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Abstract: The split-based method in a weighted context-free grammar (WCFG) induction was
formalised and verified on a comprehensive set of context-free languages. WCFG is learned using
a novel grammatical inference method. The proposed method learns WCFG from both positive
and negative samples, whereas the weights of rules are estimated using a novel Inside–Outside
Contrastive Estimation algorithm. The results showed that our approach outperforms in terms of F1
scores of other state-of-the-art methods.

Keywords: grammar inference; weighted context-free grammar; split algorithm; unsupervised
learning

1. Introduction

The task of grammar or automata induction is a part of symbolic artificial intelli-
gence [1] and is called grammatical inference or grammar induction [2]. Among different
subtasks of this scientific field, learning (stochastic or more general weighted) context-free
grammars (CFGs) from input data has been growing in importance, due to its practical
implications such as natural language and biological sequences modelling.

Learning CFG is known to be a hard task and notable open questions are still open [2].
According to Gold’s theorem [3], CFGs cannot be learned from positive examples only, but
in 1969 Horning proved that for effective probabilistic/stochastic CFG (PCFG) induction
no negative evidence is obligatory [4]. It is imperative to note that learning PCFG only
from positive data leads to grammars, thereby making it difficult to discriminate negative
sequences from the input data. To overcome these difficulties, we have recently proposed
the novel algorithm for weighted CFG (WCFG) learning [5,6]. Weighted Grammar-based
Classifier System (WGCS) is one of the few grammatical inference approaches learning
both grammar structure (i.e., rules) and stochastic grammar parameters (i.e., weights of
rules). Initially, the method was dedicated to learning crisp context-free grammar [7], and
later, it was extended to weighted versions (including fuzzy one [8] or stochastic [9]).

WGCS is learned in an unsupervised manner from unannotated data such as, a
structured corpus or treebank. There are some other unsupervised grammatical inference
methods like ABL [10], EMILE [11], ADIOS [12], or LS [13]. However, none of these
methods induces both structure and parameters of grammar.

The main contribution of this paper is to define and test a new version of WGCS
approach, in which the split concept has been employed to reveal the grammar structure.
Although the split was used for the first time in [6], its verification was rudimentary and
limited due to the unrepresentative bioinformatics dataset. Subsequently, a new approach
was formalised and tested over a comprehensive set of artificial CFG datasets, and its

Appl. Sci. 2021, 11, 1030. https://doi.org/10.3390/app11031030 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5397-0655
https://orcid.org/0000-0003-3191-9151
https://orcid.org/0000-0003-4722-176X
https://doi.org/10.3390/app11031030
https://doi.org/10.3390/app11031030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11031030
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/1030?type=check_update&version=2


Appl. Sci. 2021, 11, 1030 2 of 13

computational complexity was given. Moreover, the improved WGCS was compared with
two state-of-the-art unsupervised methods—LS [13] and ADIOS [12]—dedicated to CFG
learning. Additionally, the rule weight estimation algorithm was improved by mitigating
unbalanced data bias.

The rest of the paper is organised as follows. Section 2 gives some details about
our approach. In Section 3, we present a test environment and eventually the results are
reported in Section 4. Section 5 concludes the paper.

2. Weighted Grammar-Based Classifier System

WGCS belongs to the family of learning classification systems [14] and is based on a
previous version of [7] that only works on context-free grammars with no probabilities or
weights. According to the idea of grammatical inference, WGCS system receives a set of
tagged positive and negative sentences as an input to the system and results is WCFG. In
WGCS, all grammar rules are in Chomsky Normal Form (CNF). The induction scheme of
this model is shown in Figure 1 and the overall system architecture is shown in Figure 2.

Weighted
Grammar-based
Classifier System

7 a a a b
3 b a a b
3 b b a a b
7 a b b a
. . .

A→ a: 1,
B→ b: 1,
S→ SS: 0.54,
S→ AB: 0.76,
S→ BA: 0.69,
A→ SA: 0.66,
A→ AS: 0.012
. . .

Figure 1. Induction in WGCS model.

Datasets

CKY parser

Grammar

Rule 1

Rule 2
Rule 3

... Split

Grammar
initialization

IO/IOCE

Removing
rules

WCFG

Figure 2. General architecture of the WGCS system.

2.1. Weighted Context-Free Grammar

A context-free grammar is a quadruple (N, T, S, R), where N—a finite set of nontermi-
nals symbols disjoint from T, T—a finite set of terminals symbols, S ∈ N the start symbol,
and R—a finite set of rules of the form X → α, where X ∈ N and α ∈ (N ∪ T)∗. CFG is in
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CNF when each rule takes one of the two following forms: X → Y Z where X, Y, Z ∈ N or
X → t where X ∈ N and t ∈ T.

A WCFG associates a positive number called the weight with each rule in R (assigning
a weight of zero to a rule equates to excluding it from R). More formally, the WCFG is a
5-tuple (N, T, S, R, W), where (N, T, S, R) is a CFG and W is a finite set of weights of each
rule resulting from a function φ(X → α)→ w, where X → α ∈ R and w > 0 is a positive
weight.

2.2. Grammar Initialisation

Grammar in the WGCS system is initialised in two ways. The first way is to load a
previously prepared grammar from a file. The second way is to generate it automatically
in the application. Based on the training set, the symbols in this set are terminal symbols
of the grammar, while their uppercase representations are nonterminal symbols. Then, to
generate the terminal rules, each nonterminal symbol is assigned to each terminal symbol.
On the other hand, nonterminal rules are generated by all possible combinations of all
nonterminal symbols. According to [15], the number of all production rules of the CFG
is O(L3), where L is the length of the input sentence. However, it should be noted that
generating all productions is a one-time operation and does not affect the complexity of the
method. In practice, the number of generated rules in the inference process is significantly
less than the upper limit. Theoretically, the number of production rules in comparative
methods (LS and ADIOS) is bounded by O(L).

2.3. Stochastic CKY Parser

To verify whether a given sentence belongs to a specific grammar, special algorithms
called parsers are used. One of the most common CFG parsers based on dynamic pro-
gramming is the Cocke–Kasami–Younger (CKY) parser [16,17]. Its extension used to parse
stochastic CFGs is Stochastic CKY, first described in [18]. Both classical and stochastic CKY
algorithms assume grammar to be in CNF. The stochastic CKY algorithm is used in WGCS
system and its operation is represented by Algorithm 1.

2.4. Split Algorithm

This method is based on [19,20], where grammar is induced incrementally. During
each iteration of the algorithm, a new Xj nonterminal symbol is created from another Xi
nonterminal symbol through a split operation. The symbol selected for the split operation
is the symbol most often used in rule weight estimation (having the largest count) (see
line 2 in Algorithm 2). This symbol is generally called the split symbol. Then, for all
Xi → t terminal rules, we create new terminal rules, replacing Xi with Xj (see lines 3–5 in
Algorithm 2). Next, new nonterminal rules are created in two ways:

1. For symbols Xi and Xj, create all possible rules (see line 6 in Algorithm 2). Since the
rules are in CNF, their number is 8.

2. For all nonterminal rules with Xi in the form Xa → XbXc, where Xa, Xb or Xc is
Xi, create new untimely rules in the same form, replacing Xi with Xj. For multiple
occurrences of Xi in a rule, create all combinations (see lines 7–20 in Algorithm 2).
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Algorithm 1 Stochastic CKY

1: Load the sentence and grammar

2: L← sentence length

3: |N| ← number of nonterminal symbols

4: Create an array CKY[L][L]

5: Create an array wCKY[L][L][|N|]
6:

7: for i← 1 to L do

8: for wi in sentence do . sentence = w1 . . . wL

9: for A→ wi in TR do . TR = terminal rules

10: write A in CKY[i][1]

11: write φ(A→ wi) in wCKY[i][1][A] . rule weight

12: end for

13: end for

14: end for

15:

16: for i← 2 to L do

17: for j← 1 to L− i + 1 do

18: for k← 2 to i− 1 do

19: for A→ BC in NR do . NR = non-terminal rules

20: if wCKY[i][k][B] > 0 and wCKY[k][j][C] > 0 then

21: write A in CKY[i][j]

22: write φ(A→ BC)× wCKY[i][k][B]× wCKY[k][j][C] in wCKY[i][j][A]

23: end if

24: end for

25: end for

26: end for

27: end for

To illustrate the split method, suppose there is the set of rules: R = {Y → BC, Y →
YC, B → DY, S → YY, Y → a, B → b, Y → b}, the set of nonterminals N = {Y, B, C, D},
the set of terminals T = {a, b}, and the start symbol S. We select the symbol with the
largest count (let it be Y) and create a new symbol—a split symbol—Z. According to the
lines 3–5 of the Algorithm 2, new terminal rules are generated: {Z → a, Z → b}. The new
nonterminal rules are generated as follows.

1. From Y and split symbol Z create: Y → YY, Y → YZ, Y → ZY, Y → ZZ, Z → ZZ,
Y → YZ, Z → ZY, Z → YY (line 6 of Algorithm 2).

2. From {Y → BC, B→ DY} create new following rules {Z → BC, B→ DZ} and from
{Y → YC, S → YY} rules {Z → ZC, Z → YC, Y → ZC, S → ZZ, S → ZY, S → YZ}
(lines 7–21 of Algorithm 2).

The result is: R = {Y → YY, Y → YZ, Y → YZ, Y → ZY, Y → ZZ, Z → ZZ, Z →
ZY, Z → YY, Z → ZC, Z → YC, Y → ZC, S → ZZ, S → ZY, S → YZ, Y → BC, Y →
YC, B → DY, S → YY, Y → a, B → b, Y → b, Z → a, Z → b}, N = {Z, Y, B, C, D},
T = {a, b}, S = S.
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Algorithm 2 Split algorithm

1: Select a nonterminal symbol Xi with the largest count . Split symbol

2: Create new nonterminal symbol Xj

3: for Xi → t in TR do . TR = terminal rules

4: Create new terminal rule Xj → t

5: end for

6: Create all possible nonterminal rules from two nonterminal symbols Xi and Xj:

Xi → XiXi, Xi → XiXj, Xi → XjXi, Xi → XjXj, Xj → XiXi, Xj → XiXj, Xj → XjXi,

Xj → XjXj

7: for Xa → XbXc in NR do . NR = non-terminal rules

8: if Xa == Xi ∧ Xb == Xi then

9: Create new nonterminal rules: Xj → XjXc, Xj → XiXc, Xi → XjXc

10: else if Xa == Xi ∧ Xc == Xi then

11: Create new nonterminal rules: Xj → XbXj, Xj → XbXi, Xi → XbXi

12: else if Xb == Xi ∧ Xc == Xi then

13: Create new nonterminal rules: Xa → XjXj, Xa → XjXi, Xa → XiXj

14: else if Xa == Xi then

15: Create new nonterminal rule Xj → XbXc

16: else if Xb == Xi then

17: Create new nonterminal rule Xa → XjXc

18: else if Xc == Xi then

19: Create new nonterminal rule Xa → XbXj

20: end if

21: end for

2.5. Rule Weight Estimation

After establishing he grammar structure, we can focus on fine-tuning the weights of
the rules. The most common algorithm used for this purpose is inside–outside. It is a special
case of the Expectation-Maximization algorithm designed to estimate the parameters of a
stochastic context-free grammar, originally the probabilities of the rules, and in our case,
the rule weights. Two algorithms will be described in this subsection—the original inside–
outside algorithm and its extended version using negative sentences when estimating rule
weights used in the WGCS system.

2.5.1. Inside–Outside

Baker introduced the inside–outside algorithm [21]. Its computational complexity is
O(L3|N|3), where L is the sentence length and |N| is the number of nonterminal symbols
in the grammar [22].

The inside–outside algorithm starts the estimation process from the initial probabili-
ties/weights of the rules (usually assigned randomly). At each iterative step, it updates
the probability/weight of the rule based on the frequency of the rule in the training set. To
better understand the algorithm, let us introduce the basic nomenclature.

• Probability/weight of the rule:

– for nonterminal rules: φ(X → YZ)
– for terminal rules: φ(X → x)
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• Probability/weight of deriving a sentence from grammar:

P(W) = P(S⇒ w1w2 . . . wn) (1)

where⇒ stands for sentence derivation, W stands for sentence output, and w1w2 . . . wn
are the individual words of the sentence W.

• The inside probability is the probability of deriving from a given symbol the nonter-
minal sequence of words wi . . . wj from the sentence W = w1 . . . wn:

βij(X) = P(X ⇒ wi . . . wj) (2)

where X is any nonterminal grammar symbol.
Figure 3 shows the graphical interpretation of the inside probability for the nontermi-
nal Y symbol, βij(Y).

X

Y Z

S

w1 wi wj wn

Figure 3. Graphical representation of the inside probability.

• The outside probability is the probability of deriving from the starting symbol the
string w1 . . . wi−1Xwj+1 . . . wn from the sentence W = w1 . . . wn:

αij(X) = P(S⇒ w1 . . . wi−1Xwj+1 . . . wn) (3)

Figure 4 shows the graphical representation of the outside probability for the nonter-
minal symbol Y, αij(Y).

X

Y Z

S

w1 wi wj wn

Figure 4. Graphical representation of the outside probability.

• Estimated number of uses of the rule determines how often the rule occurs for a
single sentence:
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– for terminal rules:

cφ(X → x, W) =
φ(X → x)

P(W) ∑
i≤1

βii(X) (4)

– for nonterminal rules:

cφ(X → YZ, W) =
φ(X → YZ)

P(W) ∑
1≤i≤j≤k≤n

αik(X)βij(Y)β j+1,k(Z) (5)

• The total estimated number of uses of the rule determines how often the rule occurs
in all sentences in the training set:

count(X → α) =
n

∑
i=1

cφ(X → α, Wi) (6)

where X → α stands for a terminal or nonterminal rule and Wi for successive sentences
in the training set.

• The new weight/probability of a rule is calculated as the ratio of the total estimated
uses of a given rule to the sum of the estimated total uses of a rule with the same
left-hand symbol:

φ
′
(X → α) =

count(X → α)

∑γ count(X → γ)
(7)

where X → γ stands for a rule with the same left-hand side symbol as the rule in the
numerator and any right-hand side form (gamma) of a rule in a CNF, either a terminal
symbol or two nonterminal symbols.

2.5.2. Inside–Outside Contrastive Estimation

The inside–outside contrastive estimation (IOCE) algorithm is an extended version of
the inside–outside algorithm to include the use of negative sentences in the estimation of
rule weights. This approach is inspired by works using the classic contrastive estimation
method [23,24]. However, it differs significantly from the solutions proposed in those
works.

In IOCE, we introduce the so-called negative estimation factor:

ψ(X −→ α) =
count(X −→ α)

count(X −→ α) + θ × countnegative(X −→ α)
(8)

where countnegative(X −→ α) determines the total estimated number of uses of the rule in

all negative sentences in the training set and θ = number_o f _positive_sentences
number_o f _negative_sentences is introduced to

mitigate imbalanced datasets bias.
Using this coefficient, we calculate the new weight of the rule:

ϕ
′
(X −→ α) =

count(X −→ α)

∑β count(X −→ β)
· ψ(X −→ α) (9)

The general idea of the negative estimation coefficient is that, if the rule often appears
in the set of negative sentences, the coefficient is smaller. By multiplying the coefficient by
the current weight of the rule, we reduce its weight. When the rule does not appear even
once in the set of negative sentences, the coefficient is equal to 1 and the weight of the rule
does not change.
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2.6. Removing Rules with Low Weight

In the WGCS system with a split algorithm, the grammar size increases with each
iteration, which significantly affects the computational complexity of IO/IOCE algorithms.
Therefore, to prevent slowing down of the system and maintain good quality sentence
classification, the WGCS system has implemented a mechanism that cleans the grammar
from rules with low weights. If a rule gains a weight below the threshold, the rule is
removed from the system. There are two thresholds for deleting rules, one for nonterminal
rules 0.001 and another for terminal rules 0.000001. These values have been determined
experimentally.

2.7. Experimental Protocol and Complexity Analysis

WCFG is learned using WGCS according to the experimental protocol described in
Algorithm 3. The run-time complexity for the worst-case scenario of the given algorithm
can be evaluated as follows. Say that k is the number of iterations of the WGCS algorithm,
|G|—the size of the grammar, z—the number of sentences in the training set, n—the number
of IOCE iterations, |N|—the number of nonterminal symbols, L—the length of the sentence,
and y—the number of sentences in the validation set.

Algorithm 3 Experimental protocol

1: Load the initial grammar and datasets

2: for i← 1 to iterations do . iterations = 20

3: Run the split algorithm

4: Run IOCE on the training set . 200

5: Remove rules with low weights

6: Test grammar with CKY on the training set

7: end for

8: Test best grammar with CKY on the validation set

In the algorithm above, for a worst-case evaluation it should be assumed that run-time
of the split algorithm (line 3) is bounded by |G|, IOCE algorithm (line 4) is bounded by
z · n · |N|3L3, removing rules (line 5) by |G|, testing grammar (line 6) by z · L3|G|, and
testing the best grammar (step 8) by y · L3|G|. Thus the total amount of time to run lines
1–8 is:

k · (|G|+ z · n · |N|3L3 + |G|+ z · L3|G|) + y · L3|G| (10)

Note that |G| = k · |T| + k3 and |N| = k3, and the total amount of time can be
calculated as follows

k · (k · |T|+ k3 + z · n · k3L3 + k · |T|+ k3 + z · L3(k · |T|+ k3)) + y · L3(k · |T|+ k3) (11)

which can be factored as:

k2 · |T|+ k4 + z · n · k4L3 + k2 · |T|+ k4 + z · L3(k2 · |T|+ k4) + y · L3(k · |T|+ k3) (12)

Therefore, the total running time for this algorithm is estimated as:

O(z · n · |T| · k4L3 + y · |T| · k3L3) (13)

Note that the maximum number of terminals |T| can be replaced by (y + z)L

O(z · n · (y + z) · L · k4L3 + y · (y + z) · L · k3L3) (14)
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which reduces to
O((y + z) · k3L4(z · n · k + y)) (15)

As we can see the complexity of the proposed method is polynomially bounded with
respect to the input size.

3. Benchmarks
3.1. Datasets

For our experiments, 28 datasets have been prepared. Most of them were generated
based on the random context-free grammars Gi obtained from the CFG/TestSet Gener-
ator [25]. The target finite samples, that had about 200 words each were constructed as
follows. Let Zi =

⋃Ki
k=1 Li ∩ Σk. The total estimated number of uses for the rule, where

Ki is an integer from 10 to 20 and Li = L(Gi). 100 words, chosen randomly from the set
Zi, along with optimal examples given by the generator constituted examples. Let z ∈ Zi
and y ∈ Σ∗ be words that differ by a few letters—as a consequence of a swap, insertion,
or deletion. 100 words y ∈ Yi, y 6∈ Li, 1 ≤ |y| ≤ Ki, generated randomly in this way,
constituted counterexamples.

Five languages were generated based on grammars constructed by hand from the
following description:

• L6 : balanced parentheses
• L8 : {w : w is a palindrome and w ∈ {a, b}{a, b}+}
• L9 : {w : w ∈ {a, b}+ and ]a(w) = ]b(w)}
• L10 : {w : w ∈ {a, b}+ and 2]a(w) = ]b(w)}
• L11 : the language of Łukasiewicz (S→ aSS; S→ b)

Languages L6, L8, L9, and L10 were considered by Nakamura and Matsumoto [26],
and L11 was considered by Eyraud et al. [27]. Table 1 shows our settings in this respect.

Table 1. Datasets metrics.

Dataset Size Positive
Sentences

Negative
Sentences

Max. Length
of Sentence

Min. Length
of Sentence

Number
of Terminals

1 213 113 100 18 3 4
2 220 120 100 18 2 2
3 204 104 100 14 4 2
4 240 140 100 20 4 5
5 208 108 100 20 8 4
6 200 100 100 20 12 2
7 198 98 100 20 4 4
8 200 100 100 14 3 2
9 200 100 100 16 6 2
10 200 100 100 20 11 2
11 200 100 100 20 1 2
12 204 104 100 20 4 6
13 205 105 100 20 3 4
14 200 100 100 20 3 3
15 200 100 100 20 3 5
16 216 116 100 20 2 7
17 197 97 100 20 3 3
18 206 106 100 20 5 5
19 240 140 100 12 2 2
20 209 109 100 20 6 4
21 213 113 100 20 5 6
22 205 105 100 20 7 4
23 209 109 100 20 5 5
24 199 99 100 20 3 3
25 207 107 100 16 3 6
26 200 100 100 20 2 2
27 190 90 100 16 2 5
28 224 124 100 18 5 6
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3.2. Brief Description of Other Approaches

In [13], Wieczorek described a local search (LS) approach. In this study, we will use
a simple example to present this method using a simple example. Assume that the set
{ab, abab} constitutes examples while the set {a, b, ba, aba} constitutes counterexamples.
The first step is to construct a grammar that generates all the examples. A special algorithm
has been devised for this purpose. It could produce the following grammar: S → AB,
A → a, B → CD, C → b, D → AC | E, and E → ε. Further, in a loop, two variables are
merged as long as the grammar can be shortened. In the examples, B and C (into B), S and
D, and S and E, we get the grammar: S→ AB | ε, A→ a, B→ b | BS. Finally, unnecessary
variables and rules are removed from the resultant grammar (in the example the rule
S→ ε). Every step is controlled by means of counterexamples to obtain valid grammar.

The Automatic DIstillation Of Structure (ADIOS) model that uses only examples
builds syntactic representations of a sample of language from unlabelled data [28]. It
consists of two elements: (1) a Representational Data Structure (RDS) graph and (2) a
Pattern Acquisition (PA) algorithm that constructs the RDS in an unsupervised manner.
The goal of the PA algorithm is to detect patterns, i.e., repetitive sequences of “significant”
strings occurring in the examples. Here, the PA algorithm is related to prior work on
alignment-based learning and regular expression extraction from strings. However, the
authors of ADIOS stress claim, that their algorithm requires no prejudging of either the
scope of the primitives or their classification. In the initial phase of the PA algorithm, the
examples are segmented down to the smallest possible morphological constituents. In
the second phase, the PA algorithm repeatedly scans the RDS graph for common patterns,
which are then used to modify the graph. ADIOS algorithm has been tested on a variety of
linguistic and bioinformatics data with promising results.

The code of WGCS and LS along with the benchmarks are available at [29]. The code
of ADIOS is available on request from the authors of this method.

4. Results

Our experiments were performed on Intel Core i7-7567U CPU, 3.5 GHz processor, with
32 GB RAM under Windows 10 operating system. Three methods, i.e., our proposal WGCS
and two references methods: local search (LS) and ADIOS, were used to infer grammars
for 28 benchmark datasets. A five-fold crossvalidation was performed on each set and
the results were averaged. To evaluate the quality classification of the compared methods,
we use the classification results stored in a confusion matrix. Four scores were defined
as tp, fp, fn, and tn, representing the numbers of true positives (correctly recognised
positive sentences), false positives (negatives recognised as positives), false negatives
(positives recognised as negatives), and true negatives (correctly recognised negatives),
respectively. Based on the values stored in the confusion matrix, we calculate the widely
used Precision, Recall (Sensitivity), and combined metric F1-score. Precision is defined
as P = tp/(tp + f p), Recall (Sensitivity) as R = tp/(tp + f n), and F1 as the harmonic
mean of Precision and Sensitivity F1 = 2 · (P · R/(P + R)). Table 2 shows these results
with respect to Precision (Pr), Recall (Rc), and F1 score. This table additionally shows the
average production number and the average computation time obtained for each tested
grammar by all methods. The average number of productions and the average computation
time were calculated over five folds of the crossvalidation method used.

To find out whether the observed differences are statistically significant, we follow
the Wilcoxon-signed-rank test [30] for WGCS vs. LS and WGCS vs. ADIOS. In this test,
the null hypothesis (H0) states that the difference between the pairs follows a symmetric
distribution around zero. The alternative hypothesis (H1), on the other hand, states that
the difference between the pairs does not follow a symmetric distribution around zero (i.e.,
the difference is not a coincidence). As can we see in Table 3, p-values are small enough
(all below 0.025) to reject H0. Therefore, we can conclude that WGCS performs better than
the two competing methods on prepared benchmarks, although it is a slower method than
ADIOS.
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Table 2. Average grammar size (|G|), Precision (Pr), Recall (Rc), F1, and average time ([[hh:]mm:]ss) for WGCS, LS and
ADIOS.

Set
WGCS LS ADIOS

|G| Pr Rc F1 Time |G| Pr Rc F1 Time |G| Pr Rc F1 Time

1 25 0.99 1.00 0.99 19:18 16.8 1.00 0.99 0.99 26:59:07 28.2 0.90 0.98 0.94 1.2
2 47 0.99 0.98 0.99 14:54 75.0 0.98 0.88 0.93 97:54:37 33.8 0.63 1.00 0.77 2.0
3 16 1.00 1.00 1.00 1:43 34.8 0.99 0.90 0.94 56:44:14 34.4 0.51 1.00 0.68 2.4
4 40.6 0.98 0.99 0.97 16:12 19.4 1.00 1.00 1.00 7:22:35 26.4 0.60 1.00 0.75 3.0
5 38 0.98 0.98 0.98 1:41:53 10.2 1.00 1.00 1.00 19:06:57 30.0 0.52 1.00 0.68 4.5
6 11.2 1.00 1.00 1.00 5:43 132.0 1.00 0.48 0.61 4:37:01 25.2 0.5 1.00 0.67 4.3
7 19.2 1.00 1.00 1.00 48:31 28.2 1.00 0.94 0.97 2:50:37 26.4 0.49 1.00 0.66 4.7
8 56.6 0.94 0.95 0.94 2:21:43 92.9 0.79 0.51 0.61 89:22:16 24.2 0.50 1.00 0.67 4.0
9 41.2 0.76 0.90 0.81 1:51:15 192.4 0.20 0.02 0.04 2:24:38 20.6 0.50 1.00 0.67 6.9
10 42.4 0.85 0.93 0.88 4:13:26 192.2 0.20 0.01 0.02 2:21:31 31.0 0.50 1.00 0.67 5.9
11 7.8 1.00 0.99 0.99 1:05:39 67.4 0.99 0.78 0.86 16:53:53 29.6 0.50 1.00 0.67 6.0
12 21.4 0.97 0.99 0.98 1:23:47 16.0 1.00 0.99 0.99 1:59:20 24.2 0.56 1.00 0.72 6.0
13 40 0.97 0.99 0.98 1:05:18 9.8 1.00 0.99 0.99 15:26:20 27.8 0.51 1.00 0.68 7.8
14 42.2 0.99 0.98 0.98 1:27:58 84.0 0.96 0.71 0.80 49:18:12 27.8 0.50 1.00 0.67 8.7
15 57 0.96 0.91 0.93 1:22:26 26.0 0.99 0.92 0.95 31:39:10 23.2 0.50 1.00 0.67 7.7
16 57.2 0.98 0.93 0.96 47:29 12.8 1.00 1.00 1.00 4:18:35 32.2 0.56 0.98 0.71 10.5
17 40.2 0.97 0.99 0.98 52:33 93.5 0.98 0.82 0.88 86:43:13 20.6 0.49 1.00 0.66 8.4
18 27.6 1.00 1.00 1.00 5:53 26.2 1.00 0.91 0.95 2:46:58 21.2 0.51 1.00 0.68 9.3
19 65.4 0.96 0.89 0.92 17:03 82.9 0.84 0.61 0.70 88:28:50 23.4 0.58 0.00 0.73 8.5
20 64 0.96 0.90 0.93 1:56:21 12.4 1.00 0.99 0.99 75:31:18 20.8 0.52 1.00 0.69 10.2
21 46.8 0.99 1.00 0.99 55:27 15.2 1.00 1.00 1.00 62:32:23 25.0 0.60 1.00 0.74 8.5
22 40.2 0.98 1.00 0.99 1:08:24 14.0 1.00 0.96 0.98 17:09:24 24.0 0.51 1.00 0.68 10.7
23 23.4 0.97 0.99 0.98 20:59 14.8 1.00 0.99 0.99 46:38:02 25.0 0.52 1.00 0.69 10.5
24 50.6 0.88 0.95 0.91 1:17:20 75.8 0.98 0.71 0.82 28:55:28 28.0 0.50 1.00 0.66 11.5
25 54.6 0.98 0.88 0.92 16:08 17.0 1.00 0.99 0.99 38:25:13 24.2 0.52 1.00 0.68 12.7
26 48 0.87 0.97 0.91 2:15:20 122.0 0.99 0.53 0.68 84:07:51 28.4 0.50 1.00 0.67 16.0
27 29.8 0.99 0.98 0.98 4:43 18.2 1.00 0.96 0.98 18:43:47 21.0 0.47 1.00 0.64 12.3
28 30.4 0.96 0.97 0.98 18:07 25.8 1.00 1.00 1.00 18:21:58 23.4 0.55 1.00 0.71 11.2

Avg 38.7 0.96 0.97 0.96 1:01:59 54.6 0.92 0.81 0.85 35:37:59 26.1 0.54 0.96 0.70 7.7

Table 3. Obtained p values for F1 from Wilcoxon signed-rank test.

WGCS vs.
LS

WGCS vs.
ADIOS

LS vs.
ADIOS

1.87× 10−2 3.74× 10−6 1.81× 10−3

5. Conclusions

We have formalized and verified the split method in weighted context-free grammar
induction. The new approach to weighted CFG learning has been applied in the frame of the
Weighted Grammar-based Classifier System. Additionally, the inside–outside contrastive
estimation algorithm was improved by correcting unbalanced data bias. The experiments
conducted over 28 context-free languages showed that WGCS with splitting outperforms
the state-of-the-art methods in terms of F1 scores.

Further work is ongoing to investigate the use of the combined split-merge method
in discovering WCFG. It should be noted that the split mechanism leads to an overlinear
increase in the number of generated productions. It is also worth noting that grammar
splitting is focused on specialising grammar production, whereas grammar merging can
generalise the model by merging some nonterminals. Grammar merging seems to be a
promising approach to pruning unwanted structures [31].
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Abbreviations
The following abbreviations are used in this manuscript:

IO Inside-Outside algorithm
CFG Context-Free Grammar
CNF Chomsky Normal Form
CKY Cocke–Kasami–Younger parser
WCFG Weighted Context-Free Grammar
WGCS Weighted Grammar-based Classifier System
IOCE Inside-Outside Contrastive Estimation algorithm
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