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Abstract: This paper deals with optimizing the location of ambulance stations in a two-tiered
emergency medical system in an urban environment. Several variants of station distribution are
calculated by different mathematical programming models and are evaluated by a detailed computer
simulation model. A new modification of the modular capacitated location model is proposed.
Two ways of demand modelling are applied; namely, the aggregation of the ambient population
and the aggregation of permanent residents at the street level. A case study of the city of Prešov,
Slovakia is used to assess the models. The performance of the current and proposed sets of locations
is evaluated using real historical data on ambulance trips. Computer simulation demonstrates that
the modular capacitated location model, with the ambient population demand, significantly reduces
the average response time to high-priority patients (by 79 s in the city and 62 s in the district) and
increases the percentage of high-priority calls responded to within 8 min (by almost 4% in the city
and 5% in the district). Our findings show that a significant improvement in the availability of the
service can be achieved when ambulances are not accumulated at a few stations but rather spread
over the city territory.

Keywords: emergency medical service; ambulance location; computer simulation; response time;
coverage

1. Introduction

Emergency medical services (EMS) play the main role in pre-hospital medical care.
Their goal is to provide timely and appropriate treatment to patients with emergency
medical conditions and transport them to the nearest appropriate healthcare facility. Pa-
tients’ survivability and morbidity are affected by the efficiency of the interventions that,
in turn, depend on the ambulance base location, the ambulance allocation to the stations,
and ambulance dispatching decisions. Planning EMS at all levels (strategic, tactical, and
operational) represents a challenging problem that is still topical in the constantly changing
socioeconomic environment.

The ambulance location is an optimization problem that deals with the location of
the base stations where the vehicles providing emergency medical services are housed.
The problem has attracted researchers’ attention for more than 40 years. Several excellent
review papers trace the evolution of modelling approaches [1–3]. The importance of
sitting emergency facilities has not diminished over the years because population ageing
leads to a growing demand for healthcare, including urgent pre-hospital care [4,5]. In
addition, the increasing availability of demographic, geographical, and transportation
data allows for designing better optimization location models [6]. Incorporating more
detail makes the models more exact and enables them to better reflect the real operation
of the system. Simultaneously, mathematical programming solvers such as CPLEX and
Gurobi are constantly being improved, and they are becoming more able to solve more
complicated models, e.g., [7].
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This paper deals with tactical decisions about locating EMS stations in an urban area.
We are trying to improve the existing EMS system. We respect the current number of
stations but look to locate them in a better way, with the view to increase the availability
of the service, especially for patients in critical conditions. We concentrate on the main
goal of EMS—to provide a rapid response to medical emergencies. The costs associated
with the opening of stations, or the costs of relocating them from their current positions,
are not considered because it is beyond the scope of our research to look for potential
locations where the stations can be sited and thus to estimate investment costs related
to the candidate locations. Instead of considering the costs associated with every closed
or open station, one can limit the number of stations that can be relocated under a given
budget constraint. Currently, we suppose that no stations can be added, but there are no
limitations regarding the number of relocated stations. In general, the costs of constructing
EMS stations are hard to predict, so most studies omit them and focus on performance
criteria. If the costs are taken into account (e.g., [7,8]), then they are determined empirically
without serious justification.

The growing availability of demographic data and data on road networks enables
us to better predict where people demanding EMS are located. Two principal approaches
have been applied so far to model demand zones in a city. Either the city needs to be
covered by a rectangular grid [9–13], with a grid element that corresponds to a demand
zone; or, the demand zones need to be identified with urban administrative units, such
as census areas [14], city zones [15], postal codes [6], and suburbs [16]. The modelling
approach depends on the data availability. The studies using a grid structure usually
identify the demand for EMS with historical calls archived by an information system. On
the other hand, when demand zones correspond to census areas or other territorial units,
then the demand usually corresponds to the population of the unit. This latter method
allows for the incorporation of demographic characteristics, such as gender or age, into the
demand prediction [14]. However, we are not aware of a comparative study that would
recommend one or the other method. That is why we decided to use both methods in
our research and assess them by means of computer simulation. For the grid model, we
have used the LandScan data model that contains the average number of people over
24 h in cells of approximately 1 km2. Instead of large census units, we investigate a more
detailed demand model. We draw inspiration from the local administration of the city
of Prešov (https://egov.presov.sk/, accessed on 18 December 2021) that publishes and
updates, weekly, the number of citizens in every street in the town. A benefit of having
such data is that every street may be regarded as a separate demand zone and the center of
the street as an aggregated demand point. Such a microscopic approach enables the EMS
system to reflect the urban development and to relocate resources closer to residents.

The number of articles related to EMS planning has grown rapidly during the last two
decades. This growth may be attributed to increases in the availability of data and in the
power of decision-supporting software tools. Several survey articles have been published
during this period. A recent survey of location models applied to healthcare facilities was
presented by Ahmadi-Javid et al. [2]. The authors focused on the two most frequent types
of problems, namely, the covering and median problems. The former class of problems uses
the concept of coverage as an analogy to a typical performance measure of an EMS system,
such as the proportion of patients responded to within a certain time standard [17,18]. If a
patient is reached by an ambulance within the time limit, they are said to be covered by the
service. The goal is either to cover the whole region with a minimum number of facilities,
or to maximize the number of customers covered by a fixed number of facilities. In the
latter group of problems, the so-called median problems, the quality of service is identified
with the travel time that patients take to get to the closest facility, or the response time that
ambulances need to reach the patients. Both types of problems admit several variations to
allow for additional criteria and constraints from real-world applications.

Optimization problems related to the emergency medical services are surveyed in [19].
Aringhieri et al. draws readers’ attention to the shortcomings of various models for location
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of emergency centers. They point out that coverage or time-based performance measures
are only a proxy for health outcomes. The drawback of the coverage concept is that it
distinguishes only two states of a patient, covered or not covered. The response time does
not play a role if it is below the time limit. Therefore, the same level of service is said to be
provided if an ambulance comes in 1 min or in 15 min (in the event of a 15-min standard).
In addition, patients who are not covered do not contribute to the objective function value
at all, so their response times may be arbitrarily long.

Another shortcoming of the former coverage models, such as the location set covering
problem or the maximal covering location problem, is that they are based on a simplifying
assumption that ambulances are always available when they are needed. The result
is that the solution overestimates the real coverage. The maximum expected covering
location problem (MEXCLP) offers a more realistic way of modelling the ambulance
availability. It aims to locate a given number of ambulance stations in order to maximize
the expected coverage, which depends on the busy fraction, defined as the probability
that an ambulance is unavailable to immediately respond to an emergency call. The
MEXCLP has been widely reported in the context of the EMS design. It is recommended
by Erkut et al. [20] to be applied instead of the maximum availability/reliability models
that also deal with the uncertain availability of ambulances but lead to a design that is
too expensive. A modified MEXCLP model was used to optimize the distribution of
ambulances in Edmonton, Canada [21]. Ingolfsson et al. considered the variation in pre-
trip preparation and travel times, and included correction factors that accounted for the
dependence in the busy fractions between ambulances. Stochastic response times were
also used in [22]. The uncertainty is expressed as a probability that the demand point,
j, will be reached by an ambulance from the base, i, within the time threshold. Van den
Berg et al. demonstrated their approach in the region of Amsterdam, Netherlands. The
study [9] enhanced the MEXCLP by considering multiple customer types, as well as two
different types of emergency vehicles. The objective was to maximize the total number of
expected Priority 1 calls covered within a specified amount of time. Dispatching rules were
included in the model. The experiments were conducted using real-world data collected
from Hanover County, Virginia. Sorensen and Church [23] proposed a hybrid model that
combined the maximum expected coverage goal of the MEXCLP with the reliability of the
service at every demand node. Although the authors reported the superiority of their model
compared to the original MEXCLP model, the benefit of the model in practice has not been
proved sufficiently, since the results were based on a rather small case study (55 demand
nodes) and a simple simulation model. Van den Berg and van Essen [6] assessed several
ambulance location models in the view of the performance indicators frequently used in
practice. Simulation experiments with real-world case studies showed that the MEXCLP
and the expected response time model (ERTM) performed the best. However, the ERTM
model is rather complicated, and it takes a long computing time. That is why the average
response time model is recommended as a good alternative.

The average response time model is an application-related name for the model of
the well-known p-median problem (pMP) that seeks the location of p facilities, so that
the average travel time between customers and their closest facility is as short as pos-
sible. Several other studies proved the practical applicability of the pMP. For example,
Sasaki et al. [14] proposed optimal locations for ambulances in the city of Niigata, Japan.
Dzator and Dzator [16] achieved a significant improvement in the average response time by
using the pMP for two sub-regions of the Perth Metropolitan area. The pMP was also used
in a study by Garner and van den Berg [24] to locate the helicopter emergency medical
service bases in the state of New South Wales, Australia.

The weak point of the cited models is the way of modelling ambulance availability.
The models either ignore the fact that the closest ambulance may not be idle when it is
needed, or they assume that all ambulances are unavailable for the same amount of time.
Both these assumptions lead to an oversimplified model.
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Hammami and Jebali [7] increased the accuracy of the location model by explicitly
considering the ambulance trip time that included not only the response time, but also
the on-scene time, the time of transportation to the hospital, the drop-off time, and the
travel time from the hospital to the station. Their modular capacitated location model
decides on the locations of the stations, the number of ambulances to be assigned to each
of them, and the demand allocation to the stations. The objective function is the total
system costs, including the station-opening costs, the costs of allocating ambulances to
the existing stations, and the transportation costs. This model inspired us, but we had to
adapt it to the Franco-German style of EMS delivery that is common in European countries.
Hammami and Jebali’s model reflects the Anglo-American system, where all patients are
rapidly transported to the hospital with fewer pre-hospital interventions. On the other
hand, emergency teams in the Franco-German model are qualified to treat patients in
their homes or at the scene. This results in many EMS users being treated at the site of an
incident and being transported to hospitals less frequently.

Only few of the mentioned publications compared several location models mutually.
If they did, they provided only analytical results that suffered from the same simplifying
assumptions that were used in the modelling phase. The only exception is the study by
van den Berg and van Essen [6] who use computer simulation to assess the models in
realistic situations.

In regard to the solution methods, most ambulance location problems are modelled as
mathematical programming problems and are solved by a general-purpose optimization
solver [2]. Only a few studies propose such complicated models that cannot be solved to
optimality, and require using a metaheuristic method, such as the tabu search [11], variable
neighborhood search [10], or ant colony optimization [25].

In this study we propose a modification of the modular capacitated location model [26]
and compare it to the most successful models reported in [6,14,16,20,24]; namely, the
p-median model, the maximum expected coverage model, and the expected response
time model. Firstly, we will evaluate the solutions of the models using the criteria that
correspond to their objective functions, namely, the average response time, the expected
response time, and the expected coverage within two time thresholds. However, this
evaluation is not significant because every model beats the others on its objective function.
To assess the models in more realistic settings, we will conduct a simulation study that
captures the stochastic character of the system. Computer simulation allows for the
estimation of a lot of performance indicators. The most important indicators from the
emergency management viewpoint are the average response time, the coverage of high-
priority patients, and the coverage of all patients regardless of their priority.

The evaluation of the location models will be done for two different demand models,
where the aim will be to reveal whether the demand model has an impact on ambulance
location. The first demand model represents the ambient population (an average over
24 h) distribution, and the second one is based only on demographic data on permanent
residents aggregated at the street level.

The goal of our study is to answer the following questions:

1. Which location model results in the best expected performance in practice?
2. Which demand model gives better ambulance deployment?

2. Materials and Methods

We will start this section by the description of the pMP, MEXCLP, and ERTM models.
All of them are discrete location models [27]. This means that facilities can be located at the
selected potential locations only. In practice, an analyst is supposed to select appropriate
candidate locations prior to the optimization.

We introduced a unified notation. The following sets, indices, and parameters are
common to all models.
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Sets and indices

I set of candidate locations
J set of demand points
i ∈ I candidate location
i ∈ J demand point
Nj =

{
i ∈ I : tij ≤ Tmax} set of candidate locations in the neighbourhood of demand

point j

Parameters

p number of ambulances to be sited
q probability of an ambulance being unavailable
Tmax the desired service standard (min)
bj weight of demand point j (number of potential patients)
tij shortest travel time of an ambulance driving at all possible speeds from location i to
demand point j (min)

Decision variables

xi the number of ambulances to be located at site i

Except for the location variables, xi, each of the following models needed additional
variables to define its specific objective function.

2.1. The p-Median Problem

To calculate the average travel time between stations and demand zones, the pMP
uses the allocation variables zij. Variable zij is one if the open station at site i is the closest
station to demand point j. The mathematical programming model is as follows:

minimize ∑i∈I ∑j∈J tijbjzij (1)

subject to ∑i∈I zij = 1 f or j ∈ J (2)

zij ≤ xi f or i ∈ I, j ∈ J (3)

∑
i∈I

xi = p (4)

xi ∈ {0, 1} f or i ∈ I (5)

zij ∈ {0, 1} f or i ∈ I, j ∈ J (6)

The objective function (1) minimizes the travel time between stations and demand
points weighted by demand volume bj. This criterion reflects the main objective of the
EMS system: to provide pre-hospital care as soon as possible. The total travel time can
be divided by the total volume of demand to give an average travel time. Constraints (2)
ensure that every demand point j lies in the service area of exactly one station. Constraints
(3) say that if no station is open at candidate location i, then no demand point j can be
served from the location i. Constraint (4) defines the total number of stations in the town.
Since placing multiple stations at the same location i would not improve the objective
function value, variables xi are defined as binary by constraints (5). Constraints (6) are the
integrality constraints for allocation variables.

2.2. The Maximum Expected Covering Location Problem

The MEXCLP maximizes the number of patients that are likely to have received the
service within a given time threshold. We need to know the number of ambulances located
in the neighborhood at a demand point. This can be modelled by binary variables, yjk, that
take the value 1 if demand point j is covered by at least k stations. First, we present the
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formulation of the MEXCLP by Church and Murray [28] that allows a single facility to be
placed at a candidate location:

minimize ∑j∈J ∑p
k=1 bj(1− q)qk−1yjk (7)

subject to ∑i∈Nj
xi ≥∑p

k=1 yjk f or j ∈ J (8)

∑
i∈I

xi = p (9)

xi ∈ {0, 1} f or i ∈ I (10)

yjk ∈ {0, 1} f or j ∈ J, k = 1, . . . , p (11)

The objective function (7) maximizes the expected coverage of all the demand points,
taking into account the possible unavailability of ambulances. For demand point j, the
term bj(1− q)qk−1 represents the increase in the expected coverage brought about by the
kth ambulance. According to constraints (8), sitting multiple stations in the neighborhood
of demand point j enables multiple variables yjk to take the value 1 and account for the
increase in coverage in the objective function. Constraint (9) limits the number of the
located stations. Constraints (10) and (11) impose binary integer restrictions on the decision
variables.

In a different version of the model by Marianov and Serra [27], location variables xi
can take non-negative integer values, meaning that multiple ambulances can be allocated
to an open station i.

2.3. The Expected Response Time Model

The ERTM minimizes the demand-weighted expected response time [6]. This can be
calculated using decision variables, wijk, that specify the nearest ambulance, the second
nearest ambulance, etc. at every demand point. Variable wijk is one if an ambulance located
at station i is the kth nearest ambulance to demand point j. The model is as follows:

minimize ∑i∈I ∑j∈J ∑p−1
k=1 bjtij(1− q)qk−1wijk + ∑i∈I ∑j∈J bjtijqp−1wijp (12)

subject to ∑i∈I wijk = 1 f or j ∈ J, k = 1, . . . , p (13)

xi ≥∑p
k=1 wijk f or i ∈ I, j ∈ J (14)

∑
i∈I

xi = p (15)

xi ∈ Z+ f or i ∈ I (16)

wijk ∈ {0, 1} f or i ∈ I, j ∈ J, k = 1, . . . , p (17)

The first term in the objective function (12) is similar to the expected coverage (7). The
second term is the probability that demand points will be served by the farthest (i.e., pth
nearest) ambulance. According to constraints (13), every demand point must be served by
exactly one ambulance, so the probabilities of being served by the first, second, etc. to pth
nearest ambulance must sum up to one. That is why the probability of using the farthest
ambulance is 1−∑

p−1
k=1 (1− q)qk−1 = qp−1. Ambulances from a candidate location i may

be dispatched to serve demand point j only if at least one ambulance is located at i (14).
The remaining constraints were already explained above.

2.4. The Modular Capacitated Location Problem

In this section we propose a modification of the modular capacitated location problem
(MCLP). This location problem arose in healthcare strategic planning [26]. Many healthcare
facilities may be built from modules of a certain size. The number of patients a facility
can serve, as well as the capital and operating costs, depend on the facility size. The
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size of a facility must be chosen only from a finite and discrete set of possible capacities.
Each aggregated customer (a zone or community) can be partially served by more than
one facility. A variant of the MCLP for ambulance locations was presented in [7]. Both
formulations [7,26] minimize the total costs, consisting of the capital and operating costs of
the facilities, as well as the costs induced by serving customers. In this paper we present an
adjusted model of the MCLP, where the objective is the average response time to patients.
Instead of the costs of opening and operating the facilities, the number of ambulances is
limited directly by a given amount. In contrast to the models presented above, this model
allows for differentiating patients’ priorities and the service levels provided by the different
rescue units. The capacity of an ambulance is expressed as the amount of time when the
ambulance is ready for rescue trips. Every trip consumes a portion of this capacity. To
model the trip time more precisely, we take into account not only the travel time to the site
of the incident, but also the transport to a hospital, the drop-off time at the hospital, and the
return to the base station. That is why additional sets and parameters must be introduced.

According to practices in Slovakia and in many other countries, we will distinguish
two patient priorities and two levels of EMS. The highest priority is assigned to patients
who are in a life-threatening condition. The most severe patient diagnoses include cardiac
arrest, stroke, severe respiratory difficulties, chest pain, severe trauma, and unconscious-
ness. These diagnoses are denoted as the First Hour Quintet (FHQ) because the first hour
after a medical incident decides whether the patient survives. An advanced life support
(ALS) ambulance is always dispatched when a call-taker at dispatch center assesses the
emergency as critical. Non-critical calls may be responded to by a basic life support (BLS)
ambulance.

Our model also takes into account a reduced availability of ambulances caused by
technical breaks and secondary transports. The secondary transport is a planned activity
where an ambulance does not respond to an emergency call but transports patients or
medical materials between two healthcare facilities.

In addition to the symbols introduced at the beginning of this section, the following
notations will be used in the MCLP model:
Indices

h hospital
k ambulance type (k = 1—ALS, k = 2—BLS)
l patient priority (l = 1—FHQ, l = 2—others)

Parameters

αk the proportion of the interventions of the type k ambulances, which include the trans-
portation of patients to a hospital
βk a correction factor that reduces the availability of the type k ambulances by the time
they are occupied with secondary trips and technical breaks
γkl coefficient; γkl = 1 if a type k ambulance can serve the priority l patients and γkl = 0
otherwise
pk the maximum number of the type k ambulances
bjl the yearly demand of the priority l patients in demand zone j (the number of patients)
td the average drop-off time at the hospital (min)
tskl the average on-scene time of a type k ambulance serving a priority l patient (min)
tij the travel time of an ambulance driving at a normal speed from location i to its base
station j (min)

Since this model distinguishes ambulance types and patient priorities, the definitions
of the location and allocation variables become slightly different in comparison to the pMP.
Variables xik define how many type k ambulances will be located at the candidate location i.
Variables zijkl are continuous, and they represent the share of the priority l patients in zone
j that will be served by the type k ambulances housed at station i. The mathematical model
is as follows:
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minimize ∑i∈I ∑j∈J ∑2
k=1 ∑2

l=1 bjltijzijkl (18)

subject to ∑i∈I ∑2
k=1 zijkl = 1 f or j ∈ J, l = 1, 2 (19)

zijkl ≤ γkl xik f or i ∈ I, j ∈ J, l = 1, 2, k = 1, 2 (20)

∑i∈I zik ≤ pk f or k = 1, 2 (21)

∑j∈J ∑2
l=1 bjlzijkl

(
tij + tskl + αk

(
tjh + td + thi

)
+ (1− αk)tji

)
≤ 365 ∗ 24 ∗ 60 ∗

(1− βk)xik f or i ∈ I, k = 1, 2
(22)

xik ∈ Z+ f or i ∈ I, k = 1, 2 (23)

zijkl ≥ 0 f or i ∈ I, j ∈ J, l = 1, 2, k = 1, 2 (24)

The objective function (18) minimizes the total response time to all patients. Con-
straints (19) ensure that all patients are served. Constraints (20) show that a type k ambu-
lance can be dispatched from site i to rescue a priority l patient in zone j only if there is
at least one type k ambulance located at i, and its team is qualified to provide the level l
medical care. Constraints (21) ensure that no more than a pre-defined number of ambu-
lances are distributed across a given region. Constraints (22) are capacity constraints; they
limit the availability time of ambulances. Constraints (23) are the integrality constraints for
the number of ambulances. Constraints (24) enable the demand zones to be served from
multiple stations.

2.5. Study Area

As a case study, we chose the city of Prešov. With a population of 84,481 (July 2021),
Prešov is the third largest town in Slovakia. It is the seat of the Prešov Region’s Office, and
it is situated in the north-eastern part of the country (Figure 1).

Figure 1. Prešov Region.

In Slovakia, there were 273 stations distributed all over the country in 2019. The
term “station” has an organizational, rather than a physical, meaning. The government
determines the number of stations and their distribution across the country, assuming
that every station houses one ambulance. The government regulations specify which
municipality (a town, city district, or village) has one or multiple stations, but it does
not specify the particular addresses of the stations. After a provider of urgent healthcare
gets a license to operate a station, they choose a suitable building with a garage for the
ambulance and a room where the crew waits in-between rescue trips. If one company
operates in multiple stations in a town, it may decide to locate multiple stations under
the same address, so the stations share the same building. For example, in the city of
Prešov, Záchranná služba Košice operates five stations located at two addresses. We chose
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this town as a case study because it is the only town with multiple stations whose local
administration publicly shares information on the number of citizens in every street.

2.6. Modelling Demand

If the historical data on the locations of emergency incidents are not available, the
spatial distribution of the demand for EMS must be predicted by a demand model. We
investigated two different demand models. The first one is a grid model which takes
data from the LandScan database (https://landscan.ornl.gov, accessed on 18 December
2021). LandScan data represents an ambient population distribution, meaning the average
presence of people over 24 h. A grid cell corresponds to an area of 30” × 30” (arc-seconds)
in the WGS84 geographical coordinate system. The population distribution is derived from
demographic and geographic data, including land cover, roads, slopes, urban areas, village
locations, and high-resolution imagery analyses. Based upon the spatial data and the
socioeconomic and cultural understanding of an area, cells are weighted for the possible
occurrence of a population during a day. Therefore, the advantage of the ambient spatial
model is that it accounts not only for permanent residents, but also for commuters who are
not city inhabitants but may need emergency services while they are at work or at school.

The territory of Prešov is covered by 121 grid elements with the population count
ranging from 1 to 7827 people, with a median of 79. The centroids of these grid cells are
displayed in Figure 2. The nodes of the road networks that are the nearest to the centroids
are regarded as demand points.

Figure 2. LandScan grid.

We assume that the number of patients is proportional to the ambient population. To
verify this assumption, we did a correlation analysis between the LandScan population
distribution and the real EMS trips performed in 2019 in the city of Prešov. The Spearman
correlation is ρ = 0.847, suggesting a strong correlation.

The alternative demand model uses only demographic data on permanent citizens
aggregated at a high-resolution level. The local administration regularly updates the
number of citizens in every street in the town, which enables us to identify the demand
zones within the streets. In 2019, there were 344 streets in Prešov. The number of residents
ranged from 0 to 5246 people, with a median of 85. For modelling purposes, the street is
represented by its center (Figure 3).

https://landscan.ornl.gov
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Figure 3. Street centers.

Again, we verified that the demand for EMS is proportional to the number of street
residents, using the historical data on EMS trips. The Spearman correlation is ρ = 0.813,
still quite strong, although slightly weaker than in the case of the LandScan population.

To calculate the center of the street, first we need to determine the centroid (geometric
center) of the street. The centroid of the street is the centroid of the envelope enclosing the
street. The coordinates of its corners are defined by the extreme points of the polylines that
form the street in a digital map. The center of the street is, therefore, the point within the
polylines that is nearest to the centroid (Figure 4).

Figure 4. Centroid and center of the Hviezdna street.
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2.7. Setting Parameters in the Location Models

In the pMP, MEXCLP, and ERTM models, the weight bj of a demand point j corre-
sponds to the ambient population in the grid cell j or the number of people living in the
street j, respectively. The MCLP model considers the expected number of patients. The
expected numbers bj1 and bj2 of high-priority and low-priority patients, respectively, can
be calculated using the age structure of the population in the city, and the emergency rates
for the particular age categories [29].

Regardless of the demand model, in this study we suppose that candidate loca-
tions coincide with demand points. The travel time tij is the length (in time units) of
the shortest path from node i to node j on the road network. The time an ambulance
takes to travel along a road segment depends on the kilometer length of the segment,
its quality, its location inside or outside a built-up area, and the average speed of ambu-
lances. The digital street network was downloaded from the OpenStreetMap database
(https://www.openstreetmap.org, accessed on 16 April 2019), which is a freely available
source of geographical data. All directional, turn, and speed regulations are included in
the road network model. For roads without a speed limit, the average travel speed of
ambulances, with respect to a given road category, was applied [30]. When an ambulance is
driving back to its base station, it rides at a lower speed and respects all traffic regulations.
By applying regular speeds, the matrix of longer travel times tij can be calculated.

We have the population data valid for the year 2019 at our disposal. Therefore, in the
discussion, when talking about the current situation or the current state, we refer to this
year. In 2019, there were five stations located at two addresses (e.g., Figure 5). There was
one ALS ambulance at each address. The remaining three stations were of a BLS type. Thus,
the parameters that specify the number of ambulances in the models are set as follows:
p = 5, p1 = 2, p2 = 3. If the optimization model does not specify the type of the located
stations, we simply assume that the station is of the same type as the closest current station.

Figure 5. Ambulance locations using the MCLP model with the LandScan demand model.

The desired service standard Tmax was set with regard to critical patients who are in a
life-threatening condition, and every minute of delay in the response time worsens their
chances to survive dramatically. These patients should be reached within 8 min, which
is a widely accepted standard in most European countries [31]. Therefore, assuming a
one-minute pre-trip delay, we set Tmax to the value of 7 min. A BLS ambulance cannot be
dispatched to priority 1 patients, therefore γ11 = γ12 = γ22 = 1, γ21 = 0.

https://www.openstreetmap.org
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Most of the coefficients of the MCLP model were derived from an EMS trip sample
provided to us by Falck Záchranná a.s., which was the largest EMS provider in Slovakia over
the last decade. The Falck dataset contains depersonalized information on 149,474 EMS
interventions performed in the year 2015. The age of the patient, their initial medical
diagnosis, the type of the intervening ambulance, and the time stamps of the whole EMS
trip (including the transport to hospital, if any) have been recorded. Using the data,
the parameters were set as follow: α1 = 50.96%, α2 = 76.62%, β1 = 2.51%, β2 = 6.75%. In
Prešov, there is only one hospital. The average drop-off time is td = 20.1 min. The on-
scene time depends on the patient’s diagnosis and the crew’s qualification: ts11 = 26.5 min,
ts12 = 24.4 min, ts21 = 24.9 min, ts22 = 23 min.

The probability q of an ambulance being unavailable was estimated using a detailed
computer simulation model [30]. This microscopic agent-based simulation model was
implemented in AnyLogic simulation software and calibrated using the Falck dataset
and publicly available statistics published by the National Dispatch Center. The model
captures all processes along the emergency care pathway, including reliable distributions
of processing times. We simulated the EMS system over the whole country to take into
account the fact that ambulances in a town serve not only the city’s citizens but are also
used on-demand for the surrounding area, as well as making secondary transportations to
more distant hospitals. The probability q of an ambulance being unavailable is calculated
as the average workload of all five ambulances operating in the city (q = 38.35%).

3. Results

The distributions of the stations proposed by the location models are evaluated from
two viewpoints. The first viewpoint comprises static criteria mostly corresponding to the
objective functions of the optimization models. We concentrate on the criteria that are
important in practice, and that can also be evaluated in a dynamic environment by means
of simulation. The static criteria include:

1. Average response time;
2. Average expected response time;
3. Expected coverage within 15 min;
4. Expected coverage within 8 min.

The average response time corresponds to the objective function of the pMP model. It
assumes that the closest ambulance is always available, and it is able to respond immedi-
ately. The average expected response time is calculated by dividing the objective function
of the ERTM model by the total number of potential patients. The expected coverage within
8 min is equal to the objective function of the MEXCLP model. Since the static indicators
reflect a simplified system, they can serve as lower and upper bounds for the response time
and coverage, respectively.

The second viewpoint includes performance indicators that can be evaluated by means
of computer simulation considering all the dynamic and stochastic characteristics of the
events that occur in real operations. The main performance indicators are the following:

1. Average response time to all patients;
2. Percentage of all calls responded to within 15 min;
3. Average response time to high-priority patients;
4. Percentage of high-priority calls responded to within 8 min.

The percentage of calls responded to within a given time threshold corresponds to the
static criteria of the expected coverage.

3.1. Results for the LandScan Demand Model

In this section we evaluate the performance of the location models based on the Land-
Scan distribution of demand in the city of Prešov. Table 1 presents the static criteria values
for the following five models: pMP, MEXCLP with binary location variables, MEXCLP
with integer location variables, ERTM, and MCLP. The last row of the table refers to the
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computing time. The models were solved using the commercial solver Xpress-MP run on a
personal computer equipped with an Intel Core i7 processor with 1.60 GHz and 8 GB RAM.

Table 1. Static evaluation of the location models, LandScan model of demand.

Criterion pMP MEXCLP
Binary

MEXCLP
Integer ERTM MCLP

Average response time (min) 2.67 3.22 3.74 2.89 2.67
Average expected response
time (min) 3.59 3.79 4.01 3.48 3.59

Expected coverage within
15 min (%) 99.08 99.06 99.06 99.07 99.08

Expected coverage within
8 min (%) 97.18 98.34 98.46 97.87 97.18

Computing time (s) 1.13 0.23 0.18 42.94 2.91

From the static viewpoint, no model outperforms the others unambiguously. The
MCLP model results in the same locations of the stations as the pMP model, but proposes a
different distribution of ALS and BLS ambulances. However, ambulance types do not affect
the static criteria. In general, the models with response time objectives work better than
the coverage objective models. Even the expected coverage within the 15 min threshold is
better with the pMP, ERTM, and MCLP models than it is with the MEXCLP model. The
MEXCLP model with integer variables allocated ambulances to three different station
locations. Although its objective function value (the expected coverage within 8 min)
is better than that of the MEXCLP model with binary variables, its overall performance
is worse.

Computer simulation is supposed to verify whether the dominance of the models
with response time objectives holds in practice. The results of the simulation study for the
city of Prešov are in Table 2. The simulation experiment for one set of station locations
consisted of 10 replications. One replication simulated 91 days of EMS performance. For
response times, the mean values from 10 replications with 95% confidence intervals are
reported. For coverage indicators, the mean values of 10 replications are given. The best
values of the indicators are displayed in bold. In the first column, the simulation results for
the current distribution of the stations are shown.

Table 2. Performance indicators for different distributions of the EMS stations in the city of Prešov,
LandScan model of demand.

Indicator Current
Locations pMP MEXCLP

Binary
MEXCLP
Integer ERTM MCLP

Average response time
to all patients (min)

6.12 5.34 5.13 5.30 5.08 5.35
(6.07; 6.17) (5.28; 5.40) (5.03; 5.23) (5.19; 5.41) (5.02; 5.15) (5.24; 5.46)

% of calls responded to
within 15 min 95.21 95.22 95.34 95.41 95.30 95.48

Average response
times to high-priority
patients (min)

5.86 4.64 4.73 5.00 4.56 4.54
(5.78; 5.93) (4.51; 4.76) (4.63; 4.83) (4.84; 5.15) (4.47; 4.65) (4.40; 4.68)

% of high-priority calls
responded to within
8 min

88.18 90.96 93.15 93.08 91.90 91.91

As it is demonstrated, all models result in better EMS performance in comparison to
the current distribution of the stations. The improvements in the average response times
are statistically significant with regard to all patients, as well as to high-priority patients.
The best average response time, regardless of the patient’s priority, has been achieved by
the ERTM model that reduces the current time by 62 s. The MCLP models exhibits the best
improvement in the average response times for high-priority calls (a reduction by 79 s).
Since critical patients are of the EMS’s main concern, we consider the MCLP model as the
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best model from the response time point of view. The locations of the stations proposed by
this model are displayed in Figure 5.

Simulated response times are about one minute longer than the expected times pro-
duced by mathematical models. The reason behind this is that the simulation model reflects
real operations where the ambulances are occupied not only by the calls arising in the city,
but also due to the calls coming from the surrounding villages. In addition, secondary
transports reduce the ambulance availability as well.

The coverage in the city is very good at present; therefore, the possibilities of location
models are limited. The overall coverage meets the national target of reaching 95% of
patients within 15 min. The 8-min coverage rate for high-priority calls exceeds the EU
average of 66.9% [31]. However, the simulation study has shown that improvements in
coverage is still possible, especially regarding high-risk patients. The highest increase in
this indicator (by 5%) was achieved by the MEXCLP model with binary variables. This is
an unexpected result because the integer MEXCLP outperforms the binary MEXCLP in the
static criterion of the 8-min expected coverage. Figure 6 shows that the binary MEXCLP
model concentrates the stations close to the city center.

Figure 6. Ambulance locations using the binary MEXCLP model with the LandScan demand model.

Because the distribution of the stations in the city influences the provision of the
services in the surrounding areas, it is wise to also evaluate the performance indicators
at the district level. The results of the simulation experiment for the district of Prešov are
in Table 3. Here we can see that the best improvement was achieved by the pMP model.
It is not surprising, because the distribution of the stations in the pMP model is the same
as in the MCLP model, and it is more spread out over the city than in the case of the
coverage-based models.
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Table 3. Performance indicators for different distributions of the EMS stations in the district of Prešov,
LandScan model of demand.

Indicator Current
Locations pMP MEXCLP

Binary
MEXCLP
Integer ERTM MCLP

Average response time
to all patients (min)

9.60 8.75 8.89 9.04 8.94 8.81
(9.51; 9.69) (8.70; 8.80) (8.76; 9.02) (8.98; 9.11) (8.88; 9.00) (8.72; 8.90)

% of calls responded to
within 15 min 83.37 85.87 85.17 85.02 84.78 85.83

Average response time
to high-priority
patients (min)

9.43 8.38 8.70 8.86 8.60 8.40
(9.31; 9.55) (8.33; 8.43) (8.53; 8.88) (8.74; 8.99) (8.44; 8.75) (8.28; 8.53)

% of high-priority calls
responded to within
8 min

51.00 56.34 55.07 53.47 53.86 55.82

3.2. Results for the Street Demand Model

In this section we evaluate the mathematical models where the demand is derived
from the permanent residents. The same methodology as in the previous section is applied.

As it shows in the static criteria (Table 4), the results correspond to the theoretical
assumptions. The models with response time objectives result in better average response
times, while the MEXCLP model is better at the expected coverage within the tighter time
limit. The expected 15 min coverage is the same for all models.

Table 4. Static evaluation of the location models, street model of demand.

Criterion pMP MEXCLP
Binary

MEXCLP
Integer ERTM MCLP

Average response time (min) 2.40 3.57 3.71 2.54 2.43
Average expected response
time (min) 3.40 4.07 4.18 3.30 3.38

Expected coverage within
15 min (%) 99.37 99.37 99.37 99.37 99.37

Expected coverage within
8 min (%) 95.96 99.07 99.08 97.61 96.01

Computing time (s) 19.39 2.28 2.33 4252.16 138.44

The results of the simulation study are in Tables 5 and 6 for the city and district,
respectively. As for the average response time to all patients, the binary MEXCLP model
is the best in the city, as well as at the district level, while the ERTM outperforms other
models regarding the accessibility to the most critical patients. The distribution of ambu-
lances proposed by two of the most successful binary MEXCLP and ERTM models are in
Figures 7 and 8, respectively.

Table 5. Performance indicators for different distributions of the EMS stations in the city of Prešov,
street model of demand.

Indicator Current
Locations pMP MEXCLP

Binary
MEXCLP
Integer ERTM MCLP

Average response time
to all patients (min)

6.12 5.41 5.06 5.26 5.41 5.56
(6.07; 6.17) (5.32; 5.49) (4.95; 5.16) (5.17; 5.34) (5.32; 5.50) (5.45; 5.67)

% of calls responded to
within 15 min 95.21 95.05 95.66 95.45 95.07 94.53

Average response time
to high-priority
patients (min)

5.86 5.02 4.83 5.04 4.73 4.93
(5.78; 5.93) (4.80; 5.25) (4.71; 4.95) (4.93; 5.15) (4.59; 4.88) (4.74; 5.13)

% of high-priority calls
responded to within
8 min

88.18 89.47 91.57 91.70 91.20 90.11
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Table 6. Performance indicators for different distributions of the EMS stations in the district of Prešov,
street model of demand.

Indicator Current
Locations pMP MEXCLP

Binary
MEXCLP
Integer ERTM MCLP

Average response time
to all patients (min)

9.60 8.97 8.90 8.99 8.95 8.99
(9.51; 9.69) (8.92; 9.02) (8.85; 8.96) (8.92; 9.06) (8.86; 9.04) (8.91; 9.06)

% of calls responded to
within 15 min 83.37 85.18 85.13 85.01 85.24 84.92

Average response time
to high-priority
patients (min)

9.43 8.75 8.72 8.83 8.60 8.67
(9.31; 9.55) (8.63; 8.88) (8.58; 8.87) (8.73; 8.92) (8.48; 8.73) (8.52; 8.82)

% of high-priority calls
responded to within
8 min

51.00 53.48 54.44 53.70 54.23 53.63

Figure 7. Ambulance locations using the binary MEXCLP model with the street demand model.

Figure 8. Ambulance locations using the ERTM model with the street demand model.
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4. Discussion

From the previous analyses it is not clear which location model and demand model
propose a network of stations that is likely to ensure the best access to EMS in practice on
both levels of spatial resolution (town and district). The confidence intervals of average
response times overlap with most models, so they do not prove the superiority of one
model over the others. Therefore, we merged the simulated results of all tested location
models and both spatial patterns of demand, and then ranked them according to the
mentioned performance indicators. The rankings of the models with respect to their
simulated performance are in Table 7. The MCLP location model, combined with the
LandScan demand model, achieves the best overall score.

Table 7. Rankings of the location models with regard to simulated performance.

Area Indicator
LandScan Model of Demand Street Model of Demand

pMP MEXCLP
Binary

MEXCLP
Integer ERTM MCLP pMP MEXCLP

Binary
MEXCLP
Integer ERTM MCLP

C
it

y

Average response time
to all patients (min) 6 3 5 2 7 8 1 4 8 9

% of calls responded
to within 15 min 7 5 4 6 2 9 1 3 8 10

Average response time
to high-priority
patients (min)

3 4 7 2 1 8 5 9 4 6

% of high-priority
calls responded to

within 8 min
8 1 2 4 3 10 6 5 7 9

D
is

tr
ic

t

Average response time
to all patients (min) 1 3 9 5 2 7 4 8 6 8

% of calls responded
to within 15 min 1 5 7 10 2 4 6 8 3 9

Average response time
to high-priority
patients (min)

1 5 9 3 2 7 6 8 3 4

% of high-priority
calls responded to

within 8 min
1 3 10 6 2 9 4 7 5 8

Total score 28 29 53 38 21 62 33 52 44 63

In general, the locations of the stations, according to the street demand model, are
worse than with the LandScan model. This result was indicated by the correlation analysis
between real interventions and demand models, which is slightly tighter for the LandScan
model. LandScan population distribution is developed using the best available demo-
graphic and geographic data. Moreover, nation-specific socioeconomic and cultural factors
are taken into account. The result is the ambient, or average, day/night population distribu-
tion that probably better reflects the spatial distribution of emergencies than the permanent
residency model. The database is refreshed annually. Thus, we can recommend it as a
good model of emergency occurrence in the case of the spatial distribution of emergency
incidents when data is not available for the analysis, or the amount of historical data is not
sufficient. Our results cannot be confronted with the literature since neither the LandScan
model nor the street model have been used yet to estimate the demand for EMS.

Regarding location models, our results are in accordance with previous studies that
compared several models. The studies [13,32] compared the models based on the response
time and the expected coverage objectives, and concluded that the solution for minimizing
the average response time was generally better than the one minimizing the coverage.
However, this conclusion is derived only from the analytical evaluation of criteria without
considering the stochastic character of a real EMS system by means of simulation. The only
simulation study comparing various location models we are aware of is the study by van
den Berg and van Essen [6]. In contrast to our research, they did not consider different
types of vehicles, and focused only on high-priority patients. Out of the inspected models,
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the ERTM outperformed the average response time model in most criteria. The MEXCLP
performed better than the ERTM in terms of 15 min coverage. Of course, the previous
studies do not contain our MCLP model that was proved superior by our experiments.
Since this model also minimizes the average response time, our results are compatible with
the cited works. The average response time seems to be the most important indicator of
EMS access, especially from the most critical patients’ point of view, because it strongly
affects the probability of survival for those patients [17,29,33].

The outputs of our study are useful for healthcare providers. We recommend the
optimal distribution of ambulances in the city that will increase the responsiveness of EMS.
The weak point of our research was that there were no limits on the potential locations
of the stations. We suppose that the station can be located at any central node of the
LandScan grid, or at any centroid of the street. It was beyond our capabilities to investigate
potential locations with all the aspects that have to be taken into account in practical
station relocation (i.e., the existence of a proper building, the costs of its tenancy, etc.).
Thus, our results should be interpreted in terms of the wards surrounding the calculated
optimal station locations rather than stations’ precise addresses. At present, such an
interpretation is satisfactory for the decision-makers, as follows from the discussions with
the EMS authorities. We note that in practice it may not be acceptable to relocate all stations
operating in the city, mainly for economic reasons that are not incorporated into our study.
However, the MCLP model, as well as other location models under consideration, can
easily cope with such a limitation. It is enough to fix some stations in their current positions
by setting corresponding location variables to 1, or by limiting the number of relocated
stations by adding a simple constraint to the models.

The results of our study can be applied in all countries with a tiered EMS system
that utilizes different types of emergency units, such as dispatching ALS units to the most
severe events and using BLS units for non-urgent situations and the scheduled transport of
stable patients. Tiered systems apply the Franco-German model of EMS delivery, where the
crew is qualified to treat patients in their homes or at the scene. Such systems are common
in many European countries such as Germany, France, Greece, Austria, Czech Republic,
Hungary, and Poland [34–36].

In the future, we will direct efforts to improving the location as well as the demand
models. As for the location models, the research will target multiple criteria models. The
objectives should balance effectiveness and fairness [32]. Another direction will be oriented
towards hierarchical models combining ambulance locations at a macrolevel (across a
country or a region) and at a microlevel (cities). Regarding demand models, we will
focus on incorporating the surroundings of the city into the demand model, since the
ambulances in the city do not serve only the city citizens, but also emergencies arising in
neighboring villages.

5. Conclusions

The paper presents a new optimization model for ambulance locations, and a new
approach to the modelling demand for EMS in an urban area. The proposed modular
capacitated location model is compared to other location models reported in the literature.
The case study of the city of Prešov proves that a significant improvement in service quality
can be achieved by the optimal distribution of the stations. The following conclusions can
be derived from our empirical study:

1. The modular capacitated location model outperforms the pMP, MECXLP, and ERTM
models.

2. The ambient population model better reflects the real spatial distribution of emergency
calls compared to the demand model that is based on the permanent residents of
the city.
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