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Abstract: The use of intelligent algorithms for global solar prediction is an ideal tool for research
focused on the use of solar energy. Forecasting solar radiation supports different applications focused
on the generation and transport of energy in places where there are no meteorological stations.
Different solar radiation prediction techniques have been applied in different time horizons, such as
neural networks (ANN) or machine learning (ML), with the latter being the most important. The
support vector machine (SVM) is a classification method of the ML that is used to predict solar
radiation. To obtain a better accuracy of prediction data, search optimization algorithms (SOA)
such as genetic algorithms (GA) and the particle swarm optimization algorithm (PSO) were used to
optimize the prediction accuracy by searching the model parameters. This article presents a review of
different hybrid SVM models with SOA applied to obtain the best parameters to reduce the prediction
error of solar radiation using meteorological variables. Research articles from the last 5 years on solar
radiation prediction using SVM models and hybrid SMV optimized models with SOA were studied.
The results show that SVM with GA presents a better performance than the classical SVM models
using the Radial basis kernel function for prediction parameters.

Keywords: solar radiation; support vector machine; heuristic algorithm; renewable energy; solar
energy systems

1. Introduction

In recent years, energy generation and transport have become very important issues
for the social and economic development of any nation that wants to be sustainable. Today,
the demand for fossil fuel is 80% of the total energy consumed globally and more than 95%
is used for the transport sector [1]. The use of these fossil fuels has been one of the main
causes of the greenhouse effect on earth [2–4]. Nowadays, the scientific community has set
the task of developing new technologies focused on the generation and use of electricity
through solar power [5–7].

Additionally, power companies must be able to manage energy production to meet
consumption at any time [8]. This is why it has focused on generating new techniques
to manage energy production, as it is an important factor for a society to thrive economi-
cally and without harming the environment by using alternative energies [9]. However,
alternative energies (such as solar, wind, to name a few), are difficult to represent in a
mathematical model because of their non-linear behavior. In order to meet the balance
between generation and consumption, it is crucial to predict solar radiation in high-capacity
power generation facilities.

In this context, acquiring further knowledge on solar radiation has been one of the
main research topics, for which it has become a benchmark in the strengthening of energy
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generation strategies through the use of renewable energy sources. In this context, machine
learning (ML) has become a recognized strategy in this field [10]. A high-performance solar
energy generation system largely depends on the forecast of the output power, since this
data can support the design and sizing of these systems. Under this concept, forecasting
models of global solar radiation are developed under two main categories: satellite cloud
images and ML models [11].

Forecasting solar radiation is becoming a popular topic. This technology allows solar
energy to be integrated into the grid, producing good results by improving the quality
of energy supplied to the grid to reduce the costs of accessories related to the use of this
resource [12]. The combination of these factors has been the motivator for the development
and design of models of a complex field of research that aims to produce better predictions
of the solar resource and thus be able to predict the output power that can be generated
depending on the type of technology used and the prediction horizon used [13].

A forecasting model essentially consists of a system of linear or non-linear equations
that relate the future values of the variable to be predicted with recorded data variables
themselves and the explanatory variables. Before making a prediction, you must define the
prediction horizon on which the model should be applied [14]. According to the literature,
there are two classes of techniques to choose the method according to horizon time: The
Now-casting method, defined as a forecast for the next 6-hour period, based on detailed
observational data such as radiometers, pyrheliometers, satellite images or sky cameras,
among others and results in a better alternative to forecast variables in a minute scale [15]
and Numeric weather prediction models (NWP) [8]. These predictions are suitable for the
operation and control of power plants. For some applications, solar radiation predictions
of 0 to 180 h are delivered online, every 6 h [11].

In addition, another advantage of knowing the future solar radiation lies in optimizing
the control of solar energy in the electricity grid, which can ensure a favorable performance
in the electricity generation market that may be used in the future in the Smart Grid
field [16].

Currently, there is a lot of information published in journals about solar radiation
prediction with ML. However, several ML methods about classification models to forecast
variables are considered in the literature, such as artificial neural networks (ANN) or
support vector machine (SVM) models and are commonly compared with other models.
Additionally, forecasting solar radiation is a very complex phenomenon which can be
influenced by many different factors and forecasting models tend to be more accurate. In
this context, optimization algorithms are integrated to forecasting models to reduce error
and improve its accuracy, so, it is necessary to present a review of prediction techniques
with the use of search optimization algorithms (SOA) to improve prediction on different
horizons. The objective of this article is to perform an analysis of solar radiation prediction
techniques based on hybrid SVM and SOA models. The performance of SVM models is
compared with conventional supervised learning models, such as artificial neural networks.
SVM-SOA hybrid models are also analyzed to evaluate the accuracy of the predicted solar
radiation data seen in the literature. It also presents the most suitable Kernel functions for
hybrid models and finally, a general process flowchart of hybrid prediction techniques,
according to the literature, is shown.

2. Solar Radiation Components

Modelling solar radiation is a very complex task because it is influenced by climatic
zone, geographical area or seasons. Solar radiation provides the quantity of solar energy
that reaches the Earth’s surface during a particular time period [17]. It is important to know
the whole phenomenon, starting from the definition of the sun, which is a star inside which
a series of reactions take place that produce a loss of mass that is transformed into energy.
Solar irradiance is the measured and recorded amount of energy that comes directly from
the sun to the land surface [18]. There are three main types of solar radiation, which are the
following: diffuse, direct and global solar radiation. Diffuse radiation is that which occurs
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when radiation that comes directly from the sun is intercepted by the Earth’s atmosphere,
causing a scattering in the middle [19]. Diffuse solar radiation creates a problem in the
generation of electricity by photovoltaic solar panels, reducing their generation capacity,
that is, in solar radiation, clouds absorb all the incident energy and emit it again [20]. Direct
solar radiation comes in a defined direction from the sun towards the earth, which, it
is possible to concentrate it in a point for its use, however, it can also be reflected. This
radiation is essential in the use and sizing of solar concentration systems [21]. With diffuse
and direct solar radiation, it is possible to determine the global solar radiation in an area.
Furthermore, it is possible to acquire information on global solar radiation by means of
pyranometers that measure the solar irradiance from the sun to an area [22].

3. Solar Radiation Prediction Time Horizons

A prediction model essentially consists of a system of linear or non-linear equations
that relate the future values of the variable to be predicted with the present and past
values of the variable itself and the explanatory variables. Before making a prediction, you
must define the prediction horizon on which the model should be applied [14]. The ML
applications to predict solar radiations are becoming a trend in the transition of energy
generation systems. The models are developed as a time series prediction problem, that
will be solved as a classification model. Figure 1 visualizes the most used time horizons in
prediction models using ML [23].

Figure 1. Prediction scale according to time horizon methods.

3.1. Time Horizon

The estimation of the output power of solar systems is necessary for the proper
functioning of the electricity grid or for the optimal management of the energy flows that
occur in the solar system. Before predicting the output of solar systems, it is essential to
focus prediction on solar radiation. The prediction of components of solar radiation (global
or diffuse) could be performed by several methods and the accuracy of a prediction model
depends mainly on the time horizons [11].

For the development of any solar prediction model, we must contemplate the timescale
(counted from a certain moment in which we make the prediction), which determines
the future moment for which we make the predictions. The biggest drawback is its
linear character, which makes it difficult for all problems to be properly modeled [22,24].
Models are very sensitive to unusual observations, forcing you to review the time series for
detection and correcting before designing the prediction model [25].

3.1.1. Nowcasting Solar Radiation

The prediction horizon ranges from 15 min to a few hours, with no unanimity in its
value [26]. In the short term, intra-hour forecasts are particularly useful for carrying out
operations in the solar plant, balancing the grid, achieving automatic generation and trade
control. Currently, it is very difficult to accurately predict solar radiation in the short term,
as it involves knowing in advance how much energy solar plants produce instantly and
this would be of great help in avoiding problems of supplying the line or avoiding surplus
energy [27]. On this horizon, the statistical models that show the best performance are



Appl. Sci. 2021, 11, 1044 4 of 17

those that use satellite images with greater accuracy in nowcasting predictions [15,28] and
statistical models for solar radiation time series, such as NWP [29–31]. Likewise, in recent
years, several studies have been presented on the use of Machine Learning (ML) for solar
radiation prediction using vector support machines (SVM) that show better performance
in classification and regression analysis in time series [32,33].

3.1.2. Forecasting Solar Radiation

Long-term predictions: correspond to a horizon above 48 or 72 h, reaching a limit of
7 days. The larger the horizon, the greater the prediction errors, making it difficult to make
reliable predictions of atmospheric variables above those 7 days [34–36]. Time horizons
represent prediction analysis, as, as has been observed in the literature, ML models are able
to demonstrate that they are the best alternative in time series data analysis. However, the
need to reduce error correction has been modified to make way for ML regression model
models using search optimization algorithms (SOA) that require accurate selection of their
parameters to improve their performance [37,38].

4. Support Vector Machine Models

Machine Learning (ML) is the process of learning to convert experience into expertise.
A concise explanation is that a computer program learns from the experience from data
recorded in a period of time; the performance of the program is evaluated in time by
improving experience [39]. In other words, ML models interpret patterns through learning
based on data obtained in a period through a training process to make a prediction,
generating new data that will measure the behavior of a phenomenon in the future [40–42].

According to the literature, there are two main specific techniques that ML uses
to develop learning methods using information directly from data acquired [43]. There
exist two main learning methods: supervised learning that uses from present to previous
data to forecast events [44,45] and unsupervised learning that analyzes the patterns from
non-classified data and deduces a function to describe the behavior of the system [46].
Additionally, there are other learning methods that derive from these principal methods:
semi-supervised learning and multiple instance learning [47]. In this article, the supervised
learning using a support vector machine (SVM) will be discussed. The Figure 2 summarizes
the two principal methods and its most used models to predict solar radiation.

According to [8], supervised algorithms are currently the most used, and within
this method are neural networks and vector support machines. These models have been
widely used in recent years, with vector support machines being recently integrated to
provide new solar prediction techniques. In this context, SVM belongs to a technique called
supervised learning defined as a technique for identifying the behavior between an input
and an output variable [48].

The theoretical basis of SVM is to minimize the structural risk related to the empirical
risk from the training process and the confidence range from Vapnik Chervonenkis dimen-
sion (VC dimension) [49]. The complexity of the problem will be reduced when the VC
dimension is smaller, making the risk smaller [50].

The architecture of an SVM is a versatile and configurable model based on a kernel
machine that could be treated as a classification or regression problem according to Vapnik
equations [51], while a support vector regression is only used for regression problems [11].
Therefore, an SVM is a great alternative to solve classification problems in forecasting time
series [52–55].
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Figure 2. Machine learning techniques.

In order to predict a non-linear variable, such as solar radiation, it is necessary to have
a data set xi that represents the input data sample space, di which is the target value and
to know the number of data points n [14]; therefore, it is possible to resort to Vapnik’s
equations theory. The input variables to SMV models are related to the objective variable
(variable to predict), visualizing the mapped data in a non-linear function f (x) [51]:

f (x) = ω · φ(x) + b (1)

where ω is the normal vector, b is a constant, also called bias term [56] and φ(x) is a
large-dimensional spatial characteristic mapped by the space vector x. The coefficients ω
and b are calculated by minimization using the following optimization problem [24]:

Rsvm( f ) = C
1
N

N

∑
i=1

xi=1 = Le( f (xi), yi) +
1
2
‖w‖2 (2)

Le( f (xi), yi) =

{
si | f (x), y| − ε for | f (x), y| ≥ ε
0 otherwise

(3)

where ε is a parameter of the model. Le( f (xi), di) is the term that describes the ε-th missing
function, which indicates that errors below epsilon are not penalized, di represents the solar

radiation in the period i and C
1
N ∑N

i=1 Lε( f (xi), di) defines the empirical error of the SVM

model.
1
2
‖w‖2 is the regularization term, C is the term that evaluates the error penalty

function to regulate the compensation between the error or empirical risk and the term of
regularization. The slack variables ς and ς∗ indicate the excessive top and bottom skew,
respectively. With these properties of the function to be optimized, it is possible to define
Equation (2) as shown below [57]:

minimize
1
2
‖w‖2 + C

1
N ∑N

i=1(ςi + ς∗i ) (4)
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subject to: =


|yi − (〈w, xi〉+ b) ≥ ε + ςi|
〈w, xi〉+ b− yi ≤ ε + ςi
ςi, ς∗i ≥ 0

(5)

To solve Equation (1), it is possible to use Lagrange and optimal constraints to obtain
a non-linear regression function:

f (x) =
l

∑
i=1

(αi − α∗i )K(xi − x) + b (6)

where αi, α∗i are Lagrange multipliers. The term k(xi − x) is defined as the kernel func-
tion [55]:

K(xi − x) =
D

∑
i=1

φi(x) + φi(y) (7)

The general architecture form of a SVM is shown in Figure 3.

Figure 3. General architecture of a support vector maching (SVM) model according to [55].

4.1. Kernel Function Provided for SVM

SVM maps the data in a non-linear map to describe the linear process in the space of
the predicted data according to the availability of data. This expression results in a simple
linear combination problem attributed to the mapped space [58]. The kernel function
allows a classification to be performed to form nonlinear boundaries to model complicated
separating hyperplanes [59]. Figure 4 describes a projection from low to high dimension in
space data.

The kernel parameters must be ideal to solve the problem classification according to
the data to become separable in the next space. The four principal basic kernel functions
are linear, polynomial, radial basis function (RBF) and sigmoid [57,60].

• Radial basis function (RBF): this function could perform nonlinear mapping of the
samples into a higher dimensional feature space expressed by [61]:

K(xi, xj) = exp

(
−
‖xi − xj‖2σ

2

)
(8)

where σ is the kernel weight and xi and xj are the inputs to the i-th and j-th dimensions,
respectively.

• Linear kernel function: According to [57], the linear function to obtain the SVM
parameters is described by the following:

K(xi, xj) = xi · xj (9)
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• Polynomial kernel function: this is a typical example of a global kernel, defined as
follows:

K(xi, xj) =
(
xi · xj

)q (10)

where q is the degree of the polynom that will be used [62].
• Sigmoid kernel function: this function gives an explanation to practical viability [63].

This function is expressed as follows:

K(xi, xj) = tanh(v(x · xi) + c) (11)

where v and c are adjustable kernel functions based on the data.

Figure 4. Mapping of the kernel function.

4.2. Search Optimization Algorithms

In general, SVM models and ANN models are widely used in forecasting power
consumption and solar radiation because of its performance and easy adaptation for
nonlinear variables. However, it is important to improve new methods to find the best
fitting parameters of the model [64].

The importance of using genetic algorithms as a solution to the Vapnik model function
(Equation (1)) is to find the most optimal point to be able to obtain better prediction
results. Intelligent search algorithms (SOA) are techniques for searching and exchanging
information between the individuals of a population, which will be the ones that can solve
a non-linear optimization problem [65]. SOA models are frequently used in forecasting
methods where it is quite crucial to determine weights coefficients to reduce the error [66].

4.3. Performance Evaluation

It is necessary to know the performance of the SVM model. To evaluate the perfor-
mance of forecasting solar radiation data, statistical indicators were used [67]. According
to the literature, there are five popular indicators that could determine the accuracy of the
predicted data [68,69]:

• Mean absolute percentage error (MAPE): It is used to express the absolute error of the
predicted and observed variables in percentage [70]:

MAPE =
1
m

m

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (12)

• Root mean square error (RMSE) sizes the goodness of the fit related to forecast with
high errors [71]:



Appl. Sci. 2021, 11, 1044 8 of 17

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (13)

• Mean bias error (MBE) indicates the deviation of predicted data from the observed
data to provide the performance information of short and long-term use of the
model [72]:

MBE =
1
m

m

∑
i=1

(yi − ŷi) (14)

• Mean absolute error (MAE) indicator gives a perspective of the performance of
the prediction model by viewing how close the predicted variables are to observed
variables [73]:

MAE =
1
m

m

∑
i=1
|yi − ŷi| (15)

• Relative root mean square error (RRMSE) quantifies the relative spread in the
error [74,75]

RRMSE =
1
ȳ

√√√√ m

∑
i=1

(yi − ŷi)
2

N
(16)

where yi is the global solar radiation measured, ŷi is the predicted global solar radia-
tion, ȳ is the mean global solar radiation, m is the number of forecast data points and
N is the number of validation data. These indicators make it possible to know the
efficiency of the SVM models: If the statistical indicator value is zero in the ideal case
and presents a good performance if is closer to zero [8,57,67,76].

5. Results in Hybrid Techniques: Support Vector Machine with Search Algorithms Review

This work compiled and analyzed scientific articles focused on the construction of
solar radiation prediction models with a hybrid method based on support vector machine
and search optimization algoritms. The articles that are studied show the advances in this
field and the solutions proposed to obtain predictive radiation data with the minimum
error calculated with the statistical indicators.

SVMs relate to regularization networks and offers an advance on the ANN model.
It is based on the theory of statistical learning that adopts least squares methods to solve
the problem to least square solutions through a set of linear equations based on the
minimization of structural risk.

Therefore, the SVM model can avoid excessive adjustment of the training data, does
not require an iterative adjustment of the model parameters, has better generalization,
requires few cores and has good performance [77]. To determine the appropriate choice of
the prediction model with a support vector machine, the climatic variables of maximum
and minimum air temperature (Tmax and Tmin, respectively), maximum and minimum
relative humidity (Hmax and Hmin, respectively), wind speed (ws), evaporation (E) and
vapor pressure estimates (V) were the most used for future global solar radiation Gh [78–81].
This model can avoid the excessive adjustment of the training data, does not require an
iterative adjustment of the model parameters, has better generalization, requires few cores
and has good performance [55]. Figure 5 visualizes the general process to predict global
solar radiation using the climatic variables.
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Figure 5. Training process using climatic variables for SVM models.

Different researchers have performed models based on SVM with no optimization
models, and the results were prominent. Ref. [76] presented a hybrid SVM model in
predicting solar radiation on two sites for PV panel surfaces using diffuse, direct and global
solar radiation as input variables. The results show that the SVM model improves the
prediction compared to the ANNs in the training phase with a maximum time of 0.0468 s,
almost 5 times faster than an RNA model and 2 times faster in the testing phase, with
2.15 s. The stability of the model in this application lies in the use of these three radiation
components with an RMSE three times smaller than an ANN, varying in a range from
18.34 to 31.15.

Authors from [36] proposed a solar prediction model based on SVM for one-hour
ahead based on the typical climatic variables. They mentioned that SVM regression
significantly improves the prediction accuracy according to the statistical indicators.

Authors from [67] proposed multiple SVM models using temperature equations with
different kernel equations using only temperature variables from meteorological stations.
The researchers observed that creating several empirical temperature-based equations and
evaluating the models by several statistical indices, the prediction improves significantly
in its performance.

In [82], a forecasting model based on SVM and using satellite images of clouds as
the input space was presented. They used 4-year registers of cloud monitoring systems
configured to perform the model by using large-scale data in multiple inputs and outputs.
The performance SVM model was compared to other predicting models, providing a robust
and great alternative to predict solar energy with RMSE 10.86.

In [83], a model was developed to estimate global solar radiation based on a support
vector machine (SVM) using an index that indicates air quality as an input variable to
evaluate the performance of this technique. Compared to existing models, such as neural
networks, the model presents a great performance in the accuracy of global solar radiation
models by using an air quality indicator as an additional input parameter. The related
works only used SVM models. Table 1 summarizes the findings about using SVM as an
important alternative to ANN or other models to predict solar radiation.
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Table 1. Techniques of solar radiation prediction using SVM.

Reference Analysis of Results Time
Horizon

Kernel
Function MAPE RMSE MBE MAE RRMSE

[76] Compared ANN and SVM
in predicting the solar radiation 1 day polynomial - 28.39 W

m2 - - -

[83]

SVM performs better than other
models if air quality index is used
in the models using polynomial

kernel function

1 h Polynomial 8.24% - - - -

[36]

They compared the SVM with
(ANN) and Non linear
autoregressive (NAR),

showing that SVM performs
well in prediction accuracy

1 h RBF - 4.26 W
m2 - - -

[82]

SVM performs great than ANN
models and can be effectively
used for grid operations and
energy management systems

15 min RBF - 28.00 W
m2 - - -

[67]

Polynomial kernel function
performs great using

temperature equations
in SVM models

1 h Polynomial - 0.83 MJ
m2 - - 9.00%

In recent years, the state-of-the-art with respect to SVM has been demanding due to
its high performance, so various methods of improving these models have been developed,
such as integrating a search algorithm to the SVM model. Some works have proposed
various hybrid techniques based on the flow diagram in the Figure 6.

Figure 6. Flow chart of SVM model with search algorithm.
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The work of [14] showed an SVM with the Firefly Algorithm (FFA) to estimate future
solar irradiance. A Firefly Algorithm (FFA) was used to calculate the best kernel parameters
of the SVM model to obtain the most accurate prediction data. The model presents a better
performance compared to ANN, which has RMSE = 1.86% and a MAPE value of 11.51%.
The results are promising for the use of FFA with SVM as a great alternative to predicting
the global component of the solar radiation. Additionally, they specified a risk in zones
with no constant climatic conditions.

In [84], a new approach was developed using data mining techniques to model and
improve the prediction of hourly global solar radiation the next day. They report an RMSE
value of 23.5% when the independent variables were the values of the meteorological
parameters of the previous day and an RMSE of 22.9% when the independent variables
were the forecasts of meteorological variables for the same day to be forecast.

The authors [85] developed an SVM model optimized by glowworm swarm optimiza-
tion (GSO) to estimate solar radiation. Employing the Eclat algorithm (data mining) to
choose the appropriate predictors, the support vector machine (SVM) with penalty function
of the model structure and the GSO algorithm to improve forecast accuracy, selecting the
appropriate parameters. The tests were carried out in four areas of the USA using the input
variables of average daily airmass, dew point, relative humidity, opaque cloud cover, wind
speed, vertical wind shear, pressure, albedo, zenith angle, azimuth angle, net radiation,
global normal radiation and global extraterrestrial radiation. The results show a great
performance—RMSE = 0.43 W

m2 and MAPE 5.64%.
In [86], an SVM-FFA model for the prediction of the monthly mean daily horizontal

global solar radiation in the port of Bandar Abbass was proposed, located in the southern
coastal region of Iran. They also show that their model is highly efficient in estimating
the monthly mean daily horizontal global solar radiation. With the following statistical
indicators, MAPE = 3.3252.

Ref. [87] presented an SVM model with optimization using GA to compare its perfor-
mance with a grid search evaluating the accuracy by the analysis of the parameters of the
four kernel functions. They found that the grid search could be a good alternative only if a
low dimensional dataset, which is only present in few cases of classifications problems, but
GA is the best alternative in more cases, presenting stability above 15.9-times that of a grid
search.

Research from [57] presented a study of three models: adaptive neuro-fuzzy inference
system (ANFIS), ANN and (SVM) models using GA in the three cases to estimate the kernel
model parameters in order to compare their accuracy and performance in daily global solar
radiation. The results show a huge advantage using SVM-GA to predict solar radiation.
They found that SVM-GA also determined the best kernel parameters by evaluating the
error to the global minimum convergence.

In [55], a wavelet-coupled vector support machine model for predicting global solar
incidents using a limited meteorological data set for the city of Brisbane, Australia was
performed. The data were decomposed into a subset of wavelets, transforming the input
space into discrete variables to create new time series using the Daubechies-2 wavelet to
a detailed level. This hybrid model obtained an approximation of R = 0.965. The input
variables used in this model are the basic climatic variables and add hours of sunshine St
to predict the daily global incident solar radiation (Rn). They also mentioned that climatic
anomalies could make the W-SVM model less accurate for solar radiation forecasting.

The authors from [88] presented a GA-SVM model to predict the short-term power
forecasting of a PV system on a residential scale. GA was used to find the optimal parame-
ters values for a kernel within a base classifier of the SVM. They used climatic variables and
added the solar radiation to predict the power load of a photovoltaic system, that shows
that SVM is multi-configurable according to the problem. The results show that GA-SVM
outperforms the conventional SVM. The GA shows its great performance by finding a
local minimum that is translated in a high-accuracy solar radiation forecasting. Table 2
summarizes the findings on the use of SVM optimized with search algorithm techniques.
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Ref. [89] performed a comparison between SVM models and copula-based nonlinear
quaintly regression (CNQR) to predict dayli diffuse solar radiation and mentioned the
principal risk working with SVM models: There is a possibility that SVM could not perform
an accurate prediction if lower parameters are considered in the space data; with more
input parameters, the accuracy will increase but the parameter optimization increases
considerable, leading to a high cost for the prediction.

The authors from [90], developed three hybrid models to predict the daily solar radia-
tion in urban zones: SVM-PSO model, Bat algorithm with SVM and Whale optimization
algorithm with SVM using the general climatic data and adding the Ozone (O3) in the space
variables. They found that the O3 variable improves the accuracy of the predicted data
compared to other parameters such as air pollution, using the RMSD statistical indicator
to measure the performance, with values of 11.1%, 10.0% and 10.4%, respectively, for the
three developed models.

Table 2. Techniques of solar radiation prediction using SVM and search algorithms.

Reference Analysis of Results Time
Horizon

Optimization
Model

Kernel
Function MAPE RMSE MAE RRMSE

[14]
SVM-FFA present a better

performance in comparisson
with ANN models

1 h FFA RBF 11.51% - - 1.86%

[84] Mining data to forecasting
hourly global solar radiation 1 h SVM-R Sigmoid - 119 W

m2 79 W
m2 22.90%

[85]

Evaluated the performances
of SVM, HARD-RIDGE-SVM,

SVM-HARD and
GSO-SVM-HARD model

1 day GSO Hilbert space 5.64% 0.43 W
m2 - -

[86]

SVM-FFA present a better
performance compared to

the ANN, GP, and
ARMA techniques

1 month FFA RBF 3.32% 0.18 kW
m2 - 3.73%

[87]

SVM parameter optimization
using GA is more than 15.9 times

faster than using grid search.
F-measure was used to

evaluate the performance

- GA RBF
sigmoid 8.24% - - -

[55]
SVM incorporates a discrete

wavelet transformation algorithm
for pre-processing of inputs

1 day Wavelet RBF 4.69% 1.18 MJ
m2 0.92 MJ

m2 5.94%

[57]
SVM-GA models has higher

prediction accuracy in tropical
warm sub-humidthan ANN model

10 min GA - - 2.57 MJ
m2 1.97 MJ

m2 -

[88]
GA-SVM outperform SVM

classical models in
classification climatic data

1 h GA Gaussian 1.70% 11.22 W
m2 - -

[89]
SVM-FFA better than
copula-base nonlinear

quantile regression
1 day - RBF - 1.18 MJ

m2 - 18.00%

[90]

Mentioned that SVM
with PSO convergence to

local optimal solution
faster than the other
proposal algorithms.

1 h PSO RBF - - 0.99 MJ
m2 2.90%
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6. Discussion and Conclusions

This article presented a state-of-the-art in solar radiation prediction techniques through
the use of support vector machine models (SVM) and the optimization of the search for the
parameters that guarantee a favorable performance in the accuracy of the forecasting data.

It was observed that SVMs by themselves show a better performance in predicting
solar radiation than artificial neural networks and other prediction models such as auto
regression. In this context, it is possible to define these models as premature techniques,
which today are consolidated as the best predictive models, since these models emerged
6 years ago [8]. The SVM models show an improvement when evaluating the polynomial
kernel functions using only as a basis the climatic variables of maximum and minimum
air temperature (Tmax and Tmin, respectively), maximum and minimum relative humid-
ity (Hmax and Hmin, respectively), wind speed (ws), evaporation (E) and vapor pressure
estimates (V). That base of the input space is sufficient to perform a prediction model
based on SVM. However, it is possible that the polynomial function demands a high cost in
performance because it can increase in degree, so another alternative is the use of a radial
basis function (RBF). According to the literature, RBF to estimate the kernel parameters can
improve the accuracy up to 7% compared to higher degree polynomial functions. Likewise,
the most widely used validation method is RMSE, since the observed error contributes to
the tuning of the weights of the SVM model. Additionally, according to [76], SVM could be
5 times faster than ANN in the training phase and 2 times faster in the testing phase.

The execution time of each optimization algorithm will depend on the number of input
variables to the prediction model, the number of data and the prediction horizon. In order
to obtain a more robust model, it must be calibrated with the variables and geographical
conditions, since they change according to the area, so the accuracy totally depends on the
location. These search algorithms considerably revolutionize the performance of the SVM
model compared to a simple SVM model, contributing to obtaining a lower prediction
error in the output of the solar radiation data. In addition, in these models, the RBF kernel
function presents better performance in the search for parameters due to the inclusion of
these search algorithms. These algorithms can be evaluated based on MAPE, RMSE and
MAE as the main statistical indicators to evaluate the predicted data of solar radiation that
measure the performance of the model.

Finally, the versatility of the model using only climate data for the prediction of solar
systems is noteworthy, such that in the future they may be a beneficial alternative in
the sizing, generation and management of alternative energy to contribute to the energy
transition that in the coming years will be one of the main issues that researchers will tackle
to solve problems.
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Abbreviations
The following abbreviations are used in this manuscript:

NWP Numerical weather prediction
ML Machine learning
SVM Support vector machine
SOA Search optimization algorithms
Gh Global solar radiation
f (x) Vapnik Function
x Input data
ω Normal vector
b Bias term
φ(x) Large-dimensional spatial characteristic
(C, ε) parameters of the model
ς Excessive top skew
ς∗ Excessive buttom skew
K Kernel
α Lagrange multiplicators
i index
1
2‖w‖2 Regularization term
RBF Radial basis function
q Degree of polynom
GA Genetic Algorithm
PSO Particle Swarn Optimization
MAPE Coefficient of determination
RMSE Root mean square error
MBE Mean bias error
MAE Mean absolute error
RRMSE Relative root mean square error
Tmax Maximum temperature
Tmin Minimum temperature
Hmax Maximum relative humidity
Hmin Minimum relative humidity
wmax Wind speed
Emin Evaporation
V Vapor pressure
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