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Abstract: Annulus pipe conveying fluids have many practical applications, such as hydraulic control
lines and aircraft fuel lines. In some applications, these tubes are exposed to high speeds. Normally,
this leads to a vibration effect which may be of a catastrophic nature. The phenomenon is not only
driven by the centrifugal forces, but an important role is played also by the Coriolis forces. Many
theoretical approaches exist for a simple configuration or a complex three-dimensional configuration.
Finite element models are tested. This paper provides a numerical technique for solving the dynamics
of annulus pipe conveying fluid by means of the mono-dimensional Finite Element Method (FEM).
In particular, this paper presents a numerical solution to the equations governing a fluid conveying
pipeline segment, where a Coriolis force effect is taken into consideration both for fix and hinge
constraint.

Keywords: FEM; Coriolis; pipe conveying fluid; simulation

1. Introduction and Background

Fluid conveying pipes [1] are attractive form an engineering point of view because
the instability effects can be a dangerous structural weakness. These systems interact with
axial flows in flexible conduits with prevalent applications in the oil and gas production
industries. Examples of these practical applications can be found in [2]. However, the
examples found in the literature are not only limited to the field of engineering but cut
across other areas of human endeavor, such as the study of pulmonary and urinary tract
systems or even hemodynamics within human physiology. A lot of research interest is
now focused on models for studying the stability of certain classes of dynamical systems,
finding novel numerical and analytical methods for solving such problems. Thus, for linear
dynamics for axial flows along slender structures, the pipe conveying fluid is regarded as
the main paradigm. Direct applications in technical fields can be found in the behavior of
aspirating pipes for ocean mining and Liquefied Natural Gas (LNG) in situ production, as
well as for the offshore mining of methane liquid-crystal deposits and carbon sequestration.
Flow-induced vibrations and instabilities are seeking to be resolved by simple, fast, and robust
models.

Many researchers developed different methodologies to study the problem [3–5]. In
particular, the Coriolis force became important in the analysis of stability, due to its role in
the energy equation. Studies can be found in [6–8]. Helped by the experiments described
in [9,10] it was possible to assume that the contribution of both the Coriolis force and
the centrifugal force lead to flutter effects that can be dangerous for the strength of the
structure. In [11], Eriksson et al. investigated the impact of the Coriolis force on the long
distance wake behind wind farms by using Large Eddy Simulations (LES) combined with
a Forced Boundary Layer (FBL) technique. The results indicate that FBL can be used for
studies of long distance wakes without including a Coriolis correction, but efforts need
to be taken to use a wind shear with a correct mean wind veer. The subject of piping
vibration has attracted a lot of attention from various researchers in recent times, due to
vast applications. In [12] Shaik et al. described a vibration analysis and mathematical
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model using Euler–Bernoulli and Hamilton’s energy expressions for fluid conveying a
welded galvanized iron pipe with a clamped-clamped boundary condition. Many other
attempts concerning the fluid conveying pipe vibrations were made and different analytical
methods were applied and compared to numerical solutions by software. Avinash B.
Kokare et al. [13], studied the vibrational characteristics of pipe conveying fluid and
FE simulation to evaluate velocity and pressure distribution in a single phase fluid flow.
Gongfa Li et al. [14] obtained the element standard equation for natural frequencies by the
Lagrangian interpolation function, the first order Hermite interpolation function, and the
Ritz method. Wentao Xiao et al. [15] used the Lagrangian interpolation function, the first
order Hermit interpolation function, and the Ritz method to obtain the element standard
equation for the nonlinear vibration response and then integrated a global matrix equation,
obtaining the response of a conveying fluid pipe with the New Mark method and Matlab.
Muhsin J. Jweeg et al. [16] compared results obtained by experimental verification with
the aid of Smart Materials with the results performed by using analytical solution for
equation of motion and also, with the results performed by using ANSYS Software. The
field of nanostructures is currently turning to vibration issues and their formulation as
well. Carbon nanotubes (CNTs) have been extensively used in numerous areas, due to
their excellent mechanical properties. As an important mechanical property, the vibration
characteristics of a CNT have become another hot topic for research in recent years. In [17],
the spectral element method (SEM) is applied to analyze the dynamic characteristics of
fluid conveying single-walled carbon nanotubes (SWCNTs).

2. Objectives

This paper proposes a solution to the pipe conveying fluid with Coriolis forces using
a simple one-dimensional Finite Element Method with a Hermitian shape function. In
particular, the modal frequencies and the critical frequencies are analyzed by changing the
velocity field of the fluid. An imaginary solution is taken into account for the problem,
as shown in the following. Mono-dimensional elements make possible the solution of
simple numerical problems for a complex phenomena, avoiding large Fluid Structure
Simulations (FSI) with difficult boundary conditions and numerical issues. In [18], an
extensive literature review on the state-of-the-art numerical models in 1D, the Fluid-
Structure Interaction is proposed. In the presented paper, two systems are studied: a
double fixed pipe and a hinged pipe to its boundary. The first system is mostly theoretical,
while the hinged pipe is more representative of the true environment that can occur in
a real application. Engineering solutions are presented for the latter problem, but many
other fields can be researched, such as pulmonary and urinary tract systems in the human
endeavor area, highlighting the importance of simple and fast numerical methods for the
analysis.

3. Methodology

In the modeling of the mechanics of fluid conveying pipes, the Coriolis force was
assigned to have the role of energy absorption that counters the centrifugal effect that
normally arises in free motions, affecting the stability in conservative and nonconservative
systems, as reported in [1,6–8,19–26]. For example, in [27], sewer condition prediction
models are developed to provide a framework to forecast future conditions of pipes
and to schedule inspection frequencies. Furthermore, in [28], the finite-element method
was effectively used to model the soil–pipe interaction for five full-scale laboratory tests
conducted on a steel pipe. Such models can be used for the analysis of flexible pipe
embedment design for layered embedment conditions.

3.1. Analytical Approach

From the studies reported in [29–31], the analytical expression for the motion equation
can be written. Let us start by assuming that the curvature of a pipe in which a fluid
flows with a velocity v depends on the transversal displacement w caused by its weight,
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the external forces and the internal forces. Let us assume that m is the total mass of fluid
and pipe and ρ is the mass of fluid per length span. If the pipe is immersed in the fluid,
it is possible to sum the mass of the external fluid to the mass of the pipe, and it can be
calculated by multiplying the density of the fluid itself times the area of the considered
section. The forces acting on the element dx of the pipe are:

• mẅ = inertia force due to the vertical acceleration of the pipe;
• EJw′′′ = elastic forces due to Euler–Bernoulli’s theory.

E is the Young module of the material, J is the inertia moment of the geometry, and
the derivatives over time and space of the displacement w are defined as follows:

ẇ =
dw
dt

, w′ =
dw
dx

, w′′ =
d2w
dx2 , ω = ẇ′ =

d2w
dtdx

When a fluid is flowing in a pipe, and it is subjected to the Coriolis acceleration [32]
through the mechanical introduction of the apparent rotation into the pipe, the amount
of deflecting force generated by the Coriolis inertial effect will be a function of the mass
flow rate of the fluid. If a pipe is rotated around a point while a liquid is flowing through
it, that fluid will generate an inertial force acting on the pipe that will be at right angles to
the direction of the flow.

Figure 1 shows the entire methodology, and Figure 2 shows a particle dm traveling at
a velocity v inside a tube. The tube is rotating around a fixed point P, and the particle is at
a distance of one radius r from the fixed point. The particle moves with an angular velocity
ω under two components of acceleration, a centripetal acceleration directed toward P, and
a Coriolis acceleration acting at right angles

• ar (centripetal) = ω2r
• at (Coriolis) = 2ωv

Moreover, when the pipe deflects, a centripetal force acts on an element dx of mass dm
that tends to move the pipe back to the equilibrium position. If R is the curvature radius, the
result is:

dF = dm
v2

R
≈ dmv2w′′dx

Substituting dm = ρdx
dF = −ρv2w′′dx

The sign ‘-’ appears because the force dF with positive curvature points to the opposite
direction with respect to the displacement w. Because of that, the forces imposed by the
fluid to the pipe per unit length neglecting ar are:

Ft = 2ρvẇ′

F = ρv2w′′

and the equation of motion becomes:

EJ
∂4w
∂x4 + m

∂2w
∂t2 + ρv2 ∂2w

∂x2 + 2ρv
∂2w
∂t∂x

= 0 (1)

Before reducing Equation (1) to its dimensional form, it is possible to write down
the integration form that represents the potential energy equation without considering
Neumann boundary conditions

Π =
1
2

∫ L

0

(
EJ
(

∂2w
∂x2

)2

+
ρv2

2

(
∂w
∂x

)2
+ 2ρv

∂2w
∂t∂x

+ m
∂2w
∂t2 w

)
dx + W (2)
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where W is the work of external loads. Interpolating the displacement field using the
Hermitian shape function, separating the variables{

w(x, t) = ∆T(t)N(x)
∆(t) = (w1, φ1, w2, φ2)

(3)

where ∆(t) is the vector of displacements and rotation referred to each node of the finite
element. In particular, the considered element is a mono-dimensional element with two
nodes where the subscripts 1 and 2 indicate the quantities related to the first or the second
node. Applying the principle of virtual displacement [33]:

δΠ = 0 (4)

substituting Equation (3) in Equation (2) and imposing Equation (4) lead to

δ∆T
∫ L

0

(
m∆̈T NNT + EJ(N′′)T + 2ρv(∆̇T N′)NT + ρv2∆T N′N′T

)
dx = δ∆T R (5)

where δ indicates the variation of the quantities described in the vector ∆. Reordering the
members in order to form matrices result in:

M∆̈ + C∆̇ + EJ(K− Knl)∆ = R (6)

M, K, C, and Knl are matrices defined in the following section and R is the residual matrix.

3.2. FEM Approach
In Equation (6) M, K, C, and Knl are defined as:

M =
∫ L

0
mNNTdx , K =

∫ L

0
EJ(N′′)Tdx , C =

∫ L

0
2ρvN′NTdx , Knl =

∫ L

0
ρv2N′N′Tdx

In order to use the FEM theory, it is important to integrate all the matrices in the local
reference system, where the shape functions are defined as follow:

N1 = 1
4 (2− 3ξ + ξ3)

N2 = L
8 (1− ξ − ξ2 + ξ3)

N3 = 1
4 (2 + 3ξ − ξ3)

N4 = L
8 (−1− ξ + ξ2 + ξ3)

(7)

3.2.1. Fixed Pipe

Let us now consider a pipe fixed to its end nodes and defined by two finite elements.
These two elements have the same length L and the total amount of degrees of freedom is
two, as shown in Figure 3.
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Figure 1. Methodology flow chart.

Figure 2. Fluid moving through a pipe.
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(w2 , φ2)

Figure 3. Element representation of the pipe fixed to its boundary nodes.

The motion equation becomes

m

(
26L
35 0
0 2L3

105

)(
ẅ2
φ̈2

)
+ 2ρv

(
0 − L

5
L
5 0

)(
ẇ2
φ̇2

)
+

(
EJ
( 24

L 0
0 8

L

)
− ρv2

( 12
5L 0
0 4L

15

))(
w2
φ2

)
=

(
F2
M2

)
(8)

The system is now ready to be solved by determining the values of natural frequencies
while the velocity changes. In particular, the load vector is set equal to zero while the
displacement w and the rotation φ are defined as an exponential function in the complex
domain (C) multiplied to a unknown constant (W for displacement and Φ for rotation):

w2 = Weiωt

ẇ2 = ∂tw2

ẅ2 = ∂t,tw2


φ2 = Φeiωt

φ̇2 = ∂tφ2

φ̈2 = ∂t,tφ2

(9)

Substituting Equation (9) in Equation (8) and dividing everything by eiωt results in: − 2(−420EJW+42L2v2Wρ+L4ω(7ivρΦ+13mWω))
35L3

8EJΦ
L − 2

105 L(14v2ρΦ− 21ivWρω + L2mΦω2)

 = 0

that can be transformed in the following homogeneous system collecting the coefficients of
w and φ (

A11 A12
A21 A22

)(
w
φ

)
= 0 (10)

excluding the trivial solution of the Equation (10), it is possible to find the eigenvalues
substituting ω2 with λ and solving

Det[A f ix] = 0 (11)

where

A f ix =

(
A11 A12
A21 A22

)
leading to

λ1 = − 1
26L8m2 7(−840EJL4m + 32L6mv2ρ− 21L6v2ρ2 + (L8(518400EJ2m2

− 720EJL2mv2(40m− 49ρ)ρ + L4v4ρ4(400m2 − 1344mρ + 441ρ2)))1/2)

λ2 =
1

26L8m2 7(840EJL4m− 32L6mv2ρ + 21L6v2ρ2 + (L8(518400EJ2m2

− 720EJL2mv2(40m− 49ρ)ρ + L4v4ρ4(400m2 − 1344mρ + 441ρ2)))1/2)

(12)

The corresponding eigenvector associated to these eigenvalues describes the vibration
modes of the structure. For a better representation, it is worth to transform the characteristic
polynomial in its dimensionless form, introducing

θ =
L2v2ρ

EJ

η =
ρ

m
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so the power of the frequency is

ω2 =
EJ

L4m
(226.2 + θ(−8.165 + 5.654η)± 0.0385(2.54e7+

106θ(−1.410 + 1.729η) + θ2(19600− 65856η + 21609η2)1/2))

and finally:

Ψ =

√
L4m
EJ

ω =
√
∗ (13)

3.2.2. Hinged Pipe

Let us now consider a pipe hinged to its end nodes and defined with two finite
elements. These two elements have the same length L and the total amount of degrees of
freedom is 4, as shown in Figure 4.

φ1 (w2 , φ2) φ3

Figure 4. Element representation of the pipe hinged to its boundary nodes.

In this case, the elements of the Equation (6) are defined for four degrees of freedom
derived from the imposed boundary condition and result in:

K =
EL
L3


4L2 −6L 2L2 0
−6L 12 −6L 0
2L2 −6L 4L2 0

0 0 0 0

+
EL
L3


0 0 0 0
0 12 6L 6L
0 6L 4L2 2L2

0 6L 2L2 4L2

 (14a)

M =
mL
420


4L2 13L −3L2 0
13L 156 −22L 0
−3L2 −22L 4L2 0

0 0 0 0

+
mL
420


0 0 0 0
0 156 22L −13L
0 22L 4L2 −3L2

0 −13L −3L2 4L2

 (14b)

C =
2ρv
60


0 −6L L2 0

6L 30 −6L 0
L2 6L 0 0
0 0 0 0

+
2ρv
60


0 0 0 0
0 −30 −6L 6L
0 6L 0 L2

0 −6L −L2 0

 (14c)

Knl = ρv2


2L
15 − 1

10 − L
30 0

− 1
10

6
5L − 1

10 0
− L

30 − 1
10

2L
15 0

0 0 0 0

+ ρv2


0 0 0 0
0 6

5L
1

10
1

10
0 1

10
2L
15 − L

30
0 1

10 − L
30

2L
15

 (14d)

Following the procedure of the previous case, the unknown quantities are expressed
as follows: 

w2 = Weiωt

ẇ2 = ∂tw2

ẅ2 = ∂t,tw2


φ1 = Φeiωt

φ̇1 = ∂tφ1

φ̈1 = ∂t,tφ1


φ2 = Φeiωt

φ̇2 = ∂tφ2

φ̈2 = ∂t,tφ2


φ3 = Φeiωt

φ̇3 = ∂tφ3

φ̈3 = ∂t,tφ3

(15)

Substituting Equation (15), Equation (14) in Equation (6), dividing by eiωt and collect-
ing the coefficient of ω and φ, it is possible to build the homogeneous system
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
A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44




w
φ1
φ2
φ3

 = 0 (16)

Again, excluding the trivial solution, the natural frequencies are found solving

Det[Ahinge] = 0 (17)

where

Ahinge =


A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44


4. Results and Discussions

The results are presented as a comparison between theoretical and numerical solutions
for simple applications. In particular, a fixed pipe and a hinged pipe are taken into account
as case studies. In both cases, the natural frequencies, due to the geometry only and the
vibration modes relative to the inner fluid velocity, are calculated. A steel pipe filled with
water is considered for both applications.

Table 1 shows the data for the following problems. L is the total length, A is the section
area, ρ is the fluid density, D is the diameter, d is the thickness, E is the Young module of
the steel, and m1, m2 are the two masses of the fluid and the pipe.

Table 1. Input data for a steel pipe filled with water.

L = 4 m D = 0.1 m d = 0.095 m

A = πd2

4 m2 E = 2 · 1011 Pa J = π(D2−d2)
64

ρ = 1000 πd2

4 m1 = π(D2−d2)
4 7800 + 1000A m2 = π(D2−d2)

4 7800

4.1. Fixed Pipe

Considering the pipe only (η = θ = 0 because the mass of the fluid ρ = 0),
Equation (13) lets us calculate the two natural frequencies:{

Ψ1 = 5.684
Ψ2 = 20.494

against the theoretical values: {
Ψ1t = 5.593
Ψ2t = 15.417

In particular, the critical loads are calculated solving

Det[EJ
( 24

L3 0
0 8

L

)
+ ρv2

(
− 12

5L 0
0 − 4L

15

)
] = 0 (18)

thus {
θ = 10
θ = 30

Figure 5 shows the decrease of the frequencies increasing the velocities of the flow
underlying the critical values for the pipe instability (dotted lines).
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Figure 5. Frequencies with respect to the velocity.

Solving Equation (18) for the data reported in Table 1, lead to these four critical
velocities of the pipe: 

v = −219.481
v = −126.717
v = 126.717
v = 219.481

The results for the void tube with no velocity are described solving Equation (11)
imposing ρ = 0, v = 0 and m = m2. The frequencies are:

ω = −223.653
ω = −62.0302
ω = 62.0302
ω = 223.653

Following the same path but considering a tube filled with water with zero velocity
(ρ = 1000 A, v = 0 and m = m1) results in

ω = −151.244
ω = −41.9475
ω = 41.9475
ω = 151.244

Finally, Figure 6 shows the curves of critical frequencies ω with respect to the fluid
velocity v for the first quadrant of the graph.
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Figure 6. Frequencies respect to the velocity.

4.2. Hinged Pipe

Considering the pipe only and solving Equation (17), it is possible to evaluate the
frequencies:

ω = −2.47714
√

EJ
L4m ω = 2.47714

√
EJ

L4m ω = −27.5349
√

EJ
L4m ω = 27.5349

√
EJ

L4m

ω = −10.9545
√

EJ
L2√m ω = 10.9545

√
EJ

L2√m ω = −50.1996
√

EJ
L2√m ω = 50.1996

√
EJ

L2√m

and the theoretical value is:

ωt =
π2

4L2

√
EJ
ρ

Introducing m = m1 for the fluid mass, it is possible to calculate the frequencies, due
to the water velocity. Figure 7 shows the result for the first frequency.

Figure 7. Frequencies with respect to the velocity.

Figure 8 shows all the four frequencies associated with the finite element solution of
the hinged structure.
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Figure 8. Frequencies with respect to the velocity.

In this specific application, a comparison with the theoretical solution is possible since
and the analytical solution is known:

w(x, t) = ∑
n

A2n−1 Sin((2n− 1)
πx
L
)Sin(ωit) + ∑

m
A2m Sin(2m

πx
L
)Cos(ωi)t (19)

Equation (19) is substituted in Equation (1). The result can be rewritten by grouping
the trigonometric terms and, in particular, it is possible to expand with a Fourier series the
cosines terms:

Cos
(
(−1 + 2n)πx

L

)
= ∑

m

2n− 1
(2n− 1)2 − (2m)2

Cos
(

2mπx
L

)
= ∑

m

2m
(2m)2 − (2n− 1)2

Setting the similar trigonometric terms equal to zero and deleting all the modes except
for the first two, the following condition can be written from the homogeneous system

− 32ρvω

3L
(

EJπ4

L4 −
π2v2ρ

L2 −mω2
) = − 3L

8ρvω

(
16EJπ4

L4 − 4π2v2ρ

L2 −mω2
)

(20)

Equation (20) combined with data in Table 1 defines the critical velocity

vcr = π

√
EJ
ρL2

Figure 9 shows the comparison between the theoretical result expressed in Equation (20) and
the numerical result of for the first frequency. The two results match, showing the good
representation offered by a simple discretization of two elements in the finite element
model.
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Figure 9. Frequencies with respect to the velocity.

In particular, Figure 10 shoes the error for the first frequency calculated as

Err =
∣∣∣∣ωt −ωn

ωt

∣∣∣∣
where wt is the theoretical result of the frequency and wn is the numerical result.

Figure 10. Error between theoretical and numerical result for the first frequency.

The error increases with the velocity as expected, suggesting the use of more elements
for high velocities.

5. Conclusions

The analysis presented in this paper shows the importance of FEM in complex phe-
nomena. In particular, a steel tube filled with a water under Coriolis forces is studied
using two element in two different configurations. The results show how the FEM solution
matches the analytical one using the Hermitian shape function especially for the first
frequency. In particular, the elements used in this paper are mono-dimensional, since the
problem is axial-symmetrical, leading to the most efficient discretization, considering the
complexity and the number of elements. However, the results are not directly comparable
with other method of application because similar examples of the effect of the Coriolis
force on the vibration of the annulus pipe solved by FEM are lacking in the literature, it is
proved that the first frequencies of the pipe for both configurations of the filled-with-water
fixed pipe and hinged pipe are stackable for theoretical results as well as for the numerical
results. Moreover, the extreme simplicity of the mesh leads to a fast solution for a complex
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mathematical problem, avoiding heavy three-dimensional meshes and difficult boundary
impositions.

6. Recommendations for Future Research

A further study should be oriented to the stress distribution, as suggested in [34]
in order to investigate mechanical aspects. The use of this method could be very apt to
conjure approximate closed form solutions also for nonlinear problems. Further studies
and applications could be aimed also at solving the problem applied to cylindrical shell
conveying fluids, whose dynamic behavior is of practical interest in the field of power plants
or oil pipelines. Cylindrical shells are essential structural elements in offshore structures,
submarines, and airspace crafts. They are often subjected to combined compressive stress
and external pressure, and therefore must be designed to meet strength requirements [35].
As discussed in [36], these structures are often stiffened by frames or ribs. Calculation of
the sound scattering properties of stiffened circular shapes is difficult. Much research has
focused on the acoustic radiation from a stiffened infinite shell with a simple shape but,
when the shape is more complicated, such as for a submarine or an aircraft, the numerical
methods are not appropriate, while the finite element method seems justified with the finite
element characterizing the stiffeners. This phenomenon could be applied to modern tools
such as Virtual or Augmented Reality. In particular, Augmented Reality (AR) is a computer
technology where the perception of the user is enhanced by the seamless blending between
a realistic environment and computer-generated virtual objects coexisting in the same
space. The resulting mixture supplements reality, rather than replacing it. The possibility
of interacting with external information could be very useful in simulations difficult to be
interpreted by common users. As suggested in [37–47], Augmented Reality applications
could have many interesting advantages and could be a viable tool in many fields now
investigated by Industry 4.0.
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