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Abstract: The reasons for the high electrical conductivity of bismuth ferrite due to its natural
composite structure, structural non-stoichiometry, redox processes, and the boundary position in
the perovskite family have been considered. It has been shown that it is possible to significantly
(2–3 orders of magnitude) reduce the conductivity of BiFeO3 by introducing large-sized ions of rare-
earth elements (REE: La, Pr, Nd, Sm, Eu, Gd with 0.94≤ R≤ 1.04 Å) in amounts of up to 10 mol %. An
interpretation of the observed effects has been given. A consideration about the appropriateness of
taking into account the presented results when developing devices using materials of the BiFeO3/REE
type has been expressed.
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1. Introduction

Features of modern technology: intensification of processes associated with an increase
in operating temperatures, pressures, frequencies; acceleration of energy transformations;
and the pursuit of multifunctionality of high-tech products all determine tougher technical,
economic and environmental requirements demanded for the material and technological
base used in industry. In this regard, multiferroic media with coexisting special electrical
and magnetic properties are of increasing scientific and practical interest. These objects are
promising for applications in spintronics, as well as in areas related to artificial intelligence
with other high-tech areas of the real sector of world economies [1,2]. At the same time, the
most attractive are compositions containing transition metal ions, which cause magnetic
phase transitions and ions with an unshared pair of s electrons capable of exhibiting a ferro-
electric state, such as Bi, Pb, one of such compounds is BiFeO3 [3]. BiFeO3 has a relatively
simple structure (rhombohedrally distorted perovskite, space group–R3c), high tempera-
tures of ferroelectric (Tc = 1083 K) and antiferromagnetic (TN = 643 K) transitions, which,
in many respects, define it as the most convenient object of experimental research [4–6].
However, a number of features of this compound, high electrical conductivity and the
presence of a spin modulation cell that is not commensurate with the period of the unit
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cell, make it extremely difficult to perform a comprehensive study of this material or put it
into practice in the areas most in demand.

In a number of works it has been shown experimentally [7,8] and theoretically [9] that
under the conditions of solid-phase synthesis and sintering using conventional ceramic
technology (without externally applied pressure) BiFeO3 is not thermodynamically stable.
The resulting product inevitably contains one or another amount of impurities, which,
of course, leads to a decrease in its electrical resistance. At the same time, a low level of
reproducibility and inconsistency of the results obtained by various groups of researchers
becomes another important problem, which is due to the critical dependence of the target
product not only on the conditions of synthesis and sintering, but also on the whole of its
thermodynamic history.

Based on a series of experiments, the features of BiFeO3 phase formation have been
studied in detail [10]. It has been shown that a significant role is played by processes caused
by the structural non-stoichiometry of the objects, the appearance of which, due to both
the high stability of the intermediate phases and the loss of oxygen as a result of partial
reduction of the elements with a variable oxidation state, can also influence the BiFeO3
macroresponses and its electrical conductivity. Based on the results obtained we proposed
the methods for optimizing the technology of obtaining materials involving BiFeO3.

In this paper, we examine in greater detail the reasons for the increased conductivity
of BiFeO3 and the possibility of minimizing it by variations in the cationic composition
upon modification of this multiferroic with rare-earth elements (REE).

2. Materials and Methods

The objects of study were solid solutions (SS) of the Bi1-xREExFeO3 composition (REE,
lanthanides, Ln: La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tu, Yb, Lu; x = 0.0–0.5; ∆x = 0.025,
0.05, 0.10).

The main method for preparing studied SS was solid-phase synthesis with intermedi-
ate grinding and granulation of dispersed crystalline powders and subsequent sintering
using conventional ceramic technology (without externally applied pressure). Optimum
technological procedures ensuring the purity (or the minimum number of ballast phases),
experimental density close to the theoretical one, and the integrity of ceramics were
chosen on a series of the samples of each composition, varying temperature, duration
and frequency of firing. Specific modes of the synthesis and sintering of the SS were:
T1 = (1060 ÷ 1180) K, τ1 = (5 ÷ 10) hours; T2 = (1070 ÷ 1180) K, τ2 = (5 ÷ 10) hours,
Tsint = (1140 ÷ 1270) K, τsint = 2 h (depending on the composition). Technological regimes
for the preparing of studied SS are presented in [11].

Some SS were subjected to mechanically activating procedures performed with the
help of a planetary mill of the AGO-2 brand. Before sintering the samples, the powders
were formed in the shape of columns with a diameter of 12 mm and a height of 20 mm.
Sintered ceramic billets were machined (plane cutting, grinding on flat surfaces and ends)
in order to obtain measuring samples with a diameter of 10 mm and a height of 1 mm.
Each composition of such samples contained (5 ÷ 10) pieces. Before metallization, the
samples were calcined at a temperature of Tcalc = 770 K for 0.5 h to remove residual organic
substances and degrease surfaces in order to increase the adhesion of the metal coating
with ceramics. The electrodes were applied by double burning of a silver-containing paste
at a temperature of 1070 K for 0.5 h.

X-ray diffraction studies at room temperature were performed by powder diffraction
using DRON-3 and ADP-1 diffractometers (Coкα–radiation; Mn–filter; Bragg-Brentano
focusing scheme). We studied bulk and ground ceramic objects, which allowed us to
exclude the influence of the surface effects, strength and textures that arise in the pro-
cess of obtaining ceramics. The calculation of the structural parameters was performed
according to a standard method. X-ray density ($X-ray) was determined by the formula:
$X-ray = 1.66·M/V, where M is the weight of the formula unit in grams, V is the volume of
the perovskite cell in Å. The measurement errors of the structural parameters were as fol-
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lows: linear ∆a = ∆b = ∆c =±(0.002÷ 0.004) Å; angular ∆α = 3′; and volume ∆V = ±0.05Å3

(∆V/V·100% = 0.07%).
The experimental ($exp) density of the samples was determined by hydrostatic weigh-

ing, where octane was used as a liquid medium. The relative density ($rel) was calculated
by the formula: ($exp/$X-ray)·100%. Densities of the studied SS are presented in [12].

The real and imaginary parts of the relative permittivity and dielectric loss tangent
(ε′/ε0, ε”/ε0, tgδ) at frequencies of (20–2·106) were studied on a special bench using a
precision LCR- meter of Agilent E4980A in the intervals of (300–900) K temperatures.

The electrical resistance R (Ohm) was measured at direct current at room temperature
using an Agilent 4339B High Resistance Meter. The electrical resistivity, $v, was calculated
by the formula: $v = R·S/l = R·πd2/4l, and the electrical conductivity, σ, was calculated by
the formula: σ = 1/$v, where l is the sample thickness (m); S is the flat surface area of the
sample (m2); d is the diameter of the sample (m).

3. Results
3.1. About the Causes of the High Conductivity of BiFeO3

Figure 1 shows the temperature dependences of ε′/ε0, ε′ ′/ε0 BiFeO3 and BiFeO3/REE
on different frequencies of the ac field.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 15 
 

1.66·M/V, where M is the weight of the formula unit in grams, V is the volume of the per-
ovskite cell in Å. The measurement errors of the structural parameters were as follows: 
linear Δa = Δb = Δc = ±(0.002 ÷ 0.004) Å; angular Δα = 3′; and volume ΔV = ±0.05Å3 
(ΔV/V·100% = 0.07%). 

The experimental (ρexp) density of the samples was determined by hydrostatic weigh-
ing, where octane was used as a liquid medium. The relative density (ρrel) was calculated 
by the formula: (ρexp/ρx-ray)·100%. Densities of the studied SS are presented in [12]. 

The real and imaginary parts of the relative permittivity and dielectric loss tangent 
(ε′/ε0, ε″/ε0, tgδ) at frequencies of (20–2·106) were studied on a special bench using a preci-
sion LCR- meter of Agilent E4980A in the intervals of (300–900) K temperatures. 

The electrical resistance R (Ohm) was measured at direct current at room tempera-
ture using an Agilent 4339B High Resistance Meter. The electrical resistivity, ρv, was cal-
culated by the formula: ρv = R·S/l = R·πd2/4l, and the electrical conductivity, σ, was calcu-
lated by the formula: σ = 1/ρv, where l is the sample thickness (m); S is the flat surface area 
of the sample (m2); d is the diameter of the sample (m). 

3. Results 
3.1. About the Causes of the High Conductivity of BiFeO3 

Figure 1 shows the temperature dependences of ε′/ε0, ε′′/ε0 BiFeO3 and BiFeO3/REE 
on different frequencies of the ac field. 

 
Figure 1. Temperature dependences of ε′/ε0, ε″/ε0 BiFeO3 and BiFeO3/REEx (x = 0.1) in the frequency range of (25 ÷ 2·106) 
Hz of the ac field. 
Figure 1. Temperature dependences of ε′/ε0, ε”/ε0 BiFeO3 and BiFeO3/REEx (x = 0.1) in the frequency range of
(25 ÷ 2·106) Hz of the ac field.

The following facts are noteworthy: the enormous values of these quantities in the
interval of (400÷ 800) K (1); the formation of a low-temperature relaxation maximum ε′/ε0
at (400 ÷ 500) K, not associated with any of the known phase transitions (2); rapid growth
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of ε′/ε0 at 600 K at all frequencies; the form in the range of (600 ÷ 700) K of a “dome” of
this characteristic (3); the beginning of the formation of a “dome” ε′ ′/ε0 at high frequencies
at 800 K(4).

To describe the process of low-temperature dielectric relaxation according to the data
obtained from the dependences ε′/ε0 (T) and tanδ (T), the graphs lnω (1/Tm) (Tm are the
temperatures of the extrema ε′/ε0 and tanδmeasured at the frequency f =ω/2π) presented
in Figure 2.
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The presented dependences satisfy the Arrhenius law, which allows one to charac-
terize the relaxation process using the activation energy, Ea, and the average frequency
of overcoming the potential barrier, ω0. For the two plotted dependences, these pa-
rameters take significantly different values (Ea = 1.38 and 0.68 eV, ω0 = 2.8 × 1016 and
2.97 × 1014 rad/s, respectively), indicating two independent relaxation processes occurring
in the object. Based on the literature data, it can be argued that such values are typical for
the Maskwell-Wagner relaxation [13–15], associated with the accumulation of free charges
on the interface of components in spatially inhomogeneous media on the background
of interlayer, interphase, and intraphase structural rearrangements. The reason for the
development of this situation, as well as the appearance of two relaxation processes, is the
natural composite structure of BiFeO3, which is formed on the basis of at least two (not
counting BiFeO3 itself) Bi-, Fe-containing compounds (Bi25FeO39, Bi2Fe4O9) that almost
always accompany the formation of BiFeO3, remain in it (in different amounts) in the form
of ballast phases [7,16–25] (we will talk about this in more detail below).

A brief mention of the physical mechanisms of macroevents developing in such
heterogeneous media should be made. It is known that in such materials an increase
in the permittivity caused by the Maxwell-Wagner polarization is detected [23], and it
is associated with the accumulation of charges at the boundaries of inhomogeneities in
dielectrics [26]. Moreover, the increase in dielectric permittivity is always due to the
electrical conductivity of the components (crystallites) of a heterogeneous dielectric [27,28].
In experimental works [29–31], a gigantic increase in the permittivity is associated with
relaxation polarization processes. In works [31,32] an analysis of the growth of the low-
frequency permittivity of a heterogeneous dielectric, which is a randomly inhomogeneous
object, is made using finite elements and Monte Carlo methods. The author shows that the
greatest increase in the dielectric permittivity occurs in the so-called “reciprocal composite”,
that is, in two-layer structures in which the dielectric permittivity of one component is
significantly greater than that of the second one, whereas the specific conductivity of the
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second component is much higher than that of the first one. A number of works [33,34]
develop the ideas presented in [31]. Meanwhile, the physical nature of the gigantic increase
in the effective dielectric permittivity is understandable: it is connected, as mentioned
above, with the charge accumulation at the interfaces of the components of a heterogeneous
dielectric. At the initial moment, after applying an electric voltage to the sample, the
electric induction in the layers is the same, which means the distribution of the field
strength is inversely proportional to the dielectric permittivity of the layers. However, after
completion of the processes, the densities of the conduction currents are equalized, and the
field strength in the layers becomes inversely proportional to the specific conductivities
of the layers, which leads to an increase in the charge accumulated at the boundaries
precisely in the “reciprocal composite”. The same physical mechanisms lead to an increase
in effective electrical conductivity.

In the work of A.V. Turik and co-workers [35] it is quite rightly pointed out that in the
works [30,36] and even in the most detailed work [31] devoted to the giant growth of ε, the
possibility of achieving giant electrical conductivities is not even mentioned. It should be
noted that in the work [37] an analysis of this possibility is performed, but only for some
types of heterogeneous dielectrics. A complete analysis of this problem in the literature is
not available, which has served as an incentive to focus on this issue in greater detail.

To predict the necessary conditions for giant dielectric amplification, it is sufficient
to use the simplest model of an electrically inhomogeneous dielectric considered by Hip-
pel [28]. Using the methods of impedance spectroscopy, for the electrical conductivity of a
dielectric sample consisting of two parallel layers with significantly different capacitances
and resistances, in ac fields with a circular frequency ω [35], we obtained the following
formula:

G = [R1 + R2 + ω2
(

τ2
1 R2 + τ2

2 R1

)
]/[(R1 + R2)

2 + ω2(τ2R1 + τ1R2)]
2
, (1)

and for capacity

C = [τ1R1 + τ2R2 + ω2(τ1τ2(τ2R1 + τ1R2))]/[(R1 + R2)
2 + ω2(τ2R1 + τ1R2)]

2
, (2)

where τ1 = R1C1; τ2 = R2C2. Here R1 and C1—resistance and capacitance of the first layer,
R2 and C2—resistance and capacitance of the second layer.

From (1) and (2) for static values of G and C at ω→ 0 it can be written:

Gs = 1/(R1 + R2), Cs = [τ1R1 + τ2R2]/[
(

R1 + R2)
2 + R1 + τ1R2

)
]
2
, (3)

and for high-frequency values of G and C at ω→∞ it can be written

G∞ =
(

τ2
1 R2 + τ2

2 R1

)
/(τ2R1 + τ1R2)

2, C∞ = τ1τ2/(τ2R1 + τ1R2)
2, (4)

Thus, the two-layer Maxwell-Wagner capacitor is a dielectric with monotonically
decreasing real parts of the capacitance with an increase in frequency and the complex
permittivity. In this case, the imaginary part of the dielectric permittivity has a relaxation
maximum [31,35].

One of the mechanisms of the appearance of enormous electrical conductivity in
BiFeO3 is the peculiar structure of BiFeO3 conditioned by the features of the state dia-
gram of the Bi2O3–Fe2O3 binary system (Figure 3) with three bismuth ferrites of different
quantitative elemental composition [31,38]. BiFeO3 begins to form in the temperature
range of 770 ≤ T1 ≤ 820 K; Bi25FeO39 (sillenite phase) appears earlier at lower temper-
atures of ~720 K and is an intermediate compound; Bi2Fe4O9 (mullite phase) is present
in BiFeO3 at the stage of improving its structure (920 ÷ 1020 K) as a concomitant com-
pound. Its formation is the result of structural A- non-stoichiometry of BiFeO3 [39], a
phenomenon typical of oxygen-octahedral compounds with the ReO3 structure [40] and
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perovskite [41–43] containing ions of variable valence. A specific feature of such substances
is the ability of a crystallographic shift to exclude an appearance of anionic vacancies (for
various reasons), and in complex oxides (of the perovskite type), their equal number of
cuboctahedral positions. Thus, a decrease in the A-O positions is nothing more than a
self-organizing compensatory mechanism for eliminating point defects (vacancies) due to
the organization of extended defects–crystallographic shift planes, while maintaining the
highly ordered structure of anion-deficient oxides. In this case, the excess A-component,
depending on its size factor and thermodynamic background, can be placed in regular
B-positions; at irregular locations, forming an autoisomorphic substance [44] or an internal
multiplicative [45] SS of implementation; in intergranular layers; or precipitate in the form
of impurities [46].
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In our case, probably as a result of the deficiency of A-positions (according to our
calculations, it is at least 3%), excessive Bi3+ ions appear, which displace Fe3+ ions from
oxygen octahedra (as follows from [47], the placement of Bi3+ in A- and B-positions is
possible), thereby creating the prerequisites for the formation of the Bi2Fe4O9 compound
(with a higher Fe content). In BiFeO3, the appearance of the above described vacancies in the
A- and O-sublattices may be due to the partial sublimation of volatile Bi2O3 in the synthesis
process of the compound [48] (according to the scheme Bi3+

1−x�xFe3+O2−
3−1.5x�1.5x,

� is a vacancy), partial reduction of Fe3+ → Fe2+ (according to the scheme Bi3+Fe3+
1−x

Fe2+
xO2−

3−x/2�x/2), the traditional loss of the part of oxygen in oxygen-octahedral media.
Another mechanism for increasing σ of BiFeO3 is based on structural instability due

to its boundary position in a family of oxides with a perovskite type structure (OSP)
(Figure 4, where µ is the degree of stretching of A-O bonds and compression of B-O
bonds due to the discrepancy between the sizes of ions and the sizes of voids of the
closest packing [47,49,50]), as well as the proximity of sintering and incongruent (with
decomposition) melting temperatures [38,51]. This can lead to a slight violation of the
stoichiometry of BiFeO3 due to the formation of a noticeable amount of difficult to remove
ballast phases [19,20], including unreacted initial components [52]. This is facilitated by
the narrow concentration-thermal interval of the existence of the BiFeO3 [8,9] phase, and
quite wide crystallization regions of Bi2Fe4O9 and Bi25FeO39 compounds [7,16,51,53], as
well as the complexity of the reaction in the equimolar mixture of Bi2O3 + Fe2O3 [17,18].

In [9] calculations of the thermodynamic potentials for the reactions of BiFeO3 forma-
tion, from which it follows that it is not the most stable of the possible compounds in the
Bi2O3–Fe2O3 system, are provided. In [8] the results of a study of its temperature stability
during being obtained by the “wet” low-temperature method are presented, and it is noted
that at elevated temperatures (>970 K) this compound decomposes slowly. Attempts to ob-
tain pure BiFeO3-based material using exotic, more energy-consuming and labor-intensive
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methods than the solid-phase reaction method in combination with conventional ceramic
technology at the sintering stage, were also made in [19,20,54–59]. However, it was not
possible to synthesize a pure, single-phase, thermodynamically stable product suitable for
producing ceramics.
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3.2. About Ways to Minimize the Conductivity of BiFeO3

One of the ways to stabilize BiFeO3 and optimize its properties is its introduction [60–63] into
the REE composition. In this case, an increase in magnetoelectric coefficients is associated
with the special magnetic properties of REE: despite the fact that their own ferromagnetic
ordering occurs only at very low temperatures, the magnetic nature (f -ferromagnetism) of
REE manifests itself in an increase in exchange interactions between other ferromagnetic
ions, for instance, Fe3+, which leads to an increase in the Néel temperature. This is facilitated
by smaller (compared to Bi) radii of REE [44].

The introduction of sufficiently rigid highly ionized REE ions instead of easily de-
formable ions, for example, Bi, inevitably leads to a decrease in the Curie temperature and
a convergence of the temperatures of the ferroelectric and antiferromagnetic transitions,
which is highly desirable for practical applications. In addition, the substitution of part
of Bi3+ ions will lead to some increase in compositional disorder in the system, which
will contribute to their manufacturability. The latter can be ensured by non-volatility
and small-sized REE compared to Bi3+. The thermal stability of BiFeO3 modified with
REE is increased, the range of optimal sintering temperatures widened, the phenomena
associated with the melting of the synthesized product practically disappeared, the amount
of impurities decreased. All these were prerequisites for the expected decrease in σ in
BiFeO3/REE.

Figure 5 shows the dependences of the electrical conductivity (at room temperature)
on the concentration of REE introduced into BiFeO3, and Figure 6 the same dependence on
the radii of the modifying elements.

It can be seen that by doping BiFeO3 with REE, in many cases it is possible to reduce
σ and increase $v by 2 ÷ 3 orders of magnitude. In this case, large-sized REE (tab.) with
radii close to 0.99 Å, introduced in amounts of up to 10 mol %, turned out to be the
most effective. This is explained, in our opinion, by the creation of the most favorable
dimensional conditions for the existence of BiFeO3 and, as a consequence, a decrease
in impurity phases (which an increase in σ is associated with) and stabilization of the
rhombohedral structure typical of BiFeO3. Figure 7 shows the dependences of the structural
characteristics of SS with large REE on the content (x) of the latter. It is clearly seen that
in all the cases the state diagrams contain five concentration regions corresponding to
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successive structural transformations Rh + O1 + O2 → O1 + O2 → O2 with small variations
in phase filling, and Figure 8 illustrates the dependences of the position of the boundaries
of the existence of the pure Rh- phase, its mixture with the O1- and O2- phases, the values
(∆RA/Rmin)·100% (where ∆RA = RBi − RREE, Rmin = RREE), the differences of (∆V) between
Vexp and Vtheor on the radius, R, REE. At lower R (<0.99 Å), the shift of the Rh- boundary
toward lower REE concentrations is obviously a consequence of a significant deviation
of the conditions from those necessary for the formation of SS of substitution (∆RA/Rmin
should be equal, according to various estimates, to less than 15% [64] or 28 ± 2% [65]).
The latter is associated with the loss of stability of the region of the Rh- and O1,2- phases
coexistence due to the greater instability of the structure of multiphase SS compared to
single-phase ones.
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(e), Gd (f), respectively: 1, 2, 3–a, α, V–parameters and volume of rhombohedral cell (Rh phase); 4, 5, 6–c, a, V–parameters
and volume of the pseudotetragonal cell (orthorhombic phase O1 of the PbZrO3 type), 7, 8, 9, 10–b, a, β, V–parameters and
volume of the monoclinic cell (orthorhombic phase O2 of the type GdFeO3).

The reasonableness of the made assumptions is also confirmed by the “behavior” of
∆V value (Figure 8b,d), which characterizes the structural nonstoichiometry of BiFeO3. At
low contents (~5 mol %) of REE, its effect is minimal, and ∆V0.05 on the background of a
noticeable spread in ∆V values practically does not depend on R of REE.

For larger values, in the region with R > 0.99Å ∆V changes little, contributing to the
stabilization of the Rh-phase, and at R < 0.99 Å in the case with x = 0.10 ∆V0.10 logically
increases with decreasing R, destabilizing Rh-, Rh +O1,2- phases.
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It should be also noted that our preliminary estimation calculations have shown that
the introduction of the above mentioned REE into BiFeO3 in small quantities leads to a
decrease in the chemical bond parameter µ, characterizing its strength, and in BiFeO3
equal to the critical value for OSP ~ 1.04, which “shifts” BiFeO3 into the region of OSP
(Figure 4), preventing the possible loss of stability of its structure and favoring an increase
in its electrical resistance.
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This question should be considered in greater detail. During isovalent substitution, the
parameters of the reduced perovskite cell change linearly according to SS concentrations.
This is fixed by the so-called Vegard rule [66] and follows directly from the model of
quasielastic cation–anion bonds in the cubic perovskite lattice [47,67,68]. Thus, we can
write aBi,Ln(x) = (1−x)aBi + xaLn, where a is the parameter of the given perovskite cell. It is
convenient to associate the loss of stability of the perovskite structure with reaching the
breaking point of the stretched (A-O) bonds and breaking them at some critical relative
strain of ∆crit/LO, where ∆crit is the critical deformation of the bond, and LO is the length
of the unstrained bond [47]. In the general case, the degree of the bond deformation is
characterized by the values of ∆Bi = aBi,Ln/√2 − LA(Bi-O); ∆L = aBi,Ln/√2 − LA(L-O) and
the corresponding relative quantities of ∆Bi/LBi-O and Ln/LLn-O.

Following [47,67,68], the average parameter of the given perovskite cell, a, is (nAaA +
nBaB)/(nA + nB), where nA,B are the valencies of A, -B- ions. At nA = nB = 3 (our case) a = (aA
+ aB)/2. Taking into account that aA= √2LA-O, aB = 2LB-O [47], we obtained a = (√2LA-O
+ 2LB-O)/2. In the Table 1, the LA values for Bi and REE, as well as aBiFeO3 , aLnFeO3 , and
∆Bi,Ln and µ calculated using these data are presented. To calculate µ, we use the formulas:

µi = 7/2·
√

ns +
9
2 n2

p·∆Bi for Sp-atoms and µi = (2·√ns + 6n3
d)∆Ln/L(Ln-O) for ds2—valence

electrons. In the first case, nS= 0, nB= 3→ µi = 9/2·9; 0.07/2.78 = 1.04~1.0 and µ = Σεiµi = 1
(fractions of ions in A- positions), since in BiFeO3 µ = µi. In the second case, nd = 1, nS =
2→ µi = (2

√
2 + 6·13)·0.11/2.69 = 0.36 (LaFeO3). In SS µ = ∑ εi·µi = (1− x)µBi + xµLn.

Figure 9 shows the dependences of the calculated µ values in Bi1−xREExFeO3 SS with
x = 0.1; 0.2; 0.3 on the radii of Bi and REE. A sharp decrease in µ upon introduction of REE
into the BiFeO3 structure can be seen, while the minimum value of µ is realized in SS with
La. Thus, the modification of BiFeO3 with REE, contributing to a decrease in µ, favors the
stability of the structure, stabilization of the stoichiometric composition of BiFeO3 and, as a
consequence, a decrease in the electrical conductivity of the material.
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Table 1. Main crystal chemical characteristics of A-elements (A-Bi, La, Pr, Nd, Sm, Eu, Gd, Ho).

A-Element R, Å
µ, rel.
Units LA-O, Å a, Å ∆A-O, Å ∆A-O/LA-O, rel. Units Electronic Configurations

of Outer Layers

Bi 1.20 1.04 2.73 3.95 0.070 0.030 (S2)p3

La 1.04 0.36 2.69 3.93 0.110 0.040 (f0)ds2

Pr 1.00 0.39 0.65 3.90 0.116 0.044 (f2)ds2

Nd 0.99 0.40 0.63 3.88 0.120 0.045 (f3)ds2

Sm 0.97 0.44 2.62 3.88 0.130 0.050 (f5)ds2

Eu 0.97 0.47 2.60 3.86 0.140 0.054 (f6)ds2

Gd 0.94 0.50 2.59 3.86 0.148 0.057 (f7)ds2

Ho 0.86 0.52 2.55 3.83 0.150 0.059 (f10)ds2Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 15 
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4. Conclusions

Solid solutions of the composition Bi1-xREExFeO3 (rare-earth elements, lanthanides,
Ln: La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tu, Yb, Lu; x = 0.0–0.5; ∆x = 0.025, 0.05, 0.10)
were prepared by two-stage solid-phase synthesis followed by sintering by conventional
ceramic technology with varying annealing temperatures. Comprehensive studies of the
structure and specific electrical conductivity of the obtained experimental samples have
been carried out.

The study of the temperature dependences of ε′/ε0, ε′ ′/ε0 BiFeO3 and BiFeO3/REE
on different frequencies of the ac field showed the presence of a low-temperature relax-
ation maximum ε′/ε0 (T) at (400 ÷ 500) K, which is not associated with any of the known
phase transitions in BiFeO3 and satisfies the Arrhenius law with Ea = 1.38 and 0.68 eV,
ω0 = 2.8·1016 and 2.97·1014 rad/s, for ε′/ε0 (T) and tanδ (T), respectively. The results
obtained allowed us to make conclusions about the presence of Maskwell-Wagner relax-
ation, as well as to consider the physical mechanisms of macroevents developing in such
heterogeneous media.

The possibility of a significant (by 2–3 orders of magnitude) decrease in the electrical
conductivity of BiFeO3 by introducing into it large-size ions of rare-earth elements (La,
Pr, Nd, Sm, Eu, Gd with 0.94 ≤ R ≤ 1.04 Å) in amounts up to 10-mol % was presented.
Preliminary estimates showed that the observed effect is due to a decrease in the chemical
bond strength (µ < 1.04) in BiFeO3 upon its modification and stabilization of the structure
due to the shift of BiFeO3 into the region of existence of the perovskite structure.

The presented results should be taken into account when developing devices using
BiFeO3/REE materials.
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