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Abstract: Among sub-items of energy consumption in public buildings, lighting sockets play an
important role in energy-saving analysis. So, the energy consumption data quality of lighting sockets
is important. However, limited by the initial cost of energy monitoring platform, it is difficult to install
electricity meters covering all branches and to retrofit the incompact classification electricity branches,
which results in a mixture of the lighting socket energy consumption and other components. In this
study, a separation methodology is proposed. First, the abnormal data in the energy monitoring
platform are cleaned and screened using a clustering algorithm. Second, the average outdoor air
temperature partitioning model (OATPM) method and the k-nearest neighbor (KNN) clustering
algorithm method are proposed for identifying and separating the abnormal data. These two methods
have complementary advantages in the best applicable scenarios, including calculation accuracy
and other aspects. The verification results for three buildings show that the relative error of this
separation methodology is less than 15%. Finally, this paper presents the optimization parameters
of the KNN method. Through this methodology, building managers need only historical data in an
energy monitoring platform to separate the combined power consumption of the lighting sockets
and air-conditioning online, independent of detailed information statistics.

Keywords: building energy monitoring platform; lighting socket power consumption; separation of
energy consumption data; k-nearest neighbor clustering algorithm; average outdoor air temperature
partitioning model

1. Introduction

With increasing urbanization, research in building energy efficiency is becoming more
important on a global basis. In 2018, total building energy consumption was 899 million
tons of standard coal equivalent (tce), accounting for 20.62% of the total energy con-
sumption in China. In addition, public building energy consumption was 346 million
tce, accounting for 38.53% of the total building energy consumption [1,2]. Thus, energy
efficiency in public buildings has become a necessity to study the energy-saving potential
of different sub-items and energy efficiency strategies. Scholars from various countries
study the electricity consumption characteristics of public buildings with different func-
tions. Lee et al. found that the ratio of electricity consumption for air-conditioning, office
equipment, elevators, and lighting sockets in commercial buildings was 43%, 17%, 7%,
and 34%, respectively, according to an investigation of 16,000 commercial buildings in
Hong Kong [3–5]. These results indicate that air-conditioning and lighting sockets in public
buildings play an important role in building energy consumption, of which operation
characteristics are worthy of special attention. Benavente-Peces et al. used various machine
learning technique classifiers to analyze and classify building energy efficiency, and they
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demonstrated that reliable classification is feasible with a few featured parameters [6].
Suzane A. Monteiro et al. developed a methodology of energy efficiency for lighting and
air-conditioning systems in buildings using a multi-objective optimization algorithm [7].

In recent years, a large number of studies have focused on the study of human
behavior models, because occupant behavior is complex and requires an interdisciplinary
approach to be fully understood. On the one hand, occupant behavior is influenced by
external factors such as culture, economy, and climate, as well as internal factors such
as individual comfort preference, physiology, and psychology. On the other hand, the
occupants’ interactions with building systems strongly influence building operations and
thus energy use/cost and indoor comfort; this in turn influences occupant behavior, thus
forming a closed loop. Therefore, in the study of building energy consumption, it is
difficult to avoid the study of human behavior in buildings. For example, Yan Zhang et al.
clustered research keywords on human behavior and presented them with visual images,
pointing out the close relationship among building energy consumption, human behavior,
and environmental comfort [8]. Qindi Li et al. studied the influence of human behavior
in the construction of a low-carbon campus in Shanghai, and the results showed that
individual behavior directly affected the overall energy consumption and carbon emissions
of the campus. Although the relevant energy-saving policies were introduced, energy
consumption still increased by 5% per year [9]. Hoes P. et al. simulated human behavior
in buildings and pointed out that architectural design should be optimized according to
the actual human behavior and architectural characteristics for special buildings, and the
description of human behavior should be more detailed [10]. Ioannou A. et al. analyzed
the Monte Carlo sensitivity analysis results of factors affecting annual heating energy
consumption and predicted mean vote (PMV) comfort index (related to human behavior)
in Northern Europe [11]. Chuang Wang presented the environment- and event-related
driving forces behind lighting usage in office buildings, described the degree to which these
factors influence lighting use, and used a function and probability relations to describe
the random process of lighting use [12]. The problem of energy consumption data quality
cannot be ignored. In fact, in other related fields, some scholars have also conducted
relevant research, for example, Gang Zhou et al. developed an iterative online fault
identification framework utilizing a novel lost data repair technique [13].

To obtain the energy consumption monitoring data for guiding the research about
human behavior and energy consumption, it is necessary to accurately obtain the lighting
power consumption and socket power consumption, which have an obvious correlation
with human behavior, as shown in Figure 1. It is worth noting that most public buildings in
cold and severely cold regions of China use municipal hot water for central heating, which
is charged by area rather than volume used actually and does not consume electricity
from lighting sockets. It means that each room in winter does not consume electricity
from lighting sockets to create a thermal environment, and the environment is created
using the radiator with the hot water prepared centrally. This means that the research
about separation methodology focuses not on energy consumption of heating but on
electricity consumption.

In the past decade, the Chinese government supported the establishment of an energy
monitoring platform to monitor and analyze energy consumption data online, especially
electricity consumption. The energy monitoring platform has become an important techni-
cal carrier for building energy efficiency [14,15], but in most of the existing building energy
monitoring platforms, these two items of power consumption data are often difficult to
obtain. First, due to cost constraints and construction age, the construction process of
the building electrical system is not designed according to the correct design of electrical
items. The monitoring branches of lighting, sockets, and air-conditioning, shown in red
in Figure 2, are mixed. Second, due to the changes in the functions and partitions of a
building, the distribution circuit scheme also changes accordingly. In this case, even if the
lighting is separated from sockets in the design scheme, the air-conditioning consumption
is often mixed into the socket consumption in the renovation process.
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So, especially for public buildings, it is difficult to retrofit electric circuits massively,
and at the same time, the aforementioned problems arise when the room function or
room user changes. As a result, with this background, the itemized energy consumption
data, which we obtain using an electrical loop monitoring instrument, will be inaccurate,
because we fail to completely separate the power consumption of the lighting, socket, and
air-conditioning terminal. Taking the study of human behavior as an example, if the power
consumption of lighting sockets and air-conditioning cannot be accurately separated, it is
difficult to evaluate the role of human behavior, outdoor weather, and envelope structure.

Therefore, how to separate the mixed power consumption of lighting sockets and
air-conditioning without large-scale reconstruction is worthy of investigation. Scholars
have presented a type of non-intrusive load monitoring (NILM) method. By measuring
the curve of real-time power consumption, the start and stop electrical signals (current,
voltage, active power, reactive power, power factor, etc.) of the equipment can be identified
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for abnormal power consumption data identification and separation [16–18]. However,
these relevant studies mainly focus on residential buildings with a few types of equipment.
A possible reason for this is that the types of equipment in public buildings are complicated
and their number is extremely large. Thus, it is extremely difficult to judge the state of
equipment only by the total energy consumption curve. Therefore, Akbari [19] developed
an end-use disaggregation algorithm based on the hybrid technology of simulation soft-
ware and statistical analysis. This algorithm can adjust the estimation results according to
the error size and can be used to separate the electrical energy consumption of multiple
buildings in the same power grid, which overcomes some disadvantages of the NILM
method. Newer studies, such as that of Li et al., used the outlier detection method to
eliminate abnormal energy consumption data and then used canonical variable analysis
to classify and predict energy consumption [20]. Wang proposed an energy consump-
tion separation algorithm for an equipment load rate model. The estimation results of
the equipment power consumption were obtained by inputting the rated power of the
equipment, which means that the equipment power consumption is separated from total
power consumption [21]. Doherty proposed a socket power consumption model, which
was developed by comparing power consumption data and the corresponding equipment
information. This model is applicable in separating various types of power consumption
in sockets, but it is difficult to separate the air-conditioning power consumption, which is
mixed with socket power consumption [22]. Anand proposed a new parameter, energy
consumption per capita (K), to explain the stochastic relationship between energy con-
sumption and utilization, which was developed by multiple nonlinear regression and deep
neural network algorithms. This model can be used to estimate the energy consumption of
different sub-items according to human behavior, which means that the sub-item power
consumption is separated from total power consumption [23]. However, the common point
of these energy separation methods [24–30] is to obtain the actual energy consumption
data or to estimate the energy consumption of some sub-items according to the detailed
information of buildings, equipment, and human behavior. The energy consumption data
of different equipment can then be calculated, which means that this type of equipment
power consumption is separated from total power consumption. If detailed information
on buildings, equipment, and human behavior cannot be obtained, or is for public build-
ings, of which equipment and human behavior are complex, these methods still have
some defects.

From the literature [1–7], we can discover the necessity of building energy efficiency,
especially for public buildings. Therefore, how to use energy consumption data in monitor-
ing platform is important, such as studying human behavior for an energy retrofit shown
in the literature [8–13]. This means that accurate itemization measurement is important
in the research of public building energy efficiency. However, in the face of various prac-
tical problems, it is often difficult to make accurate itemization measurement. Therefore,
researchers have developed various algorithms to repair energy consumption data, such
as those found in the literature [16–23], but most of the above separation methods rely
on the detailed information of buildings, equipment, and human behavior. It is usually
time-consuming and inefficient to survey this information. Thus, under the condition of
generally abnormal energy consumption monitoring data and high labor cost, research
on separation methodology, which is driven only by historical data and applied online
with a universality of multiple scenarios without detailed information of buildings and
equipment, is critical. Therefore, this study proposes an online separation methodology
for separating the power consumption of lighting sockets and air-conditioning in public
buildings. This methodology is driven only by historical data, without detailed information
of buildings and equipment.

The rest of this paper is organized as follows. Section 2 introduces the basic informa-
tion in this research, including the sample campus, building energy monitoring platform,
and actual problems with data quality with two aspects. Section 3 introduces methods of
pre-processing power consumption data with the k-means clustering algorithm. Section 4
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introduces the methods and cases for identifying abnormal conditions for daily data and
hourly data, compares the identification effect of the OATPM method and the KNN method,
and then introduces the method and case for separating abnormal data after identifying
data. Section 5 analyzes the applicability of the separation methodology. Section 6 discusses
the selection of important parameters in the clustering algorithm. Finally, conclusions are
presented in Section 7.

2. Background and Data for Power Monitoring

In this research, an office building in Dalian (referred to as Building A), an office
building in Jinzhou (Building B), and a commercial building in Anshan (Building C) are
used as the research sample set. Table 1 shows the basic information, Figures 3 and 4 the
temperature information.

Table 1. Basic information for Buildings A, B, and C.

Building
Codes

Floor Height
(m)

Floor Area
(m2)

Energy Intensity
(kWh/m2·Year) Climate Partition Heating Scheme Cooling Scheme

Building A 11.8 37,593 13.9 Cold region Municipal water Separate
air-conditioning

Building B 56 26,000 46.6 Severely cold region Municipal water Separate
air-conditioning

Building C 41 100,000 93.9 Severely cold region Municipal water Fan coil unit

Annotation: China can be divided into five climatic zones: severely cold region, cold region, hot-summer and cold-winter region,
hot-summer and warm-winter region, and moderate region.
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Table 2. Basic information on building energy consumption monitoring platforms.

Energy Consumption Monitoring Platform Building Sample Total Number of
Buildings (Blocks)

Floor Area of
Buildings

(×1000 m2)

Monitoring Point
(Pieces)

Dalian public institution energy consumption monitoring A 15 300 951
Liaoning public institution building energy consumption

monitoring platform B, C 50 2030 1659
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Figure 4. Daily minimum air temperature for three cities. The energy consumption monitoring
platforms of Buildings A, B, and C are listed in Table 2.

While using the above platforms, there are many problems with data quality, which
are also common problems of Chinese building energy consumption platforms, and which
are reflected in the following two aspects.

(1) When problems occur in the process of data collection and transmission, they
cannot be dealt with in a short period of time, resulting in missing data, data mutation, etc.

(2) When the energy measurement of low-power terminal equipment is ignored, or
when different functions of low-power terminal equipment are collected by the same meter,
the power consumption of lighting sockets and air-conditioning are mixed. For example,
lighting, sockets, and air-conditioning are monitored by the same branch monitoring. In
Building A, the peak value of lighting socket power consumption in the cooling season
is 1.5 times that of the peak value in the transition season, as shown in Figure 5, which
exceeds the reasonable power consumption range of the lighting socket equipment. This
indicates that the data of lighting socket power consumption is mixed with the data of
air-conditioning power consumption.

Therefore, cleaning abnormal data and separating mixed data is important for improv-
ing data quality, and it is also a crucial link for energy efficiency retrofits. There are two
main dimensions to cleaning and separating abnormal data: one is for abnormal daily data,
and the other is for abnormal hourly data. For daily data, the granularity of measurements
is one day, and it means one day is one point. For hourly data, the granularity of measure-
ments is one hour, and it means one hour is one point. Different methods are proposed to
address the two dimensions, including the OATPM and KNN methods, and the details are
in Section 4.
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3. Pre-Processing of Power Consumption Data

It is necessary to identify and clean abnormal data before separating the power
consumption data of lighting sockets and air-conditioning. The abnormal conditions
mainly include the data missing and data mutation storage. Among them, the values of
missing data are displayed as “0,” which means that they are easy to identify and clean. As
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for data mutation, the partial power consumption data are too big or small, exceeding the
actual threshold of energy consumption, as shown in Figure 5 and its description above. In
this paper, the k-means clustering algorithm [30–34] is adopted to identify and clean the
mutated data. The steps are as follows.

1. The K sets of points are randomly selected as the initial clustering center in the sample
data set. According to the three kinds of air-conditioning state (closed/slightly
open/fully open) and three kinds of data state (located/above/below), K is evaluated
at 3 for KNN throughout the paper.

2. The distance between other points and the initial clustering center point is calculated,
and these other points are allocated to the nearest neighbor cluster.

3. After the preliminary clustering is completed, the averages of all sample points in
different clusters are selected as the new clustering center, and then steps 1 and 2
are repeated.

4. The clustering center and clusters of the sample points are updated iteratively, until
the clustering center no longer changes, which means the end of this clustering
algorithm. Next, we can output the clustering center and K pieces of the clusters of
the sample points.

What needs illustration is that the distance between the points in step (2) can be
calculated by the Minkowski distance [30–34], as shown in Equation (1), where p is 2, when
we compute the two-dimensional point, and x1, x2 are the value of the two points.

Dist(x1, x2) =

[
n

∑
k=1

∣∣x1,k − x2,k
∣∣p] 1

p

(1)

Taking Building A as an example, workdays, weekends, and holidays are selected
as different types, and abnormal data are identified and cleaned day by day, as shown in
Table 3 and Figure 6. Holidays are different from weekends. Holidays mean rest days,
which are usually for some festivals and for summer or winter vacations, such as Christmas
vacation. If the number of samples in the largest and smallest cluster centers accounts for
less than 5% of the total sample number, or if the difference between the cluster centers is
too large, it will be judged as a data mutation.

Table 3. K-means clustering results of daily lighting socket consumption.

State Workdays Holidays

The number of the
cluster 1 2 3 1 2 3

Cluster center (kWh) 1848.65 1263.52 485.15 1037.01 778.52 151.75
Sample numbers (pieces) 8 130 7 21 51 3

Proportion (%) 4.88 90.85 4.27 28.00 68.00 4.00
State conclusion Abnormal Reasonable Abnormal Reasonable Reasonable Abnormal
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From Figure 6, it is seen that the k-means method of cleaning daily data screens
abnormal data effectively. The results of cleaning the abnormal hourly data in Building A
are shown in Figure 7.
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4. Separation Methodology

The proposed methodology needs to identify the abnormal days or hours first, and
then use historical data to separate abnormal data. There are five main steps, as shown in
Figure 8. The details are shown in the other sections that follow.
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Figure 8. Diagram of the overall model of implementing the identification and separation method.

For the ways to discern the abnormal hours or day and operating state of air-conditioning,
mentioned in Figure 8, there are three main steps as follows:

• Use the model of average outdoor temperature and lighting socket daily power
consumption, or the k-means clustering algorithm, to obtain the eigenvalues of the
method, including clustering center (c), outdoor temperature threshold (TMin), and
power consumption data threshold (EMin), etc.

• Use the above eigenvalues and the lighting socket power consumption with air-
conditioning opened to identify the state of the air-conditioning.

• Use appropriate historical data of lighting sockets (without mixing the power con-
sumption of the air-conditioning) to predict and interpolate the actual power con-
sumption of the lighting socket when the air-conditioning is running.

The OATPM method is appropriate for identifying the state of air-conditioning for
daily data, because it can only identify the closed or open state. However, the KNN method
is appropriate for identifying the state of air-conditioning for daily data or hourly data,
because it can identify the closed, slightly open, or fully open states.

4.1. Method for Identifying Abnormal Conditions for Daily Data

According to the ratio of air-conditioning running hours (p), the state of air-conditioning
is specified. If p < 40%, it is judged that the air-conditioning was closed; if 40% < p < 70%,
it is judged that the air-conditioning was slightly open; if p > 70%, it is judged that the
air-conditioning was fully open. The steps of these two methods are shown in Figure 9a,b.

It is worth noting that the KNN method also uses the model of average outdoor
temperature and daily lighting socket power consumption for the eigenvalues (cluster
center and maximum and minimum values of the cluster interval, such as c, Tmin, Emin)
whether identifying abnormal daily or hourly data. Thus, it will not repeat the same
process in Sections 4.1–4.5.
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4.2. The Case of Identifying Abnormal Conditions for Daily Data

From April to August 2018, Building A is selected to verify the results for identifying
and separating the normal data by the above methodology. The parameter a is used to
evaluate the results, as follows:

a =
n
N

(2)

For the OATPM method, taking daily power consumption as the ordinate and the
daily average outdoor temperature as the abscissa, the model of daily average outdoor
temperature and daily power consumption of lighting sockets (mixed with power con-
sumption of air-conditioning) is shown in Figure 10. The three clusters are displayed in
three colors.
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The data are fitted into a curve, and the second derivative is calculated to obtain
the inflection point (24 ◦C, 1445 kWh). The average outdoor temperature and power
consumption are, respectively, represented by black dotted lines. As shown in Figure 10,
when the outdoor temperature is lower than 24 ◦C the daily power consumption is within
the range of 750–1500 kWh, and the maximum value is 1445 kWh.



Appl. Sci. 2021, 11, 1031 13 of 22

When the outdoor temperature is higher than 24 ◦C, the daily cumulative electricity
consumption is higher than 1445 kWh. According to the properties of the second derivative,
at 24 ◦C, the plus and minus signs of the first derivative change, that is, the local extreme
value appears. Therefore, 24 ◦C is presumed to be the point of the power consumption
characteristic change. At the same time, analyzing this point by the correlation coefficient,
the power consumption of the lighting socket equipment is weakly correlated with the out-
door temperature, but the power consumption of the air-conditioning is strongly correlated
with outdoor meteorological conditions. The conditions when Ti is higher than 24 ◦C and
Ti is lower than 24 ◦C are calculated, respectively, about the correlation coefficient between
the average outdoor temperature and the daily power consumption, as follows:

rXY =
cov(Xi, Y)√

var(Xi)var(Y)
(3)

where Xi is the average daily outdoor temperature and Y is the power consumption of the
lighting socket (mixed with the power consumption of air-conditioning). The value of the
correlation coefficient R ranges from 0 to 1. The closer it is to 1, the stronger the correlation
between variables; the closer it is to 0, the weaker the correlation. After the calculation,
R
(
Ti ≥ 24 °C

)
= 0.709; R

(
Ti ≤ 24 °C

)
= 0.196.

Therefore, when the average outdoor temperature is lower than the judgment temper-
ature (24 ◦C), the power consumption is small, and the relationship between the average
outdoor temperature and the lighting socket power consumption is relatively weak, so it
can be considered that the air-conditioning power consumption is not mixed with the
lighting socket power consumption. When the average outdoor temperature is higher than
the judgment temperature (24 ◦C), the power consumption increases suddenly, and the
maximum value of the power consumption curve appears. The relationship between the
average daily outdoor temperature and the power consumption is relatively large. Thus, it
can be considered that the air-conditioning power consumption is mixed with the lighting
socket power consumption.

Regarding the KNN method, it is calculated by the k-means algorithm, of which the
parameter K, the number of clusters, is also evaluated at 3, as discussed above. That is,
closed (p < 40%), slightly open (40% < p < 70%), and fully open (p > 70%). The three types
of cluster distributions are also marked in three different colors, as shown in Figure 10.

The identification results with different methods are calculated for analyzing the
advantages and disadvantages of the two proposed methods, as shown in Figure 11a,b.
The accuracy a of identification results for the OATPM method is 83.9%, and the accuracy
for the KNN method is 93.1%. This shows that the accuracy of the OATPM method is
slightly lower than that of the KNN method, but it still reaches a high level. At the same
time, the OATPM method only needs to calculate the second derivative without a complex
algorithm, so the calculation speed is high. A more detailed comparison is made in Table 4.

Table 4. Comparison of the OATPM and KNN methods.

Method Identification Accuracy Applicable Occasions Degree of Identification
Can It Be Used to

Predict Energy
Consumption?

Temperature model 83.9% For daily data Closed/open Yes
Clustering
algorithm

93.1%
96.2%

For daily data
For hourly data

Closed/slightly open/fully
open No

Note: The temperature models can be used to predict energy consumption.
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4.3. Method for Identifying Abnormal Conditions for Hourly Data

According to the above analysis, only the clustering algorithm is suitable for this
situation, of which the steps are similar to those shown in Figure 9b. The steps of this
method for hourly data are not exactly the same as the steps for daily data.

(1) Using the clustering algorithm to generate the critical eigenvalues, TI I I, Min and
EI I,Min, when the power consumption and the outdoor temperature are less than
TI I I,Min and EI I,Min, respectively, the state of the air-conditioning is closed. For the
contrary state, the air-conditioning is open.

However, the state of the air-conditioning does not completely depend on the outdoor
climate, and human behavior is also a type of complex influencing factor. For example,
when the power consumption is higher than EI I,Min and the outdoor temperature is less
than TI I I,Min, it is possible that air-conditioning is closed and the lighting socket power
consumption is higher, as shown in Figure 12 (the fuzzy area in the upper left corner).
When the outdoor temperature is higher than TI I I,Min and the power consumption is less
than EI I,Min, it is possible that people do not use air-conditioning due to their habits,
even if the outdoor temperature reaches the degree of using air-conditioning, as shown in
Figure 12 (the fuzzy area in the bottom right corner). Therefore, after the end of step (1),
the next step should be identified.

(2) The theoretical maximum power consumption ei,Max of the lighting socket in this
special hour is calculated and compared with the actual power consumption ei. If ei is
higher than ei,Max, it is considered that the power consumption of the lighting socket
is mixed with that of the air conditioner; otherwise, it is not mixed.



Appl. Sci. 2021, 11, 1031 15 of 22

4.4. The Cases of Identifying Abnormal Conditions for Hourly Data

The data of Building A in August 2018 are selected for the case analysis, as shown in
Figure 12. The three cluster centers and eigenvalues, such as large and small thresholds,
are shown in Table 5.
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Table 5. Eigenvalues of three clusters by the KNN method.

Cluster Categories Number of Samples Eigenvalues Power Consumption of Lighting
(kWh)

Outdoor Temperature
(◦C)

Cluster I: closed 47
C 1152.50 17.28

MAX 1282.65 24.55
MIN 805.47 3.30

Cluster II: slightly open 27
C 1448.11 19.21

MAX 1686.75 24.83
MIN 1287.33 19.89

Cluster III: fully open 13
C 2066.55 28.87

MAX 2280.90 32.05
MIN 1787.04 25.38

The comparison diagram between the simulation conditions and the actual conditions
for hourly data is shown in Figure 13, with 93.1% accuracy. It is divided into three states
(closed, slightly open, and fully open) for daily data, but this is not necessary for the
complex steps for hourly data. It can also be divided into two states (closed and open)
without affecting the results.
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4.5. Comparison of the OATPM Method and the KNN Method

Together, the OATPM method and the KNN method constitute the online identifying
methodology, which is the first step of the separation methodology. A comparison of their
advantages and disadvantages is displayed in Table 5. According to different application
conditions, different methods can be selected to identify the air-conditioning state, to better
separate the mixed data.

4.6. The Method and Case of Separating Abnormal Data after Identifying Data

After identifying the normal data and their corresponding hours or days, the work of
separating abnormal data begins.

Abnormal data appear on abnormal days or hours, which need to be separated. The
normal power consumption for the nearest days or hours of the abnormal days or hours
are selected for interpolation. If the nearest data are also abnormal, the second-nearest data
need to be selected for interpolation. By analogy, the normal power consumption data of
lighting sockets without air-conditioning can finally be obtained.

Equation (4) is used to calculate the relative error between the lighting socket power
consumption of the separation method and the actual situation, as follows:

δ =
∆
pi,j

× 100% =

∣∣ei,j − pi,j
∣∣

pi,j
× 100% (4)

where δ is the relative error when separating mixed data (%), ei,j is the lighting socket
power consumption of the separation method (kWh), and pi,j is the lighting socket power
consumption of the actual situation (kWh). The data of Building A from April to August
2018 are used for verifying the results of the separation. The error of 355 data points is
shown in Figure 14, and some parts of the details are shown in Figure 15.

It is seen from Figure 15 that the relative error when separating mixed data is mostly
within 10%. The numbers of samples for which the relative error is more than 10% accounts
for 3.94%. Therefore, this method is feasible to a certain extent.
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5. Discussion of the Separation Methodology

The human behavior, type of equipment, climates, and functions of different buildings
are different, which leads to obvious differences in the power consumption characteristics
of different buildings. To verify the applicability of the methodology for identifying
and separating mixed data, on the premise of the successful verification of Building
A, Buildings B and C, having different areas and functions, are selected as samples for
further verification.

The results show that the methodology is also applicable to buildings with other
functions and climates, of which the identification accuracy is above 90%. A comparison of
identifying and separating data is shown in Figure 16 and Table 6. As seen in Figure 16,
the trend of separation is basically consistent with the actual situation, and the separation
power consumption is close to the actual value.

The relative errors of separation in Buildings A, B, and C are shown in Figure 17. The
relative error of buildings having different functions is within 15%, and the relative error
less than 10% in each building is more than 85%, which indicates the high applicability of
the proposed method.

Table 6. Accuracy of identifying operating conditions of air-conditioning.

Building Climate Zone Building Function Working Time Form of Air-
Conditioning

Accuracy

For Daily Data
(%)

For Hourly Data
(%)

Building A Cold Office building 7:00–22:00 Separate
air-conditioning 93.1 96.3

Building B Severely cold Office building 7:00–17:00 Separate
air-conditioning 91.2 93.4

Building C Severely cold Commercial building 8:00–21:00 Fan coil unit 95.6 96.0
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At present, there is no accurate specification for energy consumption data processing,
but there are clear specifications in the related field of energy consumption prediction, as
shown in Table 7 [35,36]. From the strictest point of view, the error of this method is within
the acceptable range.

Table 7. Relevant international regulations.

Technical Code in
China (JGJ176-2009) IPMVP FEMP

Error in one month ±15% ±20% ±15%
Error in one year No Standard No Standard ±10%

Note: Technical code in China (JGJ176-2009) is “Technical code for the retrofitting of public building on energy
efficiency”; IPMVP is “International Performance Measurement and Verification Protocol”; and FEMP is “US
Federal Energy Management Program”.

For future research, on the one hand, the results of the study show that the effect is
obvious in cold regions and severely cold regions. As this method is purely data-driven,
its applicability to other climatic zones is of value for further study. On the other hand,
the kind of methodology that is driven by historical data with nearest-neighbor clustering
algorithm is also widely cited in other fields about building energy efficiency—for example,
the research about the effects of human behavior or meteorology on energy consumption.
So, it also has reference value for the research in other fields.

6. Selection of Important Parameters in the Clustering Algorithm

In the process of identification and separation by the KNN method, the selection of
some parameters is critical for accuracy, primarily the selection of clustering samples and
the number of clusters, K.

As for the number of clusters, K, it should be selected according to actual demand.
When one needs to identify and separate abnormal data by the KNN method for daily data,
the three states, that is, closed, slightly open, or fully open, should be considered. When
one needs to identify and separate abnormal data for daily data, it is enough to divide into
two states, that is, closed and open.

Regarding the selection of clustering samples, the number of clustering samples, such
as samples in a whole year or in a cooling season, directly affects the clustering results. In
severely cold and cold climate areas, outdoor temperature values vary greatly in different
seasons. Thus, in the case of clustering with outdoor temperature and power consumption
values as variables, the outdoor temperature values vary with the number of clustering
samples, which means that there is a difference between the identification and separation
results. To obtain the best size of samples with strong applicability and more accuracy, the
sample in a whole year, a cooling season, or a “transition season + cooling season” are
selected for validation.

Samples for a whole year of Building A are selected for identifying and separating
using the k-means clustering algorithm. The detailed information for these samples is
shown in Table 8.

According to the data in Table 7, the following problems are noted. First, the variation
trend of power consumption and the outdoor temperature are different, which means
that identifying the three states (closed, slightly open, fully open) is difficult. Second, it
is difficult to guarantee the eligible identification accuracy. If the power consumption
value is used to define the three states of air-conditioning, the accuracy of identification
results is 73.25%. If the outdoor temperature value is used to define the three states of
air-conditioning, the accuracy of identification results is 22.42%. Finally, the outdoor
temperature threshold difference of each cluster is too large, which means that identifying
the state of air-conditioning is difficult.
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Table 8. Detailed information of the samples for a whole year by KNN method.

Cluster
Categories

Number of
Samples Eigenvalues Power Consumption of

Lighting (kWh)

Outdoor
Temperature

(◦C)

Cluster I: closed 124
C 1182.52 16.00

MAX 1329.90 24.95
MIN 805.47 −8.72

Cluster II:
slightly open 74

C 1517.24 2.52
MAX 1787.04 30.47
MIN 1353.89 −12.10

Cluster III: fully
open 25

C 2089.84 29.09
MAX 2280.90 32.05
MIN 1610.49 25.38

Similarly, samples of the cooling season (from June to August) for Building A, and
samples of the “transition season + cooling season” (from April to August) for Building A
are also selected. The different results of identification are shown in Figure 18, with the
detailed data shown in Tables 3 and 9 separately. It is seen that the identification results of
air-conditioning with the data of “cooling season + transition season” is the closest to the
actual conditions, followed by the results of the cooling season.
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7. Conclusions

(1) The OATPM and KNN methods are driven by the historical data of the energy moni-
toring platform, which can effectively separate the power consumption of lighting
sockets and air-conditioning in public buildings. According to the three kinds of
air-conditioning state (closed/slightly open/fully open) and three kinds of data state
(located/above/below), K is evaluated at 3 for KNN throughout the paper. The
identification error for three public buildings utilizing the method was less than 15%,
and the proportion of error greater than 10% was less than 15%.

(2) The OATPM method is suitable for identifying and separating daily data, and the
calculation speed is high, but it cannot identify and separate hourly data. Thus, it is
suitable for scenes with low identification accuracy, such as research on total energy
consumption statistics. The KNN method is suitable for identifying and separating
not only daily data but also hourly data; however, the calculation is complex and slow.
Therefore, it is suitable for scenes with high identification accuracy, such as research
on the correlation between human behavior characteristics and energy consumption.

(3) The methodology proposed in this study is suitable for public buildings with different
functions and climates, especially for buildings with high power consumption values
for lighting sockets or large differences between power consumption characteristics
of air-conditioning and lighting sockets. For example, in commercial buildings, the
power consumption of air-conditioning is relatively large. Therefore, the power
consumption of lighting sockets is far less than the power consumption of lighting
sockets (mixed air-conditioning) in the cooling season, which means that the num-
ber of clustering iterations is fewer, and the distances between different clusters is
greater. Thus, the identification results of this separation methodology for commercial
buildings are accurate.
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