6 demonstrates that the environment is learned in all cases. The anticipatory
classifier systems obtained an optimal number of steps after the same number of exploit
trials, which is about 200. In addition, the AACS2-v2 updates the ρ value more aggressively
in earlier phases, but the estimate converges near the optimal reward per step.

https://github.com/ParrotPrediction/pyalcs
https://github.com/ParrotPrediction/pyalcs
https://github.com/ParrotPrediction/pyalcs
https://github.com/ParrotPrediction/openai-envs
https://github.com/ParrotPrediction/openai-envs
https://github.com/ParrotPrediction/pyalcs-experiments

Appl. Sci. 2021, 11, 1098 9 of 16

For the payoff-landscape, all allowed state–action pairs were identified in the environ-
ment (38 in this case). The final population of learning classifiers was established after 100
trials and was the same size. Both Q-table and R-learning tables were filled in using the
same parameters and number of trials.

101

102

Nu
m

be
r o

f s
te

ps

Steps in trial
ACS2
AACS2_v1
AACS2_v2
Q-Learning
R-Learning

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Exploit trial

0

25

50

75

100 Estimated average

Figure 6. Performance on Corridor 20 environment. Plots are averaged in ten experiments. For the number of steps,
a logarithmic scale ordinate and a moving average with window 250 was applied.

Figure 7 depicts the differences in the payoff-landscapes. The relative distance between
adjacent state–action pairs can be divided into three groups. The first one relates to the
discounted reward agents (ACS2, Q-Learning). Both generate almost a similar reward
payoff for each state–action. Later, there is the R-Learning algorithm, which estimates the
ρ value and separates states evenly. Furthermore, two AACS2 agents are performing very
similarly. The ρ value calculated by the R-Learning algorithm is lower than the average
estimation by the AACS2 algorithm.

Appl. Sci. 2021, 11, 1098 10 of 16

0 5 10 15 20 25 30 35
State-action pairs

750

500

250

0

250

500

750

1000

Pa
yo

ff
va

lu
e = 79.75

Payoff Landscape (Corridor)

ACS2
AACS2_v1
AACS2_v2
Q-Learning
R-Learning

Figure 7. Payoff Landscape for Corridor 20 environment. Payoff values were obtained after 10,000 trials. For the Q-Learning
and R-Learning, the same learning parameters were applied. The ACS2 and Q-Learning generate exactly the same payoffs
for each state–action pair.

3.2. Finite State Worlds 20

The following parameters were selected: β = 0.5, γ = 0.95, ε = 0.1, ζ = 0.0001. The
experiments were performed in 10,000 trials. Similarly as before, there is only one state
observed, and the genetic generalization mechanism remains turned off. The size of the
environments was chosen to be n f sw = 10, resulting in 2n f sw + 1 = 21 distinct states.

Figure 8 presents that agents are capable of learning a more challenging environment
without any problems. It takes about 250 trials to reach the reward state performing an
optimal number of steps. Like in the corridor environment from Section 3.1, the ρ parameter
converges with the same dynamics.

The payoff-landscape Figure 9 shows that the average value estimate is very close to
the one calculated by the R-learning algorithm. The difference is mostly visible in the state–
action pairs located afar from the final state. The discounted versions of the algorithms
performed precisely the same.

Appl. Sci. 2021, 11, 1098 11 of 16

50 100 150 200 250 300 350 400 450 500
Exploit trial

10

11

12

13

14

Nu
m

be
r o

f s
te

ps

Steps in trial
ACS2
AACS2_v1
AACS2_v2
Q-Learning
R-Learning

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Exploit trial

0

2

4

6

8

10

Estimated average

Figure 8. Performance on the FSW-10 environment.Plots are averaged in ten experiments. For the
number of steps, a moving average with window 25 was applied. Notice that the abscissa on both
plots is scaled differently.

0 5 10 15 20 25 30 35 40
State-action pairs

0

25

50

75

100

Pa
yo

ff
va

lu
e

= 9.65

Payoff Landscape (FiniteStateWorld)

ACS2
AACS2_v1
AACS2_v2
Q-Learning
R-Learning

Figure 9. Payoff Landscape for the FSW-10 environment. Payoff values were obtained after 10,000
trials. For the Q-Learning and R-Learning, the same learning parameters were applied.

Appl. Sci. 2021, 11, 1098 12 of 16

3.3. Woods1

The following parameters were used: β = 0.8, γ = 0.95, ε = 0.8, ζ = 0.0001. Each
environmental state was encoded using three bits, so the perception vector passed to
agent has the length of 24. The genetic generalization mechanism was enabled with the
parameters: mutation probability µ = 0.3, cross-over probability χ = 0.8, genetic algorithm
application threshold θga = 100. The experiments were performed in 50,000 trials and
repeated five times.

The optimal number of steps in the Woods1 environment is 1.68, so the maximum
average reward can be calculated as 1000/1.68, i.e., 595.24.

Figure 10 shows that the ACS2 did not manage to learn the environment successfully—
the number of steps performed in the exploit trial is not stable and varies much higher
than the optimal value. On the other hand, both AACS2 versions managed to function
better. The AACS2-v2 stabilizes faster and with weaker fluctuations. The best performance
was obtained for the Q-Learning and R-Learning algorithm that managed to learn the
environment in less than 1000 trials. The average estimate ρ value converges at the value
of 385 for both cases after 50,000 trials, which is still not optimal.

Figure 10. Performance in the Woods1 environment. For brevity, the number of steps is averaged on 250 latest exploit trials.
Both AACS2 variants managed to converge to the optimal number of steps.

Appl. Sci. 2021, 11, 1098 13 of 16

What is interesting is that neither ACS2 nor AACS2 population settled to the final size.
Figure 11 demonstrates the difference in size for each algorithm between total population
size and the number of reliable classifiers. Even though the algorithm manages to find
the shortest path for AACS2, the number of created rules is greater than all unique state–
action pairs in the environment, which is 101. The experiment was also performed ten
times longer (one million trials) to see if the correct rules will be discovered, but that did
not happen.

0 1000 2000 3000 4000 5000
Exploit trial

100

200

300

400

Nu
m

be
r o

f c
la

ss
ifi

er
s

16 non-reliable classifiers

ACS2 population size
reliable
all

0 1000 2000 3000 4000 5000
Exploit trial

100

200

300

400

Nu
m

be
r o

f c
la

ss
ifi

er
s

13 non-reliable classifiers

AACS2_v1 population size
reliable
all

0 1000 2000 3000 4000 5000
Exploit trial

100

200

300

400

Nu
m

be
r o

f c
la

ss
ifi

er
s

14 non-reliable classifiers

AACS2_v2 population size
reliable
all

Figure 11. Comparison of classifier populations in Woods1 environment. None of the algorithms managed to create stable
population size. The number of exploit trials is narrowed to the first 5000 exploit trials, and the plots are averaged on 50
latest values for clarity.

Finally, the anticipatory classifier systems’ inability to solve the environment is de-
picted in payoff-landscape Figure 12. The Q-Learning and R-Learning have three spaced
threshold levels, corresponding to states where the required number of steps to the reward
states is 1, 2, and 3. All ALCS struggle to learn the correct behavior anticipation. The
number of classifiers detected for each state–action is greater than optimal.

Appl. Sci. 2021, 11, 1098 14 of 16

0 10 20 30 40 50 60 70 80 90 100
State-action pairs

0

250

500

750

1000

Pa
yo

ff
va

lu
e

= 302.16

Payoff Landscape (Woods1)

ACS2
AACS2_v1
AACS2_v2
Q-Learning
R-Learning

Figure 12. Payoff-landscape in the Woods1 environment. Three threshold levels are visible for the Q-Learning and
R-Learning algorithms representing states in the environment with a different number of steps to the reward state.

4. Discussion

Experiments performed indicated that anticipatory classifier systems with the aver-
aged reward criterion can be used in multi-step environments. The new system AACS2
varies only in a way the classifier reward cl.r metric is calculated. The clear difference
between the discounted criterion is visible on the payoff landscapes generated from the
testing environments. The AACS2 can produce a distinct payoff-landscape with uniformly
spaced payoff levels, which is very similar to the one generated by the R-learning algorithm.
When taking a closer look, all algorithms generate step-like payoff-landscape plots, but
each particular state–action pairs are more distinguishable when the reward-criterion is
used. The explanation of why the agent moves toward the goal at all can be found in
Equation (8)—it is able to find the next best action by using the best classifiers’ fitness from
the next match set.

In addition, the rate at which the average estimate value ρ converges is different for
AACS2-v1 and AACS2-v2. Figures 6, 8, and 10 demonstrate that the AACS2-v2 settles to
the final value faster, but also has greater fluctuations. That is caused by the fact that both
match sets’ maximum fitness is considered when updating the values. Zang also observed
this and proposed that the learning rate ζ in Equation (11) could decay over time [12]:

ζ ← ζ − ζmax − ζmin

NumO f Trials
(12)

where ζmax is the initial value of ζ, and ζmin is the minimum learning rate required. The
update should take place at the beginning of each exploration trial.

In addition, the fact that the optimal ρ value was not optimal value might be caused by
the exploration strategy adopted. The selected policy was ε-greedy. Because the estimated
average reward is updated only when the greedy action is executed, the number of greedy

Appl. Sci. 2021, 11, 1098 15 of 16

actions to be performed during the exploration trial is uncertain. In addition, the probability
distribution when the agent observes the rewarding state might be too low in order to
enable the estimated average reward to reach optimal value. This was observed during the
experimentation—the ρ value was very dependent on the ε parameter used.

To conclude, additional research would be beneficial paying extra attention to:

• the performance on longer and more complicated environments (like containing
irrelevant perception bits),

• the impact of different action selection policies, especially those used in ALCSs like
the Action-Delay, Knowledge-Array or Optimistic Initial Qualities [18,37],

• fine-tuning ε parameter for optimal average reward estimation,
• difference between two versions of AACS2 in terms of using fitness from the match-set.

The estimation is calculated differently in both cases, especially in the early phase
of learning.

Author Contributions: Conceptualization, O.U. and N.K.; data curation, N.K.; formal analysis, N.K.
and O.U.; funding acquisition, O.U.; investigation, N.K.; methodology, N.K. and O.U.; project admin-
istration, O.U.; resources, N.K. and O.U.; software, N.K.; supervision, O.U.; validation, O.U. and N.K.,
visualization, N.K.; writing—original draft preparation, N.K. and O.U.; writing—review and editing,
N.K. and O.U. Both authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AACS2 Averaged Anticipatory Classifier System 2
ACS Anticipatory Classifier System
ALCS Anticipatory Learning Classifier System
ALP Anticipatory Learning Process
FSW Finite State World
LCS Learning Classifier System
MDP Markov Decision Problem
RL Reinforcement Learning

References
1. Holland, J. Escaping brittleness: The possibilities of general-purpose learning algorithms applied to parallel rule-based systems.

In Machine learning: An Artificial Intelligence Approach; Morgan Kaufmann: San Francisco, CA, USA, 1986.
2. Bacardit, J.; Krasnogor, N. BioHEL: Bioinformatics-Oriented Hierarchical Evolutionary Learning; University of Nottingham: Notting-

ham, UK, 2006.
3. Urbanowicz, R.J.; Moore, J.H. ExSTraCS 2.0: Description and evaluation of a scalable learning classifier system. Evol. Intell. 2015,

8, 89–116. [CrossRef] [PubMed]
4. Borna, K.; Hoseini, S.; Aghaei, M.A.M. Customer satisfaction prediction with Michigan-style learning classifier system. SN Appl.

Sci. 2019, 1, 1450. [CrossRef]
5. Liang, M.; Palado, G.; Browne, W.N. Identifying Simple Shapes to Classify the Big Picture. In Proceedings of the 2019 International

Conference on Image and Vision Computing New Zealand (IVCNZ), Dunedin, New Zealand, 2–4 December 2019; pp. 1–6.
6. Tadokoro, M.; Hasegawa, S.; Tatsumi, T.; Sato, H.; Takadama, K. Knowledge Extraction from XCSR Based on Dimensionality

Reduction and Deep Generative Models. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC),
Wellington, New Zealand, 10–13 June 2019; pp. 1883–1890.

7. Pätzel, D.; Stein, A.; Nakata, M. An overview of LCS research from IWLCS 2019 to 2020. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference Companion, Cancún, Mexico, 8–12 July 2020; pp. 1782–1788.

8. Wilson, S.W. Classifier fitness based on accuracy. Evol. Comput. 1995, 3, 149–175. [CrossRef]
9. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
10. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley & Sons: New York, NY, USA, 2014.

http://doi.org/10.1007/s12065-015-0128-8
http://www.ncbi.nlm.nih.gov/pubmed/26417393
http://dx.doi.org/10.1007/s42452-019-1493-1
http://dx.doi.org/10.1162/evco.1995.3.2.149

Appl. Sci. 2021, 11, 1098 16 of 16

11. Tharakunnel, K.; Goldberg, D.E. XCS with Average Reward Criterion in Multi-Step Environment. 2002. Available online:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.3517 (Assessed on 1 October 2020).

12. Zang, Z.; Li, D.; Wang, J.; Xia, D. Learning classifier system with average reward reinforcement learning. Knowl. Based Syst. 2013,
40, 58–71. [CrossRef]

13. Schwartz, A. A reinforcement learning method for maximizing undiscounted rewards. In Proceedings of the Tenth International
Conference on Machine Learning, Amherst, MA, USA, 27–29 June 1993; Volume 298, pp. 298–305.

14. Singh, S.P. Reinforcement learning algorithms for average-payoff Markovian decision processes. In AAAI-94 Proceedings; AAAI
Press: Menlo Park, CA, USA, 1994; Volume 94, pp. 700–705.

15. Hoffmann, J.; Sebald, A. Lernmechanismen zum Erwerb verhaltenssteuernden Wissens. Psychol. Rundsch. 2000, 51, 1–9.
[CrossRef]

16. Butz, M.V. Anticipatory Learning Classifier Systems; Springer Science & Business Media: New York, NY, USA, 2002; Volume 4.
17. Stolzmann, W. Antizipative Classifier Systems; Shaker: Aachen, Germany, 1997.
18. Kozlowski, N.; Unold, O. Investigating exploration techniques for ACS in discretized real-valued environments. In Proceedings

of the 2020 Genetic and Evolutionary Computation Conference Companion, Cancún, Mexico, 8–12 July 2020; pp. 1765–1773.
19. Butz, M.V.; Stolzmann, W. An Algorithmic Description of ACS2. In Advances in Learning Classifier Systems; Lanzi, P.L.,

Stolzmann, W., Wilson, S.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 211–229.
20. Stolzmann, W. An introduction to anticipatory classifier systems. In International Workshop on Learning Classifier Systems; Springer:

Berlin, Germany, 1999; pp. 175–194.
21. Unold, O.; Rogula, E.; Kozłowski, N. Introducing Action Planning to the Anticipatory Classifier System ACS2. In International

Conference on Computer Recognition Systems; Springer: Berlin, Germany, 2019; pp. 264–275.
22. Orhand, R.; Jeannin-Girardon, A.; Parrend, P.; Collet, P. PEPACS: Integrating probability-enhanced predictions to ACS2.

In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, Cancún, Mexico, 8–12 July 2020;
pp. 1774–1781.

23. Orhand, R.; Jeannin-Girardon, A.; Parrend, P.; Collet, P. BACS: A Thorough Study of Using Behavioral Sequences in ACS2.
In International Conference on Parallel Problem Solving from Nature; Springer: Berlin, Germany, 2020; pp. 524–538.

24. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
25. Mahadevan, S. Sensitive discount optimality: Unifying discounted and average reward reinforcement learning. In ICML;

Citeseer: University Park, PA, USA, 1996; pp. 328–336.
26. Andrew, A.M. Reinforcement Learning: An Introduction; Adaptive Computation and Machine Learning Series; Sutton, R.S.,

Barto, A.G., Eds.; MIT Press (Bradford Book): Cambridge, MA, USA, 1998; p. 322, ISBN 0-262-19398-1.
27. Mahadevan, S. Average reward reinforcement learning: Foundations, algorithms, and empirical results. Mach. Learn. 1996,

22, 159–195. [CrossRef]
28. Puterman, M.L. Markov decision processes. In Handbooks in Operations Research and Management Science; Elsevier: Amsterdam,

The Netherlands, 1990; Volume 2, pp. 331–434.
29. Holland, J.H. Properties of the bucket brigade. In Proceedings of the 1st International Conference on Genetic Algorithms,

Pittsburgh, PA, USA, 24–26 July 1985; pp. 1–7.
30. Butz, M.V. ACS2. In Anticipatory Learning Classifier Systems; Springer: Berlin, Germany, 2002; pp. 23–49.
31. Gosavi, A. An algorithm for solving semi-Markov decision problems using reinforcement learning: Convergence analysis and

numerical results. Ph.D. Thesis, University of South Florida, Tampa, FL, USA, 2000.
32. Lanzi, P.L.; Loiacono, D.; Wilson, S.W.; Goldberg, D.E. XCS with computed prediction in continuous multistep environ-

ments. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Scotland, UK, 2–5 September 2005; Volume 3,
pp. 2032–2039.

33. Barry, A. XCS Performance and Population Structure in Multi-Step Environments. Ph.D. Thesis, Queen’s University of Belfast,
Belfast, UK, 2000.

34. Wilson, S.W. ZCS: A zeroth level classifier system. Evol. Comput. 1994, 2, 1–18. [CrossRef]
35. Kozlowski, N.; Unold, O. Integrating anticipatory classifier systems with OpenAI gym. In Proceedings of the Genetic and

Evolutionary Computation Conference Companion, Kyoto, Japan, 15–19 July 2018; pp. 1410–1417.
36. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. Openai gym. arXiv 2016,

arXiv:1606.01540.
37. Butz, M.V. Biasing exploration in an anticipatory learning classifier system. In International Workshop on Learning Classifier Systems;

Springer: Berlin, Germany, 2001; pp. 3–22.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.3517
http://dx.doi.org/10.1016/j.knosys.2012.11.011
http://dx.doi.org/10.1026//0033-3042.51.1.1
http://dx.doi.org/10.1613/jair.301
http://dx.doi.org/10.1007/BF00114727
http://dx.doi.org/10.1162/evco.1994.2.1.1

	Introduction
	Materials and Methods
	Anticipatory Learning Classifier Systems
	Reinforcement Learning and Reward Criterion
	Discounted Reward Criterion
	Undiscounted (Averaged) Reward Criterion

	Integrating Reward Criterions in ACS2
	AACS2-v1
	AACS2-v2

	Testing Environments
	Corridor
	Finite State World
	Woods

	Results
	Corridor 20
	Finite State Worlds 20
	Woods1

	Discussion
	References

