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Abstract: Smoothed Particle Hydrodynamics (SPH) is a mesh-free numerical method that can
simulate metal cutting problems efficiently. The thermal modeling of such processes with SPH,
nevertheless, is not straightforward. The difficulty is rooted in the computationally demanding
procedures regarding convergence properties and boundary treatments, both known as SPH Grand
Challenges. This paper, therefore, intends to rectify these issues in SPH cutting models by proposing
two improvements: (1) Implementing a higher-order Laplacian formulation to solve the heat equation
more accurately. (2) Introducing a more realistic thermal boundary condition using a robust surface
detection algorithm. We employ the proposed framework to simulate an orthogonal cutting process
and validate the numerical results against the available experimental measurements.

Keywords: metal cutting simulation; thermal modeling; Laplacian; boundary condition; surface
detection; SPH

1. Introduction

Metal cutting is one of the essential processes throughout engineering designs and
manufacturing industries. In order to reduce costs and increase productivity, it is necessary
to improve understanding of the metal cutting problem. As there is a wide range of design
variables (e.g., tool wear, workpiece temperature, process forces, chip shape, or surface
quality) and diverse physical phenomena; nonetheless, the reliability of empirical and ana-
lytical models for metal cutting is limited. In this view, computer-based simulations using
numerical methods appear as an invaluable alternative to study metal cutting problems
with deeper insights.

In addition to the well-known Finite Element Method (FEM), the family of particle-
based methods is another numerical approach frequently used for cutting simulations.
Unlike FEM, however, these methods do not require re-meshing as they are mesh-free.
This interesting feature of particle methods makes them a suitable choice for metal cutting
applications. In particular, the Smoothed Particle Hydrodynamics (SPH) method, intro-
duced independently by Gingold et al. [1] and Lucy [2] in 1977, sees a broader spectrum of
applications in this context. SPH is known as a well-established numerical tool for mod-
eling fluid dynamics. Examples include the application in impact [3] and shockwave [4]
simulations, complex free-surface problems [5], and thermal simulation of multiphase
flows by [6,7]. The utilization of SPH in more industrially-oriented fields of application
can also be found in the literature. Examples in laser-based manufacturing problems are
the modeling of material removal in [8,9] and pulsed-laser ablation of aluminum in [10].

Between 2007 and 2015, numerous researchers applied SPH to metal cutting and the
chip formation, including the high-speed cutting [11,12] and 3D single-grain [13] models
using commercial software packages, as well as the developments in [14,15] using an
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in-house code. These papers do not consider the heat transfer from the workpiece to the
tool, while the experimental evidence has shown that a significant proportion of heat in
metal machining operations transfers from the chipping zone to the cutting tool [16]. More
recently, the concept of parallel computing on Graphics Processing Units (GPU) has been
introduced to both 2D [17] and 3D [18] SPH cutting simulations to boost the computational
performance. Afrasiabi et al. [19] employed this GPU-accelerated approach for inverse
parameter identification and proposed a temperature-dependent coefficient of friction in
SPH cutting models. Furthermore, a tailor-made framework for the multi-resolution SPH
simulation of orthogonal cutting tests was published by [20]. It is worth mentioning that
the computer codes utilized by these recent works are open source.

Although previous studies have demonstrated some excellent results in the capability
of SPH to simulate metal cutting processes, none of them accounts for heat loss boundary
conditions in their thermal model. More specifically, the issue with ignoring the heat
transfer from the workpiece to the tool in SPH models (e.g., in [13,20]) was addressed by
some recent works in [17,19]. However, the thermal modeling approach in these papers
also suffers from two shortcomings: (1) Utilizing an inconsistent Laplacian operator that
deteriorates the solution accuracy near the boundaries. (2) Neglecting the convective and
radiative heat loss from the system. Consequently, we intend to develop a comprehensive
thermal model for SPH cutting simulations that resolve these issues and account for all
these effects.

In this work, a numerical simulation framework is developed that can increase the
reliability of available mesh-free cutting models in their thermal modeling approach. As the
first task, boundary particles are identified by a robust surface detection algorithm [5] bor-
rowed from the CFD community. The present thermal model contains (1) heat generation
due to the plastic and frictional work, (2) heat transfer from the workpiece to the tool,
(3) heat conduction in the whole system, and (4) both Dirichlet and von Neumann bound-
ary conditions. To address the inconsistency issue of SPH formulations, an adaptation of
Fatehi’s scheme [21] (FMFS) is additionally used, which introduces an approximation of
the Laplace operator of second-order consistency. This method is implemented here for the
first time in solid mechanics problems with large deformations. For an application of FMFS
in 3D heat conduction problems with no deformations, see in [22]. Please note that the
results presented here are produced by the open-source codes for SPH metal cutting, which
are available online and given in the “Supplementary Materials” section of this article.

2. Governing Equations

Before presenting the numerical framework for modeling of a cutting process, we
provide an overview of the underlying physics in this section. The drawings in Figure 1
show a graphical illustration of the key thermal aspects of metal cutting. In these figures,
the main heat sources associated with each deformation zone are shown, as well as a
representation of the thermal boundary conditions.

Workpiece

Heat source:
Plastic deformation

Heat sources:
Plastic deformation
Frictional contact

Heat sources:
Plastic deformation
Frictional contact

Workpiece

Heat sink:
Constant temperature

Heat loss:
Convection to air 
Radiation to air

Figure 1. Illustration of heat sources and thermal boundary conditions in orthogonal cutting.
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The continuum mechanical equations in a Lagrangian formalism are expressed by the
field equations:

dρ

dt
= −ρ∇ · v (1)

dv
dt

=
1
ρ
∇ · σ +

1
ρ

b (2)

dr
dt

= v (3)

where ρ is the density, r the position vector, v the velocity, σ the Cauchy stress tensor, and b
the volumetric body forces. It is worth mentioning that all numerical simulations in this
work are based on single-resolution SPH formulations; thus, a uniform constant mass is
allocated to each computational node and the momentum equation (i.e., Equation (2)) does
not require the utilization of mass scaling. An elaboration of this subject, as well as further
details on the numerical stabilization procedure, can be found in [19,20]. This mechanical
system is coupled with thermal effects by solving the heat conduction equation:

dT
dt

=
k

ρ cp
∇2T +

1
ρ cp

(Qplast + Qfric) (4)

in which k is the heat conductivity assuming an isotropic heat conduction, cp the specific
isobaric heat capacity, including the source terms Qplast and Qfric due to the conversion of
the plastic and frictional work. According to the works in [17,23], these heat sources are
computed from

Qplast = χ
(

σy ˙̄εpl
)

(5)

Qfric = η

(
ρ | f fric| · |vrel|

m

)
(6)

if χ and η are dimensionless parameters specifying the fraction of plastic and frictional work
converted into heat (see in [23,24]). According to the illustration in Figure 1, the boundary
conditions of Equation (4) are given by

Tc = T∞ −→ on fixed boundaries (7)

ql = −
[

hc (Ts − T∞)︸ ︷︷ ︸
convection

+ εσ (T4
s − T4

∞)︸ ︷︷ ︸
radiation

]
−→ on open boundaries (8)

with hc denoting the heat convection coefficient, Ts and T∞ the surface and background
temperatures, respectively; ε the emissivity factor; and σ the Stefan–Boltzmann constant.

For material modeling, the Johnson–Cook (JC) flow stress according to [25] is used to
define the plastic response of the workpiece material. This model calculates the flow stress
of the material, σy, and incorporates three effects: strain hardening, strain rate hardening,
and thermal softening. The JC flow stress is computed from

σJC
y =

[
A + B (ε̄pl)n

][
1 + C ln

(
˙̄εpl

˙̄εpl
0

)][
1−

(
T − Tr

Tm − Tr

)m]
(9)

where ε̄pl is the equivalent plastic strain and Tr and Tm are the reference temperature and
melting point, respectively. In Section 5, the values of five JC parameters (A, B, C, m, and n)
will be provided for the titanium alloy under consideration.

For friction modeling, Coulomb’s law with a constant coefficient of µ = 0.35 is
considered as a typical choice in LS-DYNA [13] and other SPH cutting models like [17],
unless otherwise mentioned. As the magnitude of µ has a significant impact on the force
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prediction of numerical cutting models (see in [19,26] for more details), a sensitivity analysis
will be presented to provide further insights into the influence of the friction coefficient on
simulation results.

3. SPH Formulation

The partial differential equations (PDEs) outlined in Equations (1), (2), and (4) need to
be discretized in space and time. The spatial discretization is performed by applying an
stabilized SPH scheme. Liu et al. [27] provide a good overview of the SPH formulations
and its derivation details. The time discretization is then carried out using an explicit
second-order leapfrog stepping. Monaghan [28] provides the implementation procedure of
this time integration scheme for SPH models.

Using a modified SPH approach expressed in [29,30], the mass, momentum, and heat
equations for particle i can be written in the following discrete forms:

〈dρ

dt
〉

i ≈ −ρi ∑
j
(vj − vi) · ∇Wij Vj (10)

〈dv
dt
〉

i ≈∑
j

 σ
i

ρ2
i
+

σ
j

ρ2
j
+ Πij I + Λ

ij︸ ︷︷ ︸
stabilizers

 · ∇Wij mj +
1

mi
bi (11)

〈dT
dt
〉

i ≈
k

ρ cp
∑

j
2

[(
Ti − Tj

|rij|

)
eij · ∇Wij

]
Vj +

(
Qplast + Qfric

ρ cp

)
i

(12)

where Vj = mj/ρj is the integration volume of particle j and Wij = Wh(ri − rj, h) is a kernel
function with the smoothing length h, chosen to be the cubic B-spline function [31] in
this work. Furthermore, Π and Λ are the artificial viscosity term [32] and the artificial
stress tensor [33] with the parameters taken similarly as in [17,19]. For the heat equation
expressed in Equation (12), the method suggested by Brookshaw [30] is considered to
discretize the Laplacian operator, where eij = rij/|rij| is a unit vector in the inter-particle
direction. After computing these equations for each particle, the particles position r is
updated with a smoothed velocity instead of the actual velocity. This smoothing scheme
was introduced by Monaghan [34] and is called the X-SPH correction. The same X-SPH
parameter as [17,19] is used for the numerical simulations of this work.

4. Proposed Thermal Model

The key contribution of this work to the SPH cutting models is the enhancement it
proposes for thermal modeling. First, a higher-order Laplacian approximation is presented
to replace the Brookshaw scheme in the heat equation. Next, the proposed approach for
handling thermal boundary conditions is described.

4.1. Discretization of Laplacian

The Laplacian approximation model considered in this paper was initially proposed
by Fatehi et al. [21]. They came up with a novel renormalization matrix G that mitigates

the boundary deficiency issue in SPH formulations by re-normalizing the kernel function.
Fatehi’s mesh-free scheme is here referred to as FMFS for brevity. In short, the FMFS
operator for the discretization of ∇2T at particle i reads

〈
∇2T

〉
i ≈ G

i
: ∑

j
2

((
Tj − Ti

|rij|
− eij ·∑

j
(Tj − Ti)A

i
· ∇WijVj

)
eij ⊗∇Wij

)
Vj (13)

A
i
=

[
∑

j

(
rji ⊗∇Wij

)
Vj

]−1

(14)
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where “:” denotes the double contraction of two second-order tensors, “⊗” indicates the
tensor product, and the definition of G correction tensor is given in [21,22,35]:

G
i

:

[
∑

j

(
eij ⊗ eij ⊗∇Wij

)
Vj · A−1

i
·∑

j

(
rij ⊗ rij ⊗∇Wij

)
Vj + ∑

j

(
rij ⊗ eij ⊗ eij ⊗∇Wij

)
Vj

]
= −I (15)

Derivation details of this method, as well as its application to several 3D benchmark
tests, can be found in [22]. According to the reconstruction examples presented in [21,22],
the approximation procedure of Equation (13) reproduces Laplacian results that are second-
order consistent and converge quadratically.

4.2. Thermal Boundary Conditions

The boundary conditions expressed in Equations (7) and (8) need to be imposed on
surface particles at each time step. The identification of particles located at the clamped
surfaces is trivial and can be done once at the initial configuration. However, the detection
of particles belonging to the open surfaces of the workpiece cannot be done without
utilizing a particular measure. To do so, we incorporate a free-surface detection algorithm
initially formulated by Marrone et al. [5] in fluid flow problems.

In this algorithm, the parameter λ is calculated as the minimum eigenvalue of the
matrix A in Equation (14), also known as the Randles–Liberky [36] renormalization matrix.
Theoretically, the values of λ vary from 0 to 1 for exterior and interior particles, respectively.
Preliminary studies by the authors of [5] demonstrated that taking a λ = 0.75 is generally a
proper choice as it isolates at least one layer of surface particles. Figure 2 confirms this by
displaying one example frame of an orthogonal cutting simulation with SPH, where the
surface detection algorithm is active in the code. It demonstrates how the surface particles
required for thermal boundary conditions can be effectively identified using this algorithm.
Another advantage of detecting surface particles is linked with the stability of the Laplacian
formulation. That is, Fatehi’s Laplacian operator Equation (13) is computed for interior
particles (λ > 0.75), and the approximation of the heat equation for all surface particles
falls back to Brookshaw’s method in Equation (4). By doing so, the singularity of correction
matrices in FMFS can be avoided. This matter has been elaborated by Afrasiabi et al. [22]
in several 3D heat conduction benchmark tests.

Figure 2. Illustration of the proposed approach for thermal boundary conditions. Left: introduction of the surface detection
algorithm into SPH cutting models. The implementation considers the tool (rigid) and the workpiece (deformable) as two
separate bodies. Right: only particles with λ < 0.75 are included and then categorized into 2 surface groups (red and blue).
Thermal boundary conditions are imposed on these blue and red surface particles accordingly.

5. Results & Discussion

Before applying the higher-order SPH method (i.e., FMFS) to a metal cutting prob-
lem, we showcase a simple mathematical function to validate the implementation of
Equation (13) and examine its improvement versus the Brookshaw SPH expressed in
Equation (12).
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5.1. Preliminary Study

In this example, the Laplacian of f (x, y) = x2 + y2 is computed in a domain of
(x, y) ∈ [−1 + 1] discretized by 21× 21 uniformly spaced particles, for which the analytical
answer is given by ∇2 f (x, y) = +4. This choice was made to verify the second-order
consistency of the FMFS approximation. As mentioned before, the cubic B-spline kernel
with a smoothing length of h = 1.5∆x is used.

Figure 3 demonstrates the surface plots of numerical solutions, where FMFS recov-
ers second-order consistency by producing exact results throughout the domain. In the
case of using the reference SPH method, as shown in the middle plot of Figure 3, severe
inconsistencies resulting from the boundary deficiency of SPH exist outside the range of
[−0.8 + 0.8]. The computations show that the Laplacian result using the reference SPH
model is approximately +4.027 within [−0.8 + 0.8]. Outside this range, the approximation
error of 〈∇2 f 〉 increases drastically and reaches its maximum value at four corners. The ap-
proximate value of Laplacian at these points is −22.12, corresponding to a relative error of
453%. As discussed already, the FMFS method employed by the proposed thermal model
resolves this issue by incorporating higher-order terms and kernel renormalization, giving
exact results with no error.

Analytical SPH reference SPH improved (FMFS)
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-1 -1

0
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Figure 3. Reconstruction of the Laplacian operator acting on a 2D quadratic function.

This preliminary investigation indicates that boundary effects can deteriorate the accu-
racy of the SPH Laplacian operator. Indeed, this situation occurs in metal cutting problems,
where the thermal boundary conditions are associated with high surface temperatures,
especially in the chip formation zone. By applying FMFS in the proposed thermal model,
the heat equation in SPH metal cutting simulations is solved more accurately at the price
of a higher computational cost.

5.2. Application: Orthogonal Metal Cutting

After validating the implementation of the higher-order Laplacian model, a 2D simu-
lation of the orthogonal cutting of a Ti6Al4V titanium alloy is carried out using the process
parameters and problem dimension listed in Table 1. For this material, the JC parameters
A = 862 MPa, B = 331 MPa, C = 0.01, m = 0.8, and n = 0.35 are chosen, according
to the works in [17,19,25] for very similar applications. Figure 4 shows the geometry and
boundary conditions for this problem, where a Dirichlet temperature boundary condition
of Tc = T∞ = 300 K is imposed on the fixed layers (see Figure 2). The SPH simulation runs
until 2/3 of the workpiece length is cut with a speed of vc = 318.5 m/min. This choice of
the cut distance is made to ensure that the solution is not affected by the fixed boundary
condition (see the right side of the Ti6Al4V workpiece in Figure 4). Moreover, it leads to a
cut distance of 2 mm, which is much longer than what is needed to reach the steady-state
forces at this high cutting speed [37].
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Table 1. Experimental and numerical parameters for the cutting test, according to the works in [17,19].
Thermo-physical properties required for thermal convection and radiation are taken from the works
in [38].

Body Property Symbol Unit Value

Tool

Clearance angle α deg 7
Rake angle γ deg 0
Cutting edge radius rβ mm 0.0028
Speed vc m min−1 318.5
Heat conductivity k W m−1 K−1 88
Specific heat capacity cp J kg−1 K−1 292

Workpiece

Length lx mm 3
Height ly mm 0.3
Uncut chip thickness tu mm 0.1
Cut distance lc mm 2
Density ρ kg m−3 4430
Young’s modulus E GPa 113.8
Poisson ratio ν – 0.35
Heat conductivity k W m−1 K−1 7.3
Specific heat capacity cp J kg−1 K−1 580
Reference temperature Tr K 300
Melting temperature Tm K 1878
Coeff. of friction µ – 0.35
Pct. of plastic work into heat χ – 90%
Pct. of frictional work into heat η – 100%

All
Convection coeff. hc W m−2 K−1 50.0
Emissivity coeff. ε – 0.30
Stefan–Boltzmann constant σ W m−2 K−4 5.67× 10−8

A total of 41 particles (with regular spacing) along ly are used to discretize the work-
piece. Clearly, using SPH particles of different sizes leads to computationally more efficient
discretizations. Due to the ease of computer implementation and for more simplicity,
however, the present work considers a uniform spacing of SPH particles in all simulations.
For implementing the thermal model throughout the system, it is necessary to discretize
the cutting tool as well. In this paper, the size of SPH particles in the tool is set to be equal
to the size of SPH particles in the workpiece. It is important to note that the heat equation
on the tool side can also be solved by the finite-difference or finite-element methods. While
these mesh-based approaches are generally more efficient than SPH in thermal modeling,
they are not implemented here as the utilization of a hybrid particle-element technique is
beyond the scope of this paper.

Ti6Al4V

𝛾𝛾

𝛼𝛼

Uncut chip thickness: 𝑡𝑡𝑢𝑢

𝑥𝑥

𝑦𝑦

𝐹𝐹𝑐𝑐

𝐹𝐹𝑡𝑡
𝑅𝑅

𝑟𝑟𝛽𝛽

𝑣𝑣𝑐𝑐

Figure 4. Configuration of orthogonal metal cutting problem and a closeup of the force diagram.

5.2.1. Force Prediction and Chip Shape

Among the provided experimental dataset, the highest cutting speed of
vc = 318.5 m/min was chosen for the SPH models of this paper to attain the shortest
simulation time. The elapsed time per 2 mm cut distance is in the range of 29 h for this
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cutting speed, with a single core of Intel® i5-4690 at 3.50 GHz. Furthermore, the orthogonal
cutting experiment was conducted by setting a rake angle of γ = 0° in order to obtain a
state, where the thrust force (Ft in Figure 4) is mainly caused by the friction between the
rake face and the sliding chip.

For the experimentation, we conducted turning operations as orthogonal cutting
tests on a Ti6Al4V cylinder with a diameter of about 70 mm and a wall thickness of 2 mm.
The insert in its holder was held on the tool turret of the CNC turning machine. Both cutting
and feed forces (Fc and Ft) were measured with a 3D Kistler piezoelectric force sensor.

The numerical simulation is first validated by comparing the predicted forces with
the experimental measurements. Figure 5 plots the evolution of these forces during 2 mm
of this cutting process. An average of the predicted forces is calculated at the stationary
zone, after almost 10% of the simulation time is elapsed. These average forces are listed in
Figure 6, showing that both Fc and Ft computed from the simulation compare very well
with the experimental data. The percent errors given in parentheses in this table shows an
average of approximately 14% overprediction for Fc and 9% underprediction for Ft.

Figure 5. Evolution of predicted forces compared to the experimental data.

According to the thrust force plot in Figure 5, the overall maximum discrepancy
between the experimental and numerical results produces an error of 53% underprediction
for SPH with the reference model (see the red line at about 1.2 mm cutting length). When
using the proposed model, this value is reduced to 45% and occurs slightly before 1.5 mm
of the cutting length. At first glance, this discrepancy may not be within an acceptable
range for some applications such as precision machining. Nevertheless, the community of
SPH cutting simulations typically consider an average error of force prediction to verify
their numerical results and not the maximum value, see, e.g., in [17,20,39].

One way to rectify this situation is increasing the spatial resolution (i.e., decreasing the
discretization size), as shown in [19]. High-resolution SPH simulations of metal cutting are
(arguably) only possible with high-performance computing and parallel processing. This
topic is outside the scope of this paper, thus not taken into consideration here. Another way
to mitigate this issue in predicting the thrust force is to enhance the contact and friction
model. This is because the thrust force is mainly affected by the frictional behavior at the
rake face (particularly if γ = 0°). The following sensitivity analysis will provide some
deeper insight into this subject matter.

Previous studies such as those in [19,40] have already shown that the force prediction
in metal cutting simulations is mainly affected by the choice of the flow stress parameters
(e.g., the five unknown constants in σJC

y in Equation (9)) and friction coefficients. This
statement justifies the marginal difference between the SPH reference and the SPH present
data provided in Figure 6, where all material and friction parameters are the same, and only
the thermal modeling approach is different (Please note that the signed percent errors
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displayed between parentheses in the table of Figure 6 are obtained by comparing the
simulated forces against the experimental values given on the first row). It also clarifies the
reason why increasing µ from 0.35 to 0.65 decreases the average error of thrust force from
15% to only 1%.

Method µ Proposed Thermal Model Fc [N/mm] Ft [N/mm]

Experiment – – 157.5 104.2
SPH reference 0.35 × 177.8 (+12%) 92.9 (−11%)
SPH present 0.35 X 180.3 (+14%) 89.0 (−15%)
SPH present 0.50 X 181.9 (+15%) 95.0 (−9%)
SPH present 0.65 X 185.0 (+17%) 103.5 (−1%)

Figure 6. Summary of the measured and predicted forces for the cutting test. Forces predicted by
SPH with different coefficients of friction are plotted in the bar chart, where the proposed thermal
model is utilized. Impact of µ on the thrust forces is higher than the cutting forces, demonstrating the
most accurate result when µ = 0.65 is used.

Given the measured forces in Figure 6, the friction coefficient corresponding to the
experimental Fc and Ft is equal to 0.66, whereas µ = 0.35 was initially taken for the SPH
simulation. Therefore, two additional simulations are carried out using µ = 0.50 and
µ = 0.65 to gain further insights. Figure 6 shows a quantitative comparison of these
simulated forces in a bar chart, where the present thermal model is used. As expected,
the effect of µ on Ft is higher than Fc, resulting in the best prediction of Ft when µ = 0.65.
It is because the friction model in this cutting geometry with a rake angle of 0 degrees
has the most significant influence on the magnitude of Ft. Although not very significant,
the choice of µ was found to have impact also on the simulated chip shapes.

5.2.2. Temperature Distribution

The temperature distribution after lc = 2 mm is displayed in Figure 7 to provide
some qualitative insights into the thermal aspects of this metal cutting simulation. The left
image of this figure is produced by running a simulation with the standard thermal model
expressed in Equation (12), where no heat loss boundary condition is included. The middle
image in Figure 7 is the result of a simulation including the proposed enhancements out-
lined in Equations (8) and (13). The chip temperature computed by the enhanced model is
slightly lower than the standard model. This is because the open boundaries in the standard
thermal model are perfectly isolated and the surface heat loss is ignored. More funda-
mentally, the essence of this marginal difference between the temperature distributions in
Figure 7 can be associated with the constitutive modeling parameters and thermo-physical
aspects of Ti6Al4V. To better show the impact of the enhanced thermal model on simula-
tion results, therefore, cutting experiments at lower speeds and/or materials with higher
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thermal conductivity (e.g., AISI 1045) need to be considered. It is conjectured that running
high-resolution SPH simulation of cutting chip formation can also help improve this issue.

w/o enhanced thermal model w/ enhanced thermal model

Figure 7. Distribution of the temperature after 2 mm of cut. Lower temperatures are observed in the enhanced model by
comparing the two black frames. Simulated chip shapes are superimposed to give insights into the impact of the heat loss
boundary condition on chip curling.

Next, the chip shapes of these two models are superimposed with two solid colors for
a visual comparison. Ignoring the heat loss boundary condition by the standard model
(i.e., the red particles in Figure 7) is the source of slightly more chip curling compared to
the present enhanced model (i.e., the gray particles in Figure 7). Clearly, the chip becomes
hotter when heat is not lost through its open surfaces.

The thermal model in metal cutting has an indirect effect on force prediction, while
its impact on the temperature field is direct, and perhaps more significant. Therefore,
it is beneficial to demonstrate the improvements gained by the proposed model via a
quantitative comparison. For this purpose, an orthogonal cutting experiment conducted
by Saelzer et al. [41] is taken into account, where temperature measurements are avail-
able. The case study pertains to machining a Ti6Al4V workpiece at a cutting speed of
vc = 20 m/min, an uncut chip thickness of tu = 0.1 mm, and a rake angle of
γ = 0°. The rake face temperature (TRF) in this setting is about 680 K. Please note that
vc = 20 m/min is the lowest speed available in [41], deliberately chosen here to provide
more time for thermal conduction in the chip formation zone. As the runtime associ-
ated with this relatively low cutting speed is almost 16x longer than the previous test
at vc = 318.5 m/min, these SPH simulations are carried out at a lower resolution and
terminated after a cut distance of lc = 0.3 mm.

Shown in Figure 8 are the SPH results employing different thermal models, as well
as a comparison of the rake face temperatures. The bar chart in this figure compares
the predicted temperatures with the experimentally measured data from [41], which can,
in turn, verify the correctness of the proposed thermal model. The red and blue bars are
the arithmetic mean temperature of particles located inside the indicated black frames at
the rake face, corresponding to 905 K and 744 K, respectively. Using the enhanced thermal
model decreases the overprediction error of TRF from 33% to 9% and leads to a more
accurate simulation. This improvement is gained by the more realistic thermal boundary
conditions in the proposed model and the utilization of a higher-order Laplacian operator.
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vc    =20 m/min
tu=0.1 mm

vc    =20 m/min
tu=0.1 mm

SPH w/ reference thermal model SPH w/ proposed thermal model

Figure 8. Distributions and contours of temperature obtained by SPH using the reference and proposed thermal model.
An average of the rake face temperature in simulation results (considering the particles inside the black frames) is compared
to the experimental measurement provided by [41]. The color bar is limited to 945 K for better visibility.

5.2.3. Effect of SPH Particles Size

Before closing this section, the effect of resolution (i.e., the size of SPH particles) on
the accuracy of the model is briefly discussed. For this purpose, a cutting geometry with
µ = 0.65 and the parameters listed in Table 1 is considered. Figure 9 shows the equivalent
plastic strain distribution for two similar simulations in different resolutions. As seen
in this comparison, the high-resolution model (i.e., ∆x = 0.008 mm) performs better in
capturing the shear bands and chip curling. It can be concluded that reducing the size of
SPH particles increases the accuracy of the predicted chip shape.

Previous studies have also investigated the influence of discretization size on SPH
metal cutting results. For instance, the authors of [20] focused on this subject and pre-
sented a new framework for SPH metal cutting models with variable particle size. They
showed that the size of SPH particles has a significant impact on the predicted chip shapes.
Figure 10 demonstrates this finding, where the chip shape produced by smaller size SPH
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particles (i.e., the high-resolution case with ∆x = 0.005 mm) is much closer to the serrated
chip shape observed in the experiment. This, in turn, serves as a qualitative measure of
convergence of the method for chip prediction.

∆x = 0.016 mm ∆x = 0.008 mm

Figure 9. Effect of SPH particles size on the chip shape, where ∆x is the diameter of SPH particles.

Sima et al. (2010) ∆x = 0.010 mm ∆x = 0.005 mm

Figure 10. Comparison of chip shapes in different SPH resolutions, where vc = 241 m/min, tu = 0.1 mm, and rβ = 0.005 mm.
The experimental photograph reprinted from Sima et al. [42] Copyright (2021), with permission from Elsevier under License
Number 4991260002261.

6. Conclusions

This paper presented a stabilized SPH framework for numerical simulation of orthog-
onal metal cutting with an enhanced thermal model. The numerical analysis consists of
both thermal and mechanical effects by solving the heat equation in the whole system and
considering the elasto-plastic behavior of the material. We found the agreement between
the forces measured in the experiment and those predicted by SPH satisfactory, where the
average error of force prediction (in both Fc and Ft) was smaller than 14% by comparing
the numerical and experimental results. It was also shown that the temperature values
obtained from the SPH simulation agree with the experimental measurement, leading to
more accurate results with the proposed thermal model. The main contributions of this
work to the SPH cutting models are summarized in the following.
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- To account for the heat loss boundary condition in SPH cutting models, a new ap-
proach was proposed and subsequently applied to an orthogonal cutting problem.
This approach incorporates an efficient surface detection algorithm, which was initially
proposed for fluid flow applications [5]. An improved thermal model representing
more realistic boundary conditions was presented as a result of this development.
In addition to the constant temperature at fixed boundaries, heat loss in the forms of
thermal convection and radiation was included.

- To ensure a second-order Laplacian operator in SPH, a corrected formulation (see
the FMFS scheme in Equation (13)) was implemented for the first time in a metal
cutting problem. This higher-order method allows us to solve the heat equation more
accurately, especially in the presence of free surfaces.

Future work opportunities can go in different directions. First, it would be neces-
sary to conduct more experiments for temperature measurements in high-speed cutting.
Another enhancement to this study, and perhaps applicable to much of the simulation
literature, is determining all material and friction data by a unified numerical-experimental
investigation (instead of assuming them from other work). Furthermore, the computa-
tional performance of the code needs to be enhanced by high-performance and parallel
computing. This consideration is essential for high-resolution simulations of chipping and
the 3D implementation of the present code.

Supplementary Materials: The following codes are openly available online: “MFree IWF Cut Refine”
at https://doi.org/10.1016/j.ijmecsci.2019.06.045 (link to Git repository: https://github.com/iwf-
inspire/mfree_iwf-ul-cut-refine) and “MFree IWF Thermal” at https://doi.org/10.1007/s11831-019
-09355-7 (link to Git repository: https://github.com/iwf-inspire/thermal_iwf).
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