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Abstract: Reactive oxygen species (ROS) play major role in inducing inflammation and related
diseases. Our previous studies have revealed that the ruthenium (II)-compound, [Ru(η6-cymene)2-
(1H-benzoimidazol-2-yl)-quinoline Cl]BF4 (TQ-6), inhibits hydroxyl radical (OH•) formation in
human platelets. TQ-6 also have protective effect against induced inflammation in macrophages
and hepatic injury in mice through NF-κB signaling. However, the free radical formation inhibitory
mechanism of TQ-6 in macrophages is unclear. Therefore, this study detected the antioxidative
ability of TQ-6 in both a cell-free system and in LPS-induced macrophages through electron spin
resonance (ESR) spectrometry. TQ-6 reduced 1,1-diphenyl-2-picrylhydrazyl (DPPH), galvinoxyl, and
superoxide radicals in a cell-free system and OH• formation in macrophages. Additionally, TQ-6
activated the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and upregulated the
antioxidant protein heme oxygenase-1 (HO-1) to elevate anti-inflammatory activity in LPS-induced
macrophage cells and inhibited carrageenan-induced paw edema in a rat model. Therefore, TQ-6
may prevent oxidative stress and also act as an effective therapeutic agent for the treatment of
oxidant-related diseases.

Keywords: ruthenium TQ-6; free radicals; ESR; LPS; Nrf2/HO-1; paw edema; carrageenan

1. Introduction

Oxidative stress induce inflammation via reactive oxygen species (ROS) formation,
which are reflected the strong inflammatory mediators. Several ROS are produced in-
side lipopolysaccharide (LPS)-stimulated macrophages, such as the superoxide radical
anion, which is produced primarily, but not exclusively, by NADPH oxidase (NOX) [1].
NOX is present in various cells, especially specialized phagocytic and endothelial cells [1].
Polymorphonuclear neutrophils lead to increased ROS production at the site of inflam-
mation, resulting in endothelial dysfunction and tissue damage [2]. Because antioxidants
reduce inflammation, therefore, an antioxidant drug may be an anti-inflammatory drug
and vice versa.
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Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that can
obstruct inflammatory events. Antioxidant gene expression mediated by Nrf2 is proposed
to diminish the macrophage M1 phenotype and ROS production. Since Nrf2 stimulators
are reported to be an efficient therapeutic strategy for several diseases [3], such as inflam-
matory disorders and cardiovascular diseases [3], the Nrf2 signaling pathway is considered
to be a critical cascade in inflammation. Nrf2 mitigates inflammatory reactions by inducing
anti-inflammatory enzyme heme oxygenase-1 (HO-1), and negatively regulating the ex-
pression of proinflammatory cytokines and chemokines [4]. Therefore, developing new
pharmacological interventions that induce Nrf2 and HO-1 is crucial for the therapeutic
control of inflammatory diseases and oxidative stress.

Increasing attention has been paid to antioxidant-derived metal complexes as novel
methods of protecting living organisms and cells against damage caused by oxidative
stress and free radicals [5]. Transition metal complexes have been reported to have vari-
ous biological activities through free radical scavenging properties [6]. Previous research
has also found that ruthenium complexes exhibited anticancer activity [7]. Ruthenium
complexes have been reported to exhibit strong scavenging activity on 2, 2′-azinobis (3-
ethylbenzothiazoline-6-sulfonic acid) (ABTS) and DPPH radicals and antiproliferative
effect against some cancer cell lines [8]. Our previous study showed that [Ru(η6-cymene)2-
(1H-benzoimidazol-2-yl)-quinoline Cl]BF4 (TQ-6), a synthetic ruthenium (II)-derived com-
pound, exhibited potent anti-inflammatory activity in vitro and effectively inhibited liver
injury in vivo. This research further suggested that nuclear factor (NF)-κB is a potential
target for the TQ-6’s preventive effects in LPS-induced inflammation and liver injury [9]. In
addition, we showed that TQ-6 inhibited OH• formation and platelet activation in collagen-
stimulated platelets, suggesting that free radical scavenging action can be involved in
TQ-6-mediated inhibition of in vivo thrombogenesis [10]. The present study examined
the antioxidant property of TQ-6 by determining its radical scavenging and Nrf2/HO-1
induction potential in vitro. Moreover, the anti-inflammatory action of TQ-6 was compared
with the nonsteroidal anti-inflammatory drug indomethacin in the rat paw edema model.

2. Materials and Methods
2.1. Materials

Fetal bovine serum (FBS), Dulbecco’s modified Eagle medium (DMEM), L-glutamine
penicillin/streptomycin, and anti-α-tubulin monoclonal antibodies were purchased from
Invitrogen (Thermo Fisher Scientific, Waltham, MA, USA). Lipopolysaccharide (LPS) (Es-
cherichia coli 0127:B8), 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and dimethyl sulfoxide
(DMSO), and were purchased from Sigma-Aldrich (St. Louis, MO, USA). 1,1-diphenyl-2-
picrylhydrazyl (DPPH) and galvinoxyl were purchased from Nacalai Tesque (Kyoto, Japan).
Anti-HO-1 and Nrf2 polyclonal antibodies (pAb) were purchased from Enzo, Farmingdale,
New York and Genetex, Irvine, CA, USA, respectively. Amersham, Buckinghamshire,
UK was supplied horseradish peroxidase-conjugated donkey anti-rabbit and anti-mouse
immunoglobulin G (IgG). GE Healthcare Life Sciences (Waukesha, WI, USA) supplied
enhanced chemiluminescence (ECL) western blotting detection reagents and Hybond™-P
polyvinylidene difluoride (PVDF) blotting membranes.

2.2. Synthesis of TQ-6

TQ-6 and its ligand were synthesized according to the method described by Hsiao
et al. [10] and it dissolved in DMSO for analysis. The final concentration of stock solution
of TQ-6 in DMSO was 100 mM, which was diluted in >99% DMSO.

2.3. DPPH and Galvinoxyl Radical Scavenging Assay

DPPH or galvinoxyl (500 µM) and TQ-6 (10 and 20 µM) were added to a reaction
mixture containing distilled water and stirred well by using pipette for few sec. After
30 min incubation at 37 ◦C, electron spin resonance (ESR) spectra were measured with
the conditions of 20 mW, 9.78 GHz, 100 G scan and 5 × 104 receiver gain. The variation
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amplitude 1 G, and the time constant 164 ms was set. Individual sample was scanned for
42 s, with sum of three scans. A quartz flat cell was used to document the ESR spectra
signals for the detection of DPPH and Galvinoxyl Radicals.

2.4. Superoxide Scavenging Assay

A xanthine/xanthine oxidase (X/XO) system was adopted to produce superoxide
to a quantity necessary to assay the superoxide-scavenging activity of TQ-6 as defined
previously [11]. Concisely, PBS (pH 7.4) mixture solution contained 0.1 mM DTPA, 10 mM
5-Diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO), 1 mM hypoxanthine, and
0.2 U/mL XO with or without TQ-6. Following 1 min incubation at 37 ◦C, the incubation
mixture was moved to a flat cell to measure ESR spectra.

2.5. Fenton Reaction Analysis by ESR Spectrometry

ESR spectrometry (Bruker EMX ESR, Billerica, MA, USA) analysis was done as defined
earlier [12]. The suspension of the Fenton reaction (50 µM FeSO4 + 2 mM H2O2) was
preincubated with 0.1% DMSO or TQ-6 (10 and 20 µM) for 3 min, and 100 µM DMPO was
added to the suspension before ESR spectrometry.

2.6. Cell Cultivation

The American Type Culture Collection (ATCC) was supplied RAW 264.7 cells (TIB-71),
they were cultivated in DMEM contained with 10% FBS, 100 U/mL penicillin G, and 100
mg/mL streptomycin at 37 ◦C in a moistened atmosphere of 5% CO2/95% air [9].

2.7. Measurement of OH• Formation

The ESR method was used to measure OH• as labelled before [10]. RAW 264.7 cells
(5 × 105 cells) were pretreated with TQ-6 (10 and 20 µM) or DMSO for 20 min, and LPS
(1 µg/mL) was subsequently added. ESR spectra were recorded as mentioned in the
Section 2.3. The ESR spectrum analysis was performed by using WIN-EPR, version 921,201
supplied by BRUKER-FRANZEN Analytik GmbH (Bremen, Germany).

2.8. Quantitative Real-Time PCR (RT-qPCR)

To analyze the expression of target genes, a StepOne Real-Time PCR system (Applied
Biosystems; Thermo Fisher Scientific, Inc.) was applied to run RT-qPCR and it was per-
formed by using Fast SYBR®-Green Master mix (Thermo Fisher Scientific, Inc.) per the
manufacturer’s instructions. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was
used as positive control. The conditions of RT-qPCR cycling were Hot-start activation at
95 ◦C for 20 s; 40 cycles of denaturation at 95 ◦C for 3 s and annealing/extension at 60 ◦C
for 30 s. The specific primers were showed in Table 1. A comparative CT method (2-∆∆Cq)
was applied to measure the intensity of PCR bands [13].

Table 1. Primer sequences.

Gene Primer Sequence Accession No.

Nrf2 Forward 5′-AGC AGG ACA TGG AGC AAG TT-3′

Reverse 5′-TTC TTT TTC CAG CGA GGA GA-3 NM_010902.4

HO-1 Forward 5′-GCA CTA TGT AAA GCG TCT CC-3′

Reverse 5′-GAC TCT GGT CTT TGT GTT CC-3’ NM_010442.2

GAPDH Forward 5′-GAA CAT CAT CCC TGC ATC CA-3′

Reverse 5′-GCC AGT GAG CTT CCC GTT CA-3′ NM_001289726.1

2.9. Immunoblotting

According to the method defined by Sheu et al. [14], the immunoblotting assay was
done to detect the targeting protein expression. For this, cells at a density of 8 × 105/dish
were cultured and treated with TQ-6 or DMSO for 20 min and then stimulated with LPS
(1 µg/mL). The extracted proteins (50 µg) using the lysis buffer (50 mM HEPES, 5 mM



Appl. Sci. 2021, 11, 1008 4 of 13

EDTA, 50 mM NaCl and 1% Triton X-100) were separated in a 12% SDS-PAGE, and then
transferred to PVDF membranes (0.45 µm). Using 5% skimmed milk, the membranes
were blocked and titrated with primary antibodies against Nrf2 and HO-1 followed by
HRP-linked anti-mouse IgG or anti-rabbit IgG secondary antibodies. The immune-reactive
bands were visualized using ECL system and their densities were measured by the Biolight
Windows Application, V2000.01 (Bio-Profil, Vilber Lourmat, France).

2.10. Carrageenan-Induced Rat Paw Edema Measurement

A total of 30 male Wistar rats (200–250 g) were procured from BioLASCO, Taipei,
Taiwan. The Institutional Animal Care and Use Committee, Taipei Medical University
(LAC-2015-0267) approved animal experiments and care procedures. The animals were
maintained at a condition with 22 ± 4 ◦C temperature, 50 ± 20% humidity and 12 h
light/dark cycle in animal center. They had access to standard rodent pellet food and water
ad libitum. The rats were anesthetized by 5% isoflurane. Animals were grouped as: (i) ve-
hicle control (20 µL, 0.1% DMSO); (ii) carrageenan control; (iii) standard anti-inflammatory
drug indomethacin (5 mg/kg b.w.); and (iv) and (v) 1 and 2 mg/kg of TQ-6, respectively.
A carrageenan-induced paw edema was measured as described previously [15], with some
minor modifications. Paw thickness was measured before (0 h) or after 1, 2, 4, 6, and 24 h
carrageenan injection.

2.11. Statistical Analysis

Results are presented as the mean ± standard error (SEM). One-way analysis of
variance (one-way ANOVA) was applied to measure the data. The significant differences
among the groups were compared by using the Newman-Keuls method. A p value <0.05
was considered as statistically significant.

3. Results
3.1. TQ-6 Reduces DPPH and Galvinoxyl Free Radical Formation

The DPPH radical scavenging activity is commonly used for evaluating the antioxidant
activity of drugs or compounds [16]. These radicals are counteracted by antioxidants via
donating either electron or hydrogen atoms [17]. As shown in Figure 1A, TQ-6 (20 µM)
increased DPPH scavenging capacity compared with DMSO.

Galvinoxyl radical is also a relatively stable radical commonly used in antioxidant
assays [17,18]. TQ-6 (20 µM) scavenges galvinoxyl radicals, showing considerable radical-
scavenging activity (Figure 1B). Moreover, TQ-6 is more potent on scavenging galvinoxyl
radical than DPPH. These results indicated that TQ-6 showed stronger scavenging activity
against DPPH and galvinoxyl radicals.

3.2. Effect of TQ-6 on Superoxide Anion Formation-Derived from X/XO and OH• Formation

Figure 2A shows the superoxide-scavenging activity of TQ-6 via decreased the spec-
trum intensity of DEPMPO/superoxide adduct (DEPMPO-OOH). ESR radical spectrum
signal heights were concentration dependently inhibited by 10 and 20 µM TQ-6. In ad-
dition, OH• radical formation was observed in Fenton reaction solution (Figure 2B), and
treatment with 10 or 20µM TQ-6 diminished Fenton reaction-induced OH•.

3.3. TQ-6 Inhibits OH• and ROS Formation

The generation of nitric oxide and superoxide anions is highly associated with cell and
tissue injury and redox signaling in activated macrophages [19]. A classic ESR signal for the
production of OH• radical was detected in LPS-stimulated (1 µg/mL) cells (Figure 3A(a,b)).
TQ-6 (10 and 20 µM) considerably attenuated LPS-triggered OH• radical formation in RAW
264.7 cells (Figure 3A(c,d)). From this result, it can be proposed that the inhibitory effect
of TQ-6 in LPS-induced macrophage activation may partially be suppressed through free
radical generation. In addition, the total ROS level was estimated by using DCFDA, a



Appl. Sci. 2021, 11, 1008 5 of 13

cell-permeative ROS-sensitive dye. The results found that LPS-induced ROS formation in
macrophages was significantly not affected by TQ-6 (data not shown).
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Figure 1. Scavenging effect of TQ-6 on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and galvinoxyl radicals.
(A) The reaction mixture contained 1.0 mM DPPH in the presence or absence of TQ-6. Line a, DMSO
(0.1%) without DPPH; Line b, dimethyl sulfoxide (DMSO); Line c, 10 µM TQ-6; and Line d, 20 µM
TQ-6 with DPPH. (B) TQ-6 with different concentrations were mixed with 500 µM galvinoxyl. Line
a, DMSO (0.1%) without galvinoxyl; Line b, DMSO; Line c, 10 µM TQ-6; and Line d, 20 µM TQ-6.
Spectra are representative examples of four similar experiments. The horizontal axis means the
magnetic field [G].
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Figure 2. Effect of TQ-6 on the xanthine/xanthine oxidase system-generated 5-Diethoxyphosphoryl-
5-methyl-1-pyrroline N-oxide (DEPMPO)-superoxide spin adduct and Fenton reaction solution
(n = 4). (A) The ESR settings were followed as described in Figure 1; however, KO2 was absent,
and 36 µM xanthine and 32 mU/mL xanthine oxidase were present. Line a, DMSO (0.1%); Line b,
DMSO; Line c, 10 µM TQ-6; and Line d, 20 µM TQ-6. (B) The reaction mixture contained 1 mM Fe2+,
1.0% H2O2, and 200 mM DMPO in the presence or absence of TQ-6. The horizontal axis means the
magnetic field [G].
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Figure 3. TQ-6 inhibits OH• formation in LPS-stimulated RAW264.7 cells. (A) Cells were treated
with (a) 0.1% DMSO or (b) DMSO or TQ-6 at (c) 10 µM or (d) 20 µM and then LPS (1 µg/mL) added
to trigger OH• formation. An asterisk (*) indicates the formation of OH•. (B) Signal intensity was
expressed as mean ± SEM (n = 4), which analyzed by using WIN-EPR, version 921201. *** p < 0.001,
compared with the control group; ### p < 0.001, compared with the LPS group. Spectra are represen-
tative examples of four similar experiments. ctl: control (0.1% DMSO). The horizontal axis means the
magnetic field [G].

3.4. TQ-6 Enhances Nrf2/HO-1 mRNA and Protein Expression

Nrf2 inhibits proinflammatory cytokine expression, inflammatory responses, and ROS
production [20]; HO-1 is a major antioxidant enzyme mediated by Nrf2 activation [21–23].
To determine whether TQ-6 activates Nrf2 signaling, RAW264.7 cells were treated with
20 µM TQ-6 for 20 min and then LPS (1 µg/mL) was added. The Nrf2 and HO-1 mRNA
expression was measured using RT-qPCR (Figure 4A,B) and their protein expression was
measured by Western blotting (Figure 4C,D). Nrf2 and HO-1 TQ-6 mRNA and protein
expressions were upregulated in LPS-stimulated RAW264.7 cells (Figure 4A–D). However,
cells treated with TQ-6 alone did not change the expression of Nrf2 and HO-1, as they
almost similarly expressed to normal cells (Figure 4E,F). This indicates that TQ-6 holds
protective effects without inducing cytolysis.
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Figure 4. Effect of TQ-6 on Nrf2/HO-1 in LPS-stimulated RAW 264.7 cells. In TQ-6-treated cells
followed with LPS exposure, the mRNA expression levels of (A) Nrf2 and (B) HO-1 were evaluated
by RT-qPCR. The protein expression of (C) Nrf2 and (D) HO-1 was determined by immunoblotting.
(E,F) Cells were treated with TQ-6 (10 and 20 µM) alone for 20 min, (E) Nrf2 and (F) HO-1 protein
expression were determined by immunoblotting. Results are given as the means ± SEM (n = 4)
and measured by the Biolight Windows Application, V2000.01 (Bio-Profil, Vilber Lourmat, France).
* p < 0.05 and *** p < 0.001 compared with the LPS group.

3.5. Carrageenan-Induced Inflammatory Response in Rats

Carrageenan injection into the hind paw of rats resulted in edema, as shown by paw
thickness. The paw thickness of DMSO injection was 5.02 ± 0.08 mm at 0 h and remained
constant throughout the subsequent 24 h. The initial paw thickness of 5.02 ± 0.04 mm
reached its maximum of 7.03 ± 0.10 mm at 4 h, and it again decreased into 5.30 ± 0.15 mm
at 24 h in the carrageenan injected control group. The indomethacin treatment group
showed an initial paw thickness of 5.00 ± 0.02 mm, which increased to 5.65 ± 0.39 mm at
4 h and steadily reduced to 5.38 ± 0.23 mm and 5.00 ± 0.11 mm at 6 and 24 h, respectively.
Animals treated with TQ-6 (1 mg/kg) showed an initial paw thickness of 4.97 ± 0.05 mm,
which increased to 5.85± 0.28 mm at 2 h and decreased to 5.82± 0.26 mm, 5.53 ± 0.25 mm,
and 4.97 ± 0.05 mm at 4, 6, and 24 h, respectively. The paw thickness of animals treated
with TQ-6 (2 mg/kg) at 0 h was 5.00 ± 0.03 mm and increased to 5.58 ± 0.37 mm at
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4 h, which decreased to 5.42 ± 0.15 mm and 5.13 ± 0.12 mm at 6 and 24 h, respectively
(Figure 5). The data showed that TQ-6 exhibited anti-inflammatory activity via reducing
carrageenan-induced paw edema.
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4. Discussion

Our previous studies have shown that TQ-6 potently inhibited LPS-induced inflamma-
tory events in RAW264.7 cells [9] and thrombosis in mice [10]. Moreover, TQ-6 diminishes
collagen-induced OH• in platelets [10]. This study mainly focused on examining the free
radical scavenging mechanism of TQ-6 to its anti-inflammatory action and found that TQ-6
scavenges DPPH, galvinoxyl, superoxide (O2

−), and OH• radicals in cell-free systems. Fur-
thermore, TQ-6 exhibited potent antioxidative activity through induction of the Nrf2/HO-1
signaling pathway. Additionally, TQ-6 prevented carrageenan-induced paw edema in rats.
These results have demonstrated that the free radical scavenging properties of TQ-6 may
play a role in its cell protective effect.

LPS can activate a local or systemic inflammatory response in both immune non-
immune cells to initiate the inflammatory events. The LPS-pattern recognition receptor,
the Toll-like receptor 4 (TLR4) is widely expressed including cardiomyocytes. Therefore,
post- treatment of TQ-6 may not exacerbate specific targets on LPS-induced inflammatory
dysfunctions such as LPS induce diversity of makers that were recurrently detected in
patients with sepsis and also in animals [24]. Thus, in this study, TQ-6 was pretreated to
test its anti-inflammatory function in the LPS-induced macrophage cells.

Exogenous and endogenous stimulators induce inflammatory reactions, which are
reflected in vascular and cellular events. Inflammation-induced ROS production, such as
O2
−, OH•, hydrogen peroxide (H2O2), peroxy radicals (ROO•), and singlet oxygen (1O2)

induce oxidative stress which may lead to cancer and neurodegenerative diseases [25].
In addition, DPPH and galvinoxyl radicals are largely used as substrates to evaluate the
antioxidant activity of a drug or substance. DPPH-electron paramagnetic resonance system
has been widely used to detect the radical scavenging activities of hydrophilic and lipophilic
antioxidants [26]. Experiments with galvinoxyl allow not only a comparison of the radical
scavenging activity between samples but also the determination of the concentration of
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antioxidants. A previous study showed that Co(II) complexes had stronger scavenging
activity against DPPH than did mefenamic acid [27]. Furthemore, Ingleson et al. [28] used
galvinoxyl-radical as a model to study the radical scavenging effect of Co(II) complex and
the result showed that this metal significantly inhibited galvinoxyl radicals. In this study,
TQ-6 substantially suppressed DPPH free radical production, showing that TQ-6 possesses
the capacity to scavenge such free radicals.

Xanthine oxidase (XO) produces free radicals in post-ischemic cells and tissues [29],
and the X/XO system assay related to an enzymatic reaction which catalyzing the hydrox-
ylation of hypoxanthine to xanthine and then to uric acid which is excreted via kidneys.
However, this systemic assay is not appropriate for lipid-soluble antioxidants. You et al. [30]
showed the inhibitory activity of some metal complexes against XO, of which the cadmium
(II) complex was the more potent XO inhibitor than Zn(II) and Mn(II) complexes. This is
the first study to demonstrate that even 10 µM TQ-6 effectively scavenges non-enzymatic,
potassium superoxide (KO2) system-generated superoxide and was subsequently validated
in the X/XO enzymatic system. These data strongly suggest that TQ-6 can act as a strong
antioxidant in different applications. The antioxidative properties of TQ-6 could not be
only due to XO inhibition but also a direct inhibition of superoxide generation.

Under pathological conditions, macrophages induced ROS through NADPH oxidase
(NOX) activation could be involved in the damages of cell and tissue, killing of pathogen,
and inflammatory signaling [31]. NOX-mediated free radical production is triggered by
the induced p38 MAPK and NF-κB signaling [32]. Studies found that TQ-6 inhibits LPS-
stimulated macrophage activation through inhibiting of NF-κB signaling pathway, such as
IκBα degradation, NF-κB p65 phosphorylation and its nuclear translocation [9]. This also
inhibits OH• formation in activated platelets [10]. A study was found that Ru(II) complexes,
such as [Ru(bpy)2(maip)]2+ and [Ru(bpy)2(paip)]2+ exhibit good antioxidant activity in
terms of inhibiting OH• formation [33]. Here, the free radical scavenging ability of TQ-6
was found in cell-free system and LPS-induced macrophages through ESR spectrometry,
and this assay may have provided direct evidence indicating that TQ-6 has antioxidant
properties. Thus, TQ-6 is capable of reducing the severity of inflammatory diseases via
reduction of oxidative stress and related inflammatory signaling.

Certain anti-inflammatory signaling pathways negatively regulate inflammatory re-
sponses to maintain homeostasis. Several lines of confirmation revealed that HO-1 inhibits
the production of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), IL-6,
and tumor necrosis factor-α (TNF-α) in vitro and in vivo [34–36]. Normally, Nrf2 attaches
to its negative regulator, Kelch-like ECH-associated protein 1 (Keap1), and localizes in
the cytoplasm; however, various stimuli, including ROS, induce nuclear translocation
of Nrf2 and enhance HO-1 production [34]. HO-1 exhibits cytoprotective, antioxidant,
and anti-inflammatory activities [37,38]. Previous study explained that TQ-6 exhibits
anti-inflammatory effects via suppressing of p38 MAPK, NF-κB, iNOS and NO in LPS-
stimulated macrophages [9]. A clear evidence indicated that ROS could activate Nrf2,
NF-κB and MAPK [39]. Here, we found that TQ-6 significantly upregulated Nrf2 expres-
sion followed by HO-1 expression in LPS-stimulated RAW cells. Moreover, Xaus et al. [40]
provide evidence that macrophage apoptosis induced by LPS is mediated by both NO
and TNF-α production. A previous our paper also showed that TQ-6 dampened NO
production, and TNF-α expression in LPS-induced macrophages; however, these are not
increased when treating with TQ-6 alone [9]. From this finding, it assumed that TQ-6 could
inhibit LPS-induced macrophage apoptosis. The absence of evaluating the direct evidence
whether TQ-6 has effective in LPS-induced apoptosis in macrophages and the similar
attributes between macrophages and neutrophils as new therapeutic anti-inflammatory
strategies subjected to TQ-6 treatment is regarded as the limitation of this study.

The animal paw edema model has been commonly used to evaluate the anti-edematous
effect of drugs. Carrageenan-induced edema model has long been appreciated as an ex-
cellent model for quick in vivo screening of NSAIDs [41]. Kale et al. [42] noticed a zinc
complex reduced carrageenan-induced rat paw edema. In this study, as TQ-6 adminis-
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tered to rats acutely for 24 h to test its in vivo anti-inflammatory efficacy, we have chosen
carrageenan injection rather than LPS, and resulted in a significant reduction of rat paw
thickness, thus demonstrating its anti-inflammatory properties. Consistently, in this inflam-
mation model, TQ-6 showed a significant decrease in rat paw thickness, thus demonstrating
its anti-inflammatory response. Pharmacokinetic (PK) study is an extensive area to focus
for the new drug development. The total accumulation of ruthenium in peripheral WBC
had been reported in nanomoles/mg protein and quantified in 23 patients [43]. However,
the lack of PK study to know the bioavailability of TQ-6 in macrophages and clinical
trial for the safety of TQ-6 in humans is the limitation of this study and this needs to be
performed in the near future.

5. Conclusions

This study analyzed the antioxidative role of TQ-6 in cell-free and RAW 264.7 cell
model systems by using ESR in vitro and its anti-inflammatory properties in rat paw
edema model in vivo. Our results demonstrated that TQ-6 scavenged DPPH, hydroxyl,
galvinoxyl, and superoxide free radicals. Furthermore, we found that TQ-6 exerted anti-
inflammatory action via inducing Nrf2/HO-1 pathway in vitro. Additionally, the anti-
inflammatory mechanism of TQ-6 may be beneficial for treatment of oxidative stress-
mediated inflammatory diseases.
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