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Abstract: Coverage-oriented and target-oriented fuzzing are widely used in vulnerability detection.
Compared with coverage-oriented fuzzing, target-oriented fuzzing concentrates more computing
resources on suspected vulnerable points to improve the testing efficiency. However, the sample
generation algorithm used in target-oriented vulnerability detection technology has some problems,
such as weak guidance, weak sample penetration, and difficult sample generation. This paper
proposes a new target-oriented fuzzer, PSOFuzzer, that uses particle swarm optimization to generate
samples. PSOFuzzer can quickly learn high-quality features in historical samples and implant them
into new samples that can be led to execute the suspected vulnerable point. The experimental
results show that PSOFuzzer can generate more samples in the test process to reach the target point
and can trigger vulnerabilities with 79% and 423% higher probability than AFLGo and Sidewinder,
respectively, on tested software programs.

Keywords: fuzzing; model-based fuzzing; vulnerability detection; code coverage; open-source
program; directed fuzzing; static instrumentation; source code instrumentation

1. Introduction

The appearance of an increasing number of software vulnerabilities has made auto-
matic vulnerability detection technology a widespread concern in industry and academia.
The main technology used in automatic vulnerability detection is fuzzing, the principle
of which is shown in Figure 1. The core component of fuzzing is the sample generator.
It generates many mutated samples, and then sends them to the target program for execu-
tion. These mutated samples will greatly expand their execution behavior in the program,
which may meet the constraint requirements of the sample behavior that the vulnerability
be triggered. One type of the most serious vulnerabilities, memory corruption vulnerability,
will be exposed in the form of program crashes in this process.

Early fuzzing technology [1,2] implemented non-oriented fuzzing, which randomly
mutates samples, including randomly adding, deleting and flipping bytes in the sample.
This process does not adjust the mutation strategy of subsequent samples by returning
the runtime information of previous tests, and the deep logic of the program cannot be
executed because most of the generated samples are invalid due to the destroyed format of
the samples by this kind of random mutation. Technology to restrict the sample format
has been applied to fuzzing [3–8] to greatly increase the number of valid samples, but the
efficiency of fuzzing technology is low because the runtime state of the program cannot be
perceived to adjust the fuzzing strategy.

In contrast to non-oriented fuzzing, coverage-oriented fuzzing [9–13] can use
lightweight instrumentation to obtain the runtime information of the program to effec-
tively guide the fuzzing process to pursue high coverage in control flow graph (CFG). For
example, by selecting the sample with a new edge as the seed sample for the next round
of mutations, the execution of the sample will have a greater possibility of obtaining high
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coverage [9–11]; coverage-oriented fuzzing can also use heavyweight instrumentation to
perform dynamic symbol execution [14–21]. This approach transforms external data into
symbols to participate in the execution, collects the symbol expressions at each program
node, and generates samples that try to execute the full path by solving the expressions.
Dynamic symbol execution can fully perceive the state of the program, but it is difficult
to solve the expressions when they are overly complex. In addition, the problem of path
explosion [22] is difficult to solve.

Coverage-oriented fuzzing [9–21,23–28] increases the probability of triggering vul-
nerabilities by executing code blocks or paths as much as possible. However, it causes
a large quantity of computational resources to be allocated to code that does not have
vulnerabilities. Target-oriented fuzzing [29–32] leads the test path to suspected vulnerable
points by taking the samples close to the vulnerable point as the seed samples of the next
mutation or solving the symbolic expression of the path to the vulnerable point. Although
target-oriented fuzzing provides a clearer goal, the generated test samples do not effectively
approach the goal because the guidance algorithm of the fuzzing and the sample mutation
strategy are independent of each other, which results in a poor guidance effect. Moreover,
the blindness of the random mutations results in a weak penetration ability of the samples
to deeper program logic, and it is difficult to generate samples using dynamic symbol
execution technology when the program is complex.

Figure 1. The principle of fuzzing.

In this paper, we transform fuzzing into a mathematical optimization problem by
leveraging particle swarm optimization (PSO) [33], which learns the high-quality char-
acteristics of all the samples in the whole time and generates many samples that can be
executed to the target point. Additionally, we use format constraint technology to enhance
the penetration ability of the samples in the program and improve the probability of trigger
vulnerabilities.

The main contributions of this paper are as follows:

(1) We theoretically analyze the feasibility of introducing the PSO algorithm to generate
samples in the fuzzing process.

(2) We use format constraint technology to build a fuzzing system based on the PSO
algorithm that can be used for target-oriented vulnerability detection.

(3) We experimentally verify the effectiveness of the PSO algorithm in fuzzing.

The remainder of this paper is structured as follows. Section 2 discusses the related
work. Section 3 analyzes the relationship between the PSO algorithm and fuzzing. Section 4
elaborates the design of PSOFuzzer. Section 5 describes the experiment with the PSOFuzzer
and analyzes the results. Section 6 analyzes the challenges and limitations of PSOFuzzer.
Section 7 points out the development direction of PSOFuzzer. Finally, Section 8 presents
the conclusions.
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2. Related Work

We refer to the query methods mentioned in the literature [34,35], query the papers
that use the keywords ’fuzzing’ and ’vulnerability detection’, and collect and analyze these
papers in the last 15 years. The main strategy to improve the efficiency of fuzzing in these
papers is to guide the fuzzing process. From the perspective of guidance, fuzzing includes
three types: coverage-oriented, target-oriented and non-oriented fuzzing.

2.1. Coverage-Oriented Fuzzing

Coverage-oriented fuzzing has become a predominant technology because it can
automatically detect vulnerability in software without human participation. The use of
runtime information in different ways has encouraged considerable new development. On
the basis of the degree of acquisition and use of state information in the process of program
testing, coverage-oriented fuzzing can be divided into three categories: light use, heavy
use and medium use.

AFL [9] is a typical representative of light use of state information that leverages
instrumentation technology to obtain path coverage information. This information is used
to evaluate samples and guide tests to execute paths not executed. Some technologies have
improved AFL, such as AFLFast [10] and EcoFuzz [25], which leverage the Markov model
and a variant of the adversarial multi-armed band model to allocate excessive energy to
seeds that separately exercise the low-frequency paths. EcoFuzz [25] achieves a better
performance. VUzzer [23] presented an application-aware evolutionary fuzzing strategy
to maximize coverage and explore deeper paths based on static and dynamic analysis.
Its error-handling basicblock detection technique is similar to the technique to identify
low-frequency based on the Markov model in AFLFast [10], albeit much lightweight.
CollAFL [11] achieves greater path coverage by reducing path conflicts in AFL. MOPT [13]
optimizes the selection of mutation operations to improve the path coverage using the PSO
algorithm. Unlike MOPT, PSOFuzzer leverages the PSO algorithm to generate samples,
while MOPT leverages the PSO algorithm to assist AFL in selecting the mutation algorithm.
In addition, PSOFuzzer is a target-oriented fuzzer, while MOPT is a coverage-oriented
fuzzer. AFL++ [28] integrates several fuzzing studies and provides a benchmark to assess
other fuzzing technologies. Because AFL++ is built on coverage-oriented fuzzing systems,
it is not suitable for evaluating PSOFuzzer. In addition, some fuzzing techniques have
been applied to specific types of software vulnerability detection. HFL [21] applies hybrid
fuzzing to kernel testing by converting indirect control transfers, inferring system call
sequences and identifying nested argument types of system calls, and shows a higher
coverage than Moonshine [36] and Syzkaller [37]. FuzzGen [24] achieved better code
coverage in testing the library by whole system analysis to infer the library’s interface.
MUZZ [26] hunts more bugs than AFL under a multithreading context by three novel
thread-aware instrumentations to engender runtime feedback to accentuate execution
states caused by thread interleavings. Ijon [27] introduced human analysis to guide the
fuzzer by an annotation mechanism, which systematically explores the program’s behavior
by the internal state of the program. it obtains a higher coverage and more crash than AFL.

Fuzzing via heavy use of state information is based mainly on symbol execution.
For example, SAGE [17] achieves greater code coverage by solving symbolic expres-
sions on different program execution paths. S2E [15] and MAYHEM [16] are similar
to SAGE [17]. S2E [15] uses path analyzers to drive the target system down all the execu-
tion paths of interest while checking the security properties of each path. MAYHEM [16]
can not only automatically detect vulnerabilities by dynamic symbol execution, but also
generate hijack exploits automatically. PANGOLIN [20] leverages polyhedral path ab-
straction to preserve the exploration state in the concolic execution stage to implement
incremental fuzzing. QSYM [19] achieves a better performance than VUzzer [23] and
Driller [18] by losing the strict soundness requirements of conventional concolic executors.
Symbol execution relies on many computing resources and faces the problem of path
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explosion [22]. Therefore, it is not more practical than coverage-oriented fuzzing based on
sample mutation [9–13].

The development of fuzzing also brings new ideas by the medium use of state infor-
mation. NEUZZ [12] leverages surrogate natural network models to incrementally learn
smooth approximations of a program’s branching behavior and then uses gradient-guided
optimization to generate inputs that can trigger different bugs. Driller [18] combines the ad-
vantages of AFL and symbol execution to overcome the difficulty of passing some program
nodes that AFL cannot pass using symbol execution technology to calculate the constraints
of the node and generates samples that can meet the conditions, thereby improving the
depth and breadth of the path coverage.

2.2. Target-Oriented Fuzzing

Target-oriented fuzzing can be divided into gray-box testing and white-box test-
ing. Representative gray-box testing methods include AFLGo [31] and Sidewinder [32].
AFLGo leverages a simulated annealing-based power schedule that gradually assigns
more energy to seeds that are close to critical system calls or dangerous locations. AFLGo
optimizes the allocation of computing resources by evaluating samples, while PSOFuzzer
uses the PSO algorithm to combine the guidance process and a sample mutation algorithm
to provide better mutation efficiency for samples. Sidewinder [32] uses the inheritance
ability of genetic algorithms for the high-quality characteristics of samples, and it guides
the execution path of test samples to the suspected vulnerability location in the control
flow chart. However, this method is not suitable for programs with complex sample types.
PSOFuzzer provides a constraint mechanism in the process of mutation via sample nor-
malization to restrict mutations that do not cause significant damage to the format of the
sample to ensure that the generated sample has sufficient penetration ability for programs
with a complex sample format.

The main representatives of white-box fuzzing are BORG [30] and Dowser [29].
Both guide the execution to expected vulnerability locations by means of symbolic execu-
tion. The difference between these methods is that BORG targets overread vulnerabilities,
while Dowser targets buffer overflow vulnerabilities. Fuzzing based on symbol execution
technology transforms the problem of sample generation into an optimization problem.
The disadvantage is that when there is a complex symbol expression to solve, it cannot
generate samples that meet the expression. PSOFuzzer transforms the problem of sample
generation into a problem of mathematical optimization, which is equivalent to decom-
posing the difficulty of the problem at the time level to generate samples that meet the
conditions after many iterations.

2.3. Non-Oriented Fuzzing

In non-oriented fuzzing, the test process is not influenced by any control, usually
due to the lack of runtime information. The test mode is mainly represented by black-box
fuzzing. The most typical representative is the first fuzzing system f uzz [1], which mutates
samples randomly, sends them to a Linux program to be tested and monitors whether there
is an exception. This kind of random variation will cause the sample format to be seriously
damaged, which will cause the program to exit in the format verification stage because the
sample cannot meet the format requirements when it is executed.

An effective fuzzing technology enhanced by a sample format constraint is used
to solve this problem. The representative technologies include SPIKE [4], Peach [3] and
PROTOS [5]. SPIKE [4] is a block-based fuzzing approach that satisfies the relations
between different fields of input by nested data blocks. Peach [3] restrains the input
data by constructing Peach Pits, which describe the types of data chunks and fields
and the relationships between them in XML (eXtensible Markup Language) format files.
PROTOS [5] can infer a model of a packet structure from given samples, and it can leverage
the model to automatically generate samples for fuzzing. The three fuzzing systems use
different techniques to achieve the same goal, i.e., to increase the number of valid samples
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after mutation, but they cannot adjust the test fuzzing strategy according to the runtime
state, which results in low test efficiency. PSOFuzzer introduces this sample format con-
straint technology to perform the normalization of samples to improve the quality of the
samples in the process of mutation.

3. Particle Swarm Optimization and Fuzzing

Fuzzing is a process of continuously generating and executing samples to trigger a
crash to identify vulnerabilities. PSO is an optimization algorithm, which constantly up-
dates the particle value to gradually seek the optimal solution. We observe the relationship
between PSO and fuzzing, so we can apply the PSO algorithm to fuzzing to optimize the
sample generation.

3.1. Principle of Particle Swarm Optimization

The PSO algorithm was proposed by Eberhart and Kennedy in 1995 [33]. Its basic
core is to make use of the information sharing of individuals in a group in such a way
that the movement of the whole group can produce an evolutionary process from disorder
to order in a problem-solving space to obtain the optimal solution of a problem. PSO
originates from research on the predatory behavior of birds. Imagine a scene where a
group of birds is foraging, and there is a corn field in the distance. The birds do not
know where the corn field is, but they know how far away they are from the corn field.
Thus, the best and simplest strategy to find the corn field is to search the area around the
nearest birds.

In PSO, the solution of every optimization problem is the position of a bird in the search
space, which is called a “particle”, and the optimal solution of the problem corresponds to
the position of the corn field. All the particles have a position vector (the position of the
particle in the solution space) and a velocity vector (determining the direction and speed of
the next flight), and the fitness value of the current position can be calculated according
to the objective function, which can be understood as the distance from the corn field.
In each iteration, the examples learn not only from their own experience (historical position)
but also from the experience of the optimal particles in the population to determine how
to adjust and change the flight direction and speed in the next iteration. In this way,
the iteration will gradually lead to the optimal solution for the whole population.

3.2. The Relationship between Fuzzing and Particle Swarm Optimization

Fuzzing is widely used due to its high automatization and efficiency. The number of
generated high-quality samples is the key to the fuzzing efficiency. High-quality samples
in different types of fuzzing are different. In coverage-oriented fuzzing, high-quality
samples refer to those samples that can execute to new edges. In target-oriented fuzzing,
high-quality samples refer to those samples that can be executed to suspected vulnerable
points. Different fuzzing techniques use different guidance methods for the test process to
increase the number of high-quality samples. We discuss the relationship between PSO
and fuzzing using different guidance methods.

Non-oriented fuzzing focuses only on whether the program crashes in the test process;
it does not interfere with the mutation according to the real-time internal state of the
program. Therefore, the generation of test samples is conducted in a blind state that does
not account for relevant information. In contrast, the PSO algorithm accounts for the
other relevant information of the sample; as a result, the PSO algorithm cannot be used in
this way.

The goal of coverage-oriented fuzzing is to improve the coverage of the sample
execution. The coverage is the attribute of many samples, not the attribute of a single
sample. However, the evaluation of particles in the PSO algorithm is based on a single
sample. That the coverage of a single sample is high does not mean that the sample can
improve the coverage rate, and whether a single sample can improve the coverage rate in
different test processes is inconsistent. Therefore, the indicators to improve the coverage
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rate here cannot be used as indicators to measure a single sample, and the PSO algorithm
is not suitable for generating samples directly in coverage-oriented fuzzing.

The goal of target-oriented fuzzing is to make the sample execute the designated
target point; thus, a sample that can execute the target point is a high-quality sample.
The evaluation of the current sample can be measured as the sample distance from the
target: the closer the sample is to the target, the higher the evaluation value. The sample
distance can be specified as the shortest distance of sample execution blocks from the target
code block. The sample distance is an attribute of a single sample, which is consistent
with the evaluation of a single particle in the particle swarm. Therefore, we attempt to
introduce the PSO algorithm into target-oriented fuzzing, and we use PSO’s powerful
ability to quickly approach the optimal solution to generate many test samples that can
reach the target point to improve the probability of triggering a vulnerability.

4. Fuzzing System Design

PSOFuzzer is a fuzzing system based on the particle swarm optimization algorithm
that implements target-oriented sample generation technology. PSOFuzzer includes a static
analyzer, distance calculator, instrumentator and sample generator. The overall framework
of the technology is shown in Figure 2.

Figure 2. PSOFuzzer Technology Framework.

PSOFuzzer extracts the function call graph and control flow graph by static analysis,
which are applied to calculate the static distances between each basic code block and the
target location, where the suspected vulnerability is located. PSOFuzzer employs code
instrumentation technology to insert the code to calculate the actual distances between
the execution path of the sample and the target position using the calculated static dis-
tances when the program is running dynamically. In the stage of fuzzing, PSOFuzzer
uses the PSO algorithm and sample format constraint technology to generate samples.
Sample format constraint technology can effectively improve the penetration ability of
the mutated samples. The PSO algorithm can realize continuous learning and iterations
among multiple samples, including the current samples and historical optimal samples.
Using the distance between the sample path and the vulnerable point, the algorithm guides
additional samples to be executed to the target point.

4.1. A Measurement of the Distance between a Seed Input and Target Point

PSOFuzzer is a target-oriented fuzzing technology that aims to let more samples pass
through the target point. The closer the execution path of a sample is to the target point,
the more beneficial it is for testing. Therefore, the index for the testing guidance process
is the distance between the current sample and the target point. To analyze the distance
between the current sample and the locations of vulnerable points, we consider two types
of granularity: basic block level and function level.

The basic block refers to the sequence of statements that are executed in sequence.
There is only one entry and one exit: entry is the first statement, and exit is the last
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statement. A basic block enters only from its entry and exits from its exit. The execution
path of sample sij is the execution flow from basic block bi in the program to basic block bj,
which is a sequence composed of several basic blocks in a certain order (bi, bi+1, bi+2, . . . bj).
A distance calculator is used to calculate the shortest distance between all code blocks in
path sij to a specified target tm as the distance between the current sample and the locations
of the vulnerable points.

Functions are larger in granularity than basic blocks. To increase the weight of a
function call when calculating the distance, we calculate the distance between the sample
and the target point using a combination of the distance between two function calls and the
distance between two code blocks in the function. The formula is shown in Formula (1):

d = d f ∗ α + db (1)

We guide the execution to the function containing the target point first, and then
guide to the position of the target point in the function. In Formula (1), d f is the distance
on the function layer, i.e., the distance between the function and the target function,
which includes the suspected vulnerable point. db is the distance on the basic block layer,
i.e., the distance between the basic block and suspected vulnerable point. We use the
Dijkstra algorithm to calculate these two types of distances. Additionally, to avoid db
being too large to effectively guide the sample to execute the target function, we set the
weight α for d f , and the value of α is the farthest distance to the vulnerable point in the
target function.

The distance between a sample and the target is calculated in three stages:
static distance analysis stage, instrumentation stage and running stage. In the static distance
analysis stage, the distance between each basic block and the target point,
and the distance between each function and the function of the target point are calcu-
lated. In the instrumentation stage, the instrumentator inserts the distance calculation logic
into the source code according to the distance between each function and the basic block
from the target point. The logic is to compare the distance value of the current basic block
or function with the executed values. If the former is less than the latter, the distance value
is updated to the current value. In the running stage, the distance value is calculated by
Formula (1) and compared with the historical minimum value according to the calculation
logic of the instrumented code.

4.2. Mapping Fuzzing to Particle Swarm

To perform sample generation using the PSO algorithm, each element in the sample
generation must be mapped with each element in the PSO algorithm. The PSO algorithm
extracts the information of particles participating in the movement of a group, learns the
information of the optimal sample, and updates the information for the other particles,
which makes an evolutionary process from disorder to order in the problem-solving space
to obtain the optimal solution. Assume that the number of particles in the swarm is n;
at iteration time t, the coordinate position of each particle in d-dimensional space can be
expressed as

x̄i(t) = (x1
i , x2

i , . . . , xj
i , . . . , xd

i ) (2)

In fuzzing, x̄i(t) represents a specific sample generated at iteration t, and xj
i represents

a byte in the sample. The speed of the particle is expressed as

v̄i(t) = (v1
i , v2

i , . . . , vj
i , . . . , vd

i ) (3)

In fuzzing, v̄i(t) represents the direction of the sample change. The coordinate position
x̄i(t) and speed v̄i(t) of a particle at time t + 1 are adjusted as follows:

v̄i(t + 1) = ωv̄i(t) + c1r1( p̄i(t)− x̄i(t)) + c2r2( p̄g(t)− x̄i(t)) (4)
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x̄i(t + 1) = x̄i(t) + v̄i(t) (5)

In Formulas (2) and (5), x̄i(t) and x̄i(t+ 1) represent the previous and current particles,
respectively. In fuzzing, these values represent a sample generated at the previous and
current iterations. In Formulas (3) and (4), v̄i(t) and v̄i(t + 1) represent the previous and
current speeds of the particle, respectively. In fuzzing, they represent the direction of the
sample change in the previous iteration and current iteration.

Here, ω represents the weight of the particle inertia, which encourages expansion of
the search space and exploration of new search areas, but it might restrict the local fine
search in the later iterations of the algorithm. In fuzzing, this value is set to a random
number distributed in [0,1] to adjust the intensity of the current sample change.

p̄i(t) represents the optimal position experienced by the particle, which is called the
“self-knowledge part” of the particle and refers to the ability of the particle to learn from
itself. In fuzzing, this value represents the sample closest to the target point in the mutation
process of the ith initial sample.

p̄g(t) represents the best particle position in the swarm, which indicates the ability
of particles to learn from the whole swarm. In fuzzing, this value represents the sample
closest to the target point from all the initial samples and generated samples.

The parameters c1 and c2 represent the acceleration constants of the particles,
which are usually taken to be [0,2]. Here, r1 and r2 are two random numbers that are
uniformly distributed in [0,1].

Through the analysis, we map all types of elements in fuzzing to each element in PSO
to provide a theoretical basis for the use of PSO to generate samples that continuously
approach the preset target points in the program via continuous iteration.

4.3. Sample Normalization

When using PSO to generate samples, we have a problem to address. Every element
of a vector in the PSO algorithm corresponds to a byte in the actual sample. The dimension
of the vector involved in the calculation is determined, but the numbers of bytes in the
actual samples are different. To ensure consistency between the two, a simple processing
method is to fill with zeros, but this method leads to some problems, such as the example
shown in Figure 3.

Figure 3. HTTP request format.

Figure 3 shows the format of the HTTP (HyperText Transfer Protocol) request. The gray
block in the figure represents data with constant length, and the white block represents
data with variable length. When the PSO algorithm is adopted, zeros are added to any
sample with a short sample length to ensure that the calculation can be performed effec-
tively. However, this method of zero filling causes data segments with different formats
to be combined for the calculation; for example, the header name and uniform resource
locator (URL) might be concurrently calculated, which would cause in many samples that
do not conform to the necessary format to be discarded during program processing and
result in low test efficiency. In addition, the number of vectors involved in the calculation
is limited by the maximum sample size, which can cause difficulty in triggering over-
flow vulnerability due to having an insufficient sample length. To solve these problems,
this paper uses the sample format template to match the sample bytes and the elements in
the vector on the same type of fields. The principle is shown in Figure 4.
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Figure 4. Principle of sample normalization.

We build a sample format template. The fields in the template can be divided into two
different data types: variable length and fixed length. First, we allocate the corresponding
number of vector elements for each fixed-length field from left to right according to the
number of bytes; then, we allocate the variable-length field according to the maximum
number of elements allocated in advance (the size can be set by the tester). Next, we map
the sample data to the template uniformly, and we provide each sample with a tag sequence.
This tag sequence is composed of 0 s and 1 s. If a field has no corresponding data, it is
marked as 0; if there are data, it is marked as 1. This tag sequence realizes the association
between the vector element and the sample data. The sample generator removes the vector
element with the corresponding byte of 0 after generating a new vector; then, the other
vectors are combined into a new sample for subsequent testing.

4.4. Fuzzing Based on the PSO Algorithm

The key to automatic vulnerability detection is to generate high-quality samples.
In target-oriented fuzzing, high-quality samples are those that can be executed to the
target point. We use the PSO algorithm to generate many high-quality samples through
continuous iterative learning to reduce access to the invalid path space and improve
the efficiency of vulnerability detection. The ability to achieve efficient learning among
multiple samples by means of the PSO algorithm can improve the convergence speed of the
target orientation to focus limited computing resources on the path space that is considered
to be important.

Sample generation in fuzzing is performed continuously, which is consistent with
the process of continuous iteration of the PSO algorithm. The core elements of the PSO
algorithm include the particles, the positions of the particles and the values of the particles.
Other elements, such as the particle speed, global optimal position and local optimal
position, are calculated based on the three core elements. The samples in fuzzing are
mapped to the particles in the PSO algorithm. The distance between the sample and the
target point is mapped to the distance between the swarm and the target point. The degree
of approximation to the vulnerable point is mapped to the weight of the particles. By the
mapping operation, we design a sample generation mechanism, which is described in
Algorithm 1:

The PSO algorithm describes an iterative process that includes three steps in
each iteration.

• Update the local optimal particle: compare the fitness value of the current sample
S[i] with the optimal fitness value of this sample in history L[i]. If f (S[i]) < f (L[i]),
then update L[i] to S[i]. The fitness function f is used to obtain the distance between
the current sample and the target point.

• Update the global optimal particle: compare each evaluation value of the local
optimal samples L[i] with the evaluation value of the global optimal sample g.
If f (L[i]) < f (g), update g with L[i].

• Generate samples: map the current sample into the template, establish the relationship
between sample and vector, and then generate new sample based on Formulas (4)
and (5). At this time, the sample has good guidance but lacks enough destructiveness
to trigger vulnerabilities. PSOFuzzer uses mutation algorithms applied to different
types of data fields under a certain probability to improve the effect of mutation.
The mutation algorithms the PSOFuzzer used are shown in Table 1.
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Table 1. Mutation algorithms applied to different types of data fields.

Data Type Mutation Algorithms

Blob

Flips part of total bits in a blob
Slides a Double Word (DWORD) through the blob
Grows the blob
Shrinks the blob

String

Changes the case of a string
Generates a string using the string in the dictionary
Generates bad UTF-8 strings
Injects Byte-order mark (BOM) markers into longer strings
Generates bad long UTF-8 three-byte strings

Array

Changes the length of arrays to numerical edge cases
Randomizes the order of the array
Reverses the order of the array
Changes the length of arrays from count −N to count +N

Number

Produces random numbers for each element
Produces values that are unrelated to the default Value
Produces defaultValue −N to defaultValue +N
Changes the length of sized data to numerical edge cases
Changes the length of sizes to numerical edge cases

Algorithm 1 PSO Algorithm.

while stopCondition is f alse do
for i = 1 to n do

if f (S[i]) < f (L[i]) then
L[i] = S[i]

end if
end for
for i = 1 to n do

if f (L[i]) < f (g) then
g = L[i]

end if
end for
for i = 1 to n do

mapping(S[i], M)
Si = update(S[i], L[i], g)
if random() > λ then

chooseFieldRandomly()
mutateField()

end if
end for

end while

S: current samples, n: number of samples, L: local optimal samples, g: global optimal
sample, M: Data Model, f : function of calculating the fitness value of the sample.

5. Experiment

To verify the test effectiveness of PSOFuzzer, we conduct experiments on the genera-
tion efficiency of high-quality samples and the efficiency of verifying vulnerabilities. The
former is used to verify that PSOFuzzer can efficiently generate samples that can execute
to the target point, and the latter is used to verify that PSOFuzzer can effectively trigger
known vulnerabilities. The trigger of these vulnerabilities will cause the software to crash
or even remote code execute (RCE).
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5.1. Experimental Preparation

Tools for comparison: In the experiments, we compare PSOFuzzer with AFLGo [31],
a well-known target-oriented fuzzing tool, and Sidewinder [32], the tool that we reproduced
using a genetic algorithm.

Experimental Environment: CPU: dual-core, 2.20 GHz 2.19 GHz, RAM: 4.00 GB,
OS: ubuntu 16.04, kernel 4.15.0-123-generic, Compiler: gcc 5.4.0 is used.

Tested software: Some fuzzing techniques only obtain good results on specific types
of software. To verify the extensive effectiveness of PSOFuzzer, we choose different types
of software for testing. The tested objects are 12 software programs with vulnerabilities:
gzip [38], tar [39], pdfresurrect [40], miniftp [41], binutils [42], libming [43], libjpeg [44],
pngquant [45], ffjpeg [46], zziplib [47], exiv2 [48], and ngiflib [49]. Detailed information
about the tested software is shown in Table 2.

Table 2. Software information.

Software Type Version Number CVE ID Vulnerability Position

gzip compressor 1.2.4 2009–2624 inflate.c line 763
tar compressor 1.14 2007–4476 safer_name_suffix.c line 1046

pdfresurrect pdf analyzer 0.15 2019–14,267 pdf.c line 237
miniftp file transfer 1.0 - parseconf.c line 62
binutils binary utilities 2.32 2019–14,444 readelf.c line 13347
libming flash library 0.4.8 2019–9113 decompile.c line 381
libjpeg jpeg library 9a 2018–11,213 rdppm.c line 153

pngquant png compressor 2.7.0 2016–5735 rwpng_read_image24_libpng.c line 238
ffjpeg encoder 24 February 2020 2020–13,438 jfif.c line 748

zziplib decoder 0.13.67 2018–6381 mmapped.c line 685
exiv2 metadata library 0.26 2018–5772 image.c line 468

ngiflib gif decoder 0.4 2018–10,677 ngiflib.c line 808

5.2. Results

The first aim of the experiment is to verify the efficiency of high-quality sample gen-
eration. The tests are performed 10 times on 12 software programs, each time for 10 h.
We observe the change in the average number of high-quality samples that are generated
over time. The results are presented in Figure 5. In general, the result of PSOFuzzer is
better. For libjpeg, binutils and ngiflib, the number of high-quality samples generated
by PSOFuzzer is substantially greater than that generated by AFLGo. For tar, binutils,
libming and ffjpeg, the number of high-quality samples generated by PSOFuzzer is sub-
stantially greater than that generated by Sidewinder.

The second aim of the experiment is to verify the effectiveness of PSOFuzzer in
triggering vulnerability. We analyzed whether fuzzers can trigger vulnerabilities each time.
When a vulnerability is triggered multiple times in a single test, the trigger is recorded
only once. The results are shown in Table 3. PSOFuzzer triggered vulnerabilities more than
4 times for each software. AFLGo triggered vulnerabilities fewer times, and Sidewinder
triggered the least vulnerabilities. For binutils and libjpeg, AFLGo did not trigger any
vulnerabilities. Sidewinder only triggered vulnerabilities in gzip, miniftp and ngiflib.

Table 3. Number of times(out of 10) that a vulnerability is triggered.

Gzip Tar Miniftp Pdfresurrect Binutils Libjpeg Libming Pngquant Ffjpeg Zziplib Exiv2 Ngiflib

AFLGo 5 8 5 3 0 0 2 4 1 6 10 2
PSOFuzzer 8 10 6 7 4 6 5 7 4 8 10 6
Sidewinder 7 0 6 0 0 0 0 0 0 0 0 3
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Figure 5. Growth in average number of high-quality samples over time.

5.3. Discussions

According to the data obtained in the experiment, we will perform further analysis
from three aspects, including the capability of generating high-quality samples, the stability
of generating high-quality samples, and the capability of triggering vulnerability.

5.3.1. Capability of Generating High-Quality Samples

High-quality samples are samples that can reach the target point when executing in
the program. In target-oriented fuzzing, the larger is the number of samples that reach
the suspected vulnerable points, the greater is the probability of triggering a vulnera-
bility. AFLGo guides the test process to the target point by optimizing the scheduling
mechanism. There is no connection between the mutations of the samples and the target.
Sample generation is only performed by random mutation on a single seed, and the gener-
ated samples cannot learn the characteristics of other high-quality samples. Sidewinder
can learn the characteristics of other high-quality samples but only between two seeds,
so its learning ability is limited. The samples generated by the PSO algorithm inherit the
high-quality characteristics of all the samples through the local optimal samples and the
global optimal samples and quickly generate more high-quality samples, which leads to
a strong correlation between the mutations of the samples and the target. As shown in
Figure 5, PSOFuzzer generates the most high-quality samples.

5.3.2. Stability of Generating High-Quality Samples

To analyze the stability of the three fuzzers in the generation of high-quality samples,
we calculate the relative standard deviation (RSD) of the number of high-quality samples
in 10 tests according to Formula (6).

σ =

√
∑n

i=1(xi−x̄)2

n−1

x̄
× 100% (6)

Formula (6) reflects the fluctuation of the number of high-quality samples generated
in 10 h in 10 tests, xi represents the total number of high-quality samples generated in 10 h
in the ith test, and x̄ represents the average number of all high-quality samples generated
in 10 h. The larger the value is, the more unstable the number of high-quality samples
generated. It can be seen from the Figure 6 that the curve formed by PSOFuzzer and
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Sidewinder is lower than that formed by AFLGo, which indicates that PSOFuzzer and
Sidewinder are more stable in generating high-quality samples. Although the stabilities of
PSOFuzzer and Sidewinder are similar, PSOFuzzer generates more high-quality samples.

Figure 6. Stability of high-quality samples generation.

5.3.3. Capability of Triggering Vulnerabilities

The number of triggered vulnerabilities is the core index used to measure the efficiency
of fuzzing tools. Figure 7 uses the data from Table 3 to draw a radar chart, which intuitively
expresses the ability to trigger vulnerabilities. In Figure 7, PSOFuzzer has the largest
capability coverage area and the smallest Sidewinder. Intuitively, PSOFuzzer is more
capable of triggering vulnerabilities.

Figure 7. Ability to trigger vulnerabilities.

We apply Formula (7) to quantify the probability of triggering a specified software
vulnerability in 10 h. In Formula (7), ri represents the number of times a specified software
vulnerability is triggered, N represents the number of tests, and M represents the total
number of software to be tested.

p =
M

∑
i=1

(
ri

N × M
) (7)

Based on this formula, the probability that PSOFuzzer will trigger vulnerabilities is
68%, and the probability that AFLGo and Sidewinder will trigger vulnerabilities are 38%
and 13%, respectively. The probabilities that PSOFuzzer will trigger vulnerabilities in the
12 designated software programs is 79% higher and 423% higher than that of AFLGo and
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Sidewinder, respectively. Therefore, PSOFuzzer can trigger vulnerabilities with a greater
probability on the assessed software.

6. Challenges/Limitations

We implement a target-oriented fuzzing tool, PSOFuzzer. Compared with traditional
methods, PSOFuzzer can detect vulnerabilities more effectively, but there are still some
shortcomings and challenges.

(1) The parameters and specified mutation algorithms that are employed in the swarm
intelligence algorithm are mainly selected randomly, which cannot be adjusted by
real-time test information. Thus, random selection may degrade the performance of
the test.

(2) PSOFuzzer uses format constraint technology, which relies on known sample format
information. In the absence of sample format information, the sample mutation is
blind, which reduces the probability of triggering vulnerabilities.

(3) PSOFuzzer needs to specify the suspected vulnerability points in advance, which will
increase the probability of false negatives when the suspected vulnerability points
are inaccurate.

7. Future Directions

Based on the above shortcomings and challenges, we will continue to study the
following three aspects in the future to further improve the performance and adaptability
of the tool:

(1) Optimize the strategy for choosing the mutation algorithms and PSO parameters
by changing the value of the sample distance to the target to further improve the
efficiency of fuzzing.

(2) Collect the execution path by modifying a sample byte by byte and analyze the
characteristics of the paths before and after modification. The sample format can be
obtained in reverse to improve the adaptability of PSOFuzzer to the program without
sample format information.

(3) By analyzing the relevant elements in the code that hide vulnerability and extracting
them as the input data to train the graph embedding model, the trained model can be
employed to identify and locate vulnerabilities in the software.

8. Conclusions

Software vulnerabilities have been increasingly exposed in recent years, and the
impact of vulnerabilities is becoming increasingly serious. Fuzzing is currently the most
effective method of vulnerability detection, but high-quality test samples are difficult to
generate. In this paper, we implement a target-oriented fuzzing system named PSOFuzzer,
which transforms fuzzing into a mathematical optimization problem. PSOFuzzer maps the
elements in fuzzing to the PSO algorithm and leverages PSO optimization to generate more
high-quality samples to execute to the target point. Additionally, PSOFuzzer uses format
constraint technology to enhance the penetration ability of the samples in the program and
improve the probability of trigger vulnerabilities. To verify the effectiveness of PSOFuzzer,
we perform testing on 12 different software programs. The experimental results show that
PSOFuzzer can steadily generate more high-quality samples and has a 79% higher and
423% higher probability of triggering vulnerabilities in designated software programs than
AFLGo and Sidewinder, respectively.
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