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Abstract: Rock damage caused by its microcrack growth has a great influence on the deformation and
strength properties of rock under compressive loading. Considering the interaction of wing cracks
and the additional stress caused by rock bridge damage, a new calculation model for the mode-I
stress intensity factor at wing crack tip was proposed in this study. The proposed calculation model
for the stress intensity factor can not only accurately predict the cracking angle of wing crack, but can
also simulate the whole range of variation of wing crack length from being extremely short to very
long. Based on the modified stress intensity factor, a macro–micro damage model for rock materials
was also established by combining the relationship between microcrack growth and macroscopic
strain. The proposed damage model was verified with the results from the conventional triaxial
compression test of sandstone sample. The results show that the proposed damage model can not
only continuously simulate the stress-strain curves under different confining pressures, but also can
better predict the peak strength. Furthermore, the sensitivities of initial crack size, crack friction
coefficient, fracture toughness, initial damage and parameter m on the stress-strain relationship are
discussed. The results can provide a theoretical reference for understanding the effect of microcrack
growth on the progressive failure of rock under the compressive loading.

Keywords: rock damage; microcrack growth; stress intensity factor; stress-strain curves; progres-
sive failure

1. Introduction

Rock materials are heterogeneous bodies that composed of a variety of mineral grains,
cements, microcracks. The essential reason for rock failure is the initiation, propagation and
coalescence of internal microcracks. When there is no confining pressure or the confining
pressure is small, rock materials generally show axial splitting failure. The failure mode is
brittle failure. With the increase of confining pressure, the failure mode of rock materials
gradually changes from brittle failure to ductile failure. During this period, the initiation,
propagation, interaction and coalescence of microcracks are generally considered to be the
micro-mechanical mechanism that controls the macroscopic failure of rock materials. The
wing crack models proposed by Horri and Nemat-Nasser [1,2] and Ashby and Hallam [3]
can better describe the initiation and propagation process of cracks, and are gradually used
to study the mechanical and deformation properties of rock materials. The above models
assume that there is friction between compression-shear crack surfaces. The friction and
normal pressure satisfy the Mohr–Coulomb theorem. When the shear stress caused by the
far-field stress exceeds the friction, the crack surface will slide over each other, resulting
in the initiation and propagation of open wing crack. Wing crack model is the basis for
studying the initiation, propagation, interaction and coalescence of compression–shear
crack in rock materials.

The mechanical behavior and constitutive relationship in the failure process of rock
materials have been a hot issue in the field of rock mechanics. Many scholars have studied
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the stress–strain relationship of rock through experimental and theoretical methods, and an-
alyzed the damage and deformation characteristics in different stages of rock compression
failure process [4–6]. In recent decades, the theory of fracture mechanics has become one of
the widely used method to study progressive failure of rock materials. By introducing the
theory of fracture mechanics and damage mechanics, Zhu and Zhang [7] established an
elastoplastic damage model, and successfully applied it to evaluate the stability of high
slope. Chen et al. [8] and Li et al. [9] established a fracture damage coupled model to
analyze the stability of surrounding rock, which provides a good reference for the practical
engineering. Wu et al. [10] investigated the micromechanics of compressive failure in
Darley Dale sandstone under the optical and scanning electron microscopes, and analyzed
the damage evolution process by using wing crack model. Above studies provide guidance
for establishing micromechanics-based damage model to study the mechanical behaviors
of rock materials.

So far, many researchers have studied the deformation failure mechanism and me-
chanical properties of rock materials by using different wing crack models. Zhu et al. [11]
investigated evolution process of microcracks at different stages by employing the inter-
nal variable thermodynamics theory and frictional kinking crack model, and established
quantitative relationship between nonelastic strain (induced by microcracks) and stress.
Based on the strain energy density factor approach and a micromechanics model, Zhou [12]
established a micromechanics-based model to investigate the condition and direction of
shear failure for brittle rock subjected to triaxial compressive loads. Although previous
models have been shown to accurately estimate the stress–strain curve for rock, they
usually divide the stress–strain curve into multiple stages to study its mechanical mecha-
nism and constitutive relationship, respectively, and cannot realize the simple and unified
description of the full curves of stress–strain. At the same time, it should be noted that
they have complicated implicit equations and numerous parameters, which increases the
consumption of technological resources when used practically. Huang et al. [13] proposed
the corresponding compression damage constitutive model that combines damage evolu-
tion theory with propagation of wing crack, and systematically studied the influences of
model parameters on stress–strain response and failure strength. Based on sliding crack
model and energy balance during crack growth, Li et al. [14] and Li et al. [15] studied
deformation and strength properties under different confining pressures. Although the
above models can well simulate the rock stress–strain curve before the peak strength, it
cannot well simulate the rock stress–strain curve after the peak strength. From the above,
it can be concluded that a damage constitutive model that can describe both the macro-
and micromechanical behavior of rock materials and is easy to apply in practice is hard
to build using the approaches described above. Therefore, a macroscopic damage model
based on micromechanics is of great interest to researchers. Based on the wing crack
model proposed by Ashby and Sammis [16], Li et al. [17] and Li et al. [18] established
the stress–strain relationship by using the correlation between the micromechanical and
macroscopic definition of damage, which provides a new research idea for studying the
mechanical properties and failure mechanism of rock. Although the above wing crack
propagation model can reflect the propagation law of wing crack to a certain extent, the
deviation of the calculation results is still large for some cases, which limits its application.

In order to better investigate the effects of microcrack growth on the mechanical
properties of rock in compression, a new expression for stress intensity factor (i.e., KI)
at wing crack tip was proposed in this study. Based on this, combining the relationship
between microcrack growth and macroscopic strain, a practical macro–micro damage
model that can continuously describe the relationship between stress–strain curve for rock
materials was established. Rationality of this proposed damage model was verified by
comparing the experimental data.
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2. Wing Crack Model Analysis

The wing crack model has been widely applied in the damage and fracture analysis of
rock-like materials under compressive load, as shown in Figure 1. When rock materials are
subjected to the external load, its internal crack surface will slide over each other, resulting
in the initiation and propagation of wing cracks. The stress intensity factor at the wing crack
tip decreases with the propagation of wing crack. If the external load does not increase, the
wing crack reaches a stable state. When the external load continues to increase, the stress
intensity factor at the wing crack tip increases. When the stress intensity factor reaches or
exceeds the fracture toughness KIC, the wing crack will continue to grow and gradually
bend in the direction which is consistent with the maximum principal stress. However,
because the real wing crack is not a simple straight line, complex numerical calculation has
to be carried out in order to obtain the accurate solution of stress intensity factor at the wing
crack tip. This is not convenient for practical application. Therefore, based on assumption
that the real curved wing crack is replaced by a straight one (an approximated wing crack)
by connecting the tip of curved wing crack with the tip of compressive-shear main crack,
many scholars have proposed several common approximate solutions [16,19,20]. Due to
the limited space of this paper, this paper only lists three calculation models that were
widely used in compression-shear fracture and damage analysis of rock materials.
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Figure 1. Wing crack model.

Horri and Nemat-Nasser [1] analyzed propagation process of the wing crack by
using the complex function analysis method. However, the calculation process is complex,
which brings inconvenience to practical application. Therefore, Horri and Nemat-Nasser [2]
proposed an approximate equation for calculating stress intensity factor KI

wing (HN model):

KI
wing =

2aτe f f sin θ√
π(l + 0.27a)

− σ′n
√

πl (1)

where θ is the orientation of straight wing crack against main crack, τeff is the effective
shear stress acting on the main crack surface, σ′n is the normal stress acting on the single
isolated crack of length 2l (see Figure 2b).

τe f f = τ − µσn = (σ1 − σ3) sin(2β)/2− µ[(σ1 + σ3) + (σ1 − σ3) cos(2β)]/2 (2)

σ′n = {(σ1 + σ3) + (σ1 − σ3) cos[2(θ + β)]}/2 (3)
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where µ is the friction coefficient of the main crack surface, β is the main crack inclination
angle, τ and σn are the shear stress and normal stress acting on the main crack surface.
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The calculation results show that when the wing crack length l is rather short (l→0),
the cracking angle θc corresponding to the extreme value of the stress intensity factor KI

wing

is inconsistent with the theoretical cracking angle of wing crack. Nevertheless, Equation (1)
generally has high accuracy in most cases, and has also been used by many researchers to
analyze the mechanical and deformation properties of rock materials [21,22].

By simplifying the curved wing crack into a straight wing crack with a length of 2l,
Steif [19] derived expression of stress intensity factor KI

wing (S model) at the wing crack tip
with the assumption that the middle of the straight wing crack is affected by the relative
sliding displacement of the initial main crack.

KI
wing =

3
4

√
π/2τe f f (sin

θ

2
+ sin

3θ

2
)(
√

2a + l −
√

l)− σ′n
√

πl/2 (4)

Considering the two limit cases of rather short wing crack (l→0) and extremely
long wing crack (l→∞), Lehner and Kachanov [20] proposed an approximate calculation
equation of stress intensity factor KI

wing (LK model) at the wing crack tip for the case where
the wing cracks are aligned in the direction of the principal compressive stress.

KI
wing =

2aτe f f cos β√
π(l + 3a cos2 β

π2 )
− σ′n
√

πl (5)

2.1. Improved Wing Crack Model

In the process of deriving expression of the stress intensity factor KI
wing, the stress

intensify factor KI
wing at the wing crack tip can be simplified into the superposition of the

two terms, as showed in Figure 2.

(1) A component KI
isol for the two straight wing cracks of common length l, regarded as

a single isolated straight crack of length 2l, and subjected to the far field stresses.
(2) A component KI

infl due to effective shear stress induced by the presence of the main
crack subjected to the far field stresses.

The stress intensify factor KI
wing at wing crack tip can be expressed as:

KI
wing = KI

isol + KI
infl (6)
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It can be seen from Figure 2b the KI
isol is determined by the following equation [23]:

Kisol
I = −1

2
{(σ1 + σ3) + (σ1 − σ3) cos[2(θ + β)]}

√
πl (7)

The calculation expression of KI
infl is derived as below. By rotating main crack θ angle,

equivalent straight crack of length 2(a + l) is obtained, the direction of which is the same as
that of the wing crack, as shown in Figure 3. Equivalent straight crack of length 2(a + l)
consists of main crack of length 2a in the middle and straight wing crack of length 2l where
a straight wing crack of length l is attached to the left side of main crack, and another l in
the right side of main crack. The main crack is subjected to the normal stress σeq and the
shear stress τeq.
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The stress intensity factor of the equivalent straight crack in Figure 3b induced by the
normal stress σeq is given [24].

KI
infl = 2σeq

√
a + l

π
arc sin(

a
a + l

) (8)

When wing crack length is rather short (l→0), explicit form for KI
infl for vanishingly

small wing crack has been developed by Cotterell and Rice [25].

Kinfl
I =

3
4
(πa)

1
2 τe f f (sin

θ

2
+ sin

3θ

2
) (9)

Considering that wing length is rather short (l→0), the expression of Equation (8) is
given as:

KI
infl = σeq

√
πa (10)

Comparing Equation (9) with (10), the following equation can be obtained.

σeq =
3
4

τe f f (sin
θ

2
+ sin

3θ

2
) (11)

Considering wing crack length is extremely long (l→∞), equivalent straight crack can
be considered to be subjected to a pair of concentrated force 2aσeq. The length of equivalent
straight crack is about 2l. The expression of KI

infl is given as [24]:

KI
infl =

2aσeq√
πl

(12)
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As l→∞, the above equation can also be obtained from Equation (8) by taking l→∞,
The following equation can be obtained.

σeq = τe f f sin θ (13)

To satisfy Equations (11) and (13), by introducing a factor e−
l
a , the normal stress σeq

can be set as:
σeq = τe f f [

3
4
(sin

θ

2
+ sin

3θ

2
) e−

l
a + sin θ(1− e−

l
a )] (14)

By substituting Equation (14) into (8), the KI
wing at the wing crack tip subjected to far

field stresses can be obtained.

KI
wing = 2τe f f [

3
4
(sin

θ

2
+ sin

3θ

2
) e−

l
a + sin θ(1− e−

l
a )]

√
a + l

π
arc sin(

a
a + l

)− σn
′√πl (15)

2.2. Comparative Analysis of Models

In order to verify the effectiveness of the modified stress intensify factor KI
wing pro-

posed in this paper, the calculation results of each model (Equations (1), (4), (5) and (15))
are compared and analyzed. Since Equation (5) is only applicable to the situation that the
wing crack have a fixed orientation parallel to maximum principal stress (i.e., θ = π/2 − β),
the other three equations are compared first. Figure 4 shows the relationship between the
dimensionless stress intensity factor at the crack tip and the orientation θ of straight wing
crack. The crack friction coefficient µ = 0.3 and K0 = σ1

√
πa in this study.
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(1) Main crack inclination angle β: 0.2π and 0.4π;



Appl. Sci. 2021, 11, 12154 7 of 19

(2) Stress ratio λ = σ3/σ1: 0 and 0.2 (uniaxial compression and biaxial compression);
(3) The equivalent crack propagation length l/a: 0.0001 and 1 (rather short wing crack

and long wing crack).

The following conclusions can be drawn from Figure 4:

(1) When l/a = 0.0001, that is, the wing crack length is rather short. The calculation
results of the S model and current model are basically consistent. Of course, deviation
of the results given by the HN model is also small. However, it can be seen from
Figure 4a,b that when θ is equal to about 70.5◦, the stress intensity factors predicted
by the S model and the current model in this study all reach the maximum value
except for the HN model. This is consistent with the theoretical cracking angle θc (i.e.,
θc = 70.5◦) of wing crack [3], while the predicted cracking angle of HN model is 90◦.

(2) When l/a = 1, that is, the wing crack length is long. It can be seen from Figure 4c,d that
the calculation results of the HN model and current model are basically consistent.
The results given by S model are generally too large, indicating that S model is not
suitable for the case of long wing crack. With the increase of confining pressure and
the main crack inclination angle β, the deviation of the result given by the S model
becomes more obvious. However, the large deviation mainly occurs when the stress
intensity factor is negative. The negative stress intensity factor indicates that the wing
crack has been closed and would not propagate.

When the external load continues to increase, the stress intensity factor at the wing
crack tip increases. When the stress intensity factor exceeds the fracture toughness, the
wing crack will continue to grow and quickly bend in the direction which is consistent
with the maximum principal stress. It is assumed that the winged cracks are aligned in the
direction of the principal compressive stress (i.e., θ = π/2 − β) in order to be convenient for
computation and implementation in practice. The above assumptions have been accepted
by many scholars to study the effect of microcrack growth on progressive damage and
failure of rock, and can achieve good results from the perspective of engineering applica-
tion [14,15,21]. Based on this, the relationship between the dimensionless stress intensity
factor at the crack tip and the equivalent crack propagation length is showed in the Figure 5.
As can be observed in Figure 5, all models predict that with the increase of the equivalent
crack propagation length, the dimensionless stress intensity factor becomes smaller. When
there is no confining pressure, the calculation results of HN model and the current model
are almost consistent. However, when the equivalent crack propagation length is short
(l/a < 1), the results given by LK model are obviously larger. With the increase of the
equivalent crack propagation length, the results given by LK model gradually approach
the results of HN model and current model, as showed in Figure 5a,b. When there is a
certain confining pressure, the calculation results of HN model, LK model and current
model are almost consistent, as showed in Figure 5c,d. Moreover, the dimensionless stress
intensity factor is generally smaller than that under uniaxial compression. This indicates
that the confining pressure can inhibit the propagation of wing crack and is conducive to
the stability of the rock materials. The results given by the S model are generally too large.
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Based on the above analysis, we can get that the prediction results of the current model
in this study are very close to the prediction results of classical model proposed by Horii and
Nemat-Nasser [2] (i.e., Equation (1)) in general. At the same time, the current model also
overcomes internal limitation of Equation (1) at the wing crack initiation. Compared with
the S model and LK model, the wing crack propagation model established in this study has
higher accuracy and clear physical meaning. It can be concluded that the current model can
simulate the whole range of variation of wing crack length from being extremely short to
very long. Therefore, the current model can provide a theoretical reference for investigating
progressive damage and failure of rock from the perspective of engineering application.

3. Description of the Damage Model
3.1. Relationship between Stress and Crack Growth in Compression

At present, many scholars have carried out relevant research on rock with multi-cracks.
However, little consideration was given to interaction between the microcracks. Assuming
that the propagation direction of wing crack is parallel to maximum principal stress, the
stress intensity factor at the wing crack tip could be calculated by Equation (16) when the
crack spacing is large. As the crack spacing decreases, the interaction between the cracks
will lead to a damaged connection and result in a break of the rock bridge. The rock bridge
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interaction mechanical model of the multi-cracks rock as the wing crack expands is shown
in Figure 6.
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The crack interaction is considered by drawing the internal stress σ′3 in the rock bridge.
It is noteworthy that the internal stress σ′3 has a great significance for evaluating the rock
failure from crack interaction. This internal stress σ′3 is determined as [16]:

σ′3 =
Te cos β

N−1/2
A − 2(l + a sin β)

(16)

where NA is the number of initial compression-shear cracks per unit area; F = Tecosβ = 2aτeff cosβ
is a wedging force acting at the midpoint of each crack.

Acting on the wing crack, the internal stress σ′3 produces an additional intensity factor
at the crack tip.

K′1 =
2aτe f f cos β

N−1/2
A − 2(l + a sin β)

√
πl (17)

Considering the damage to the rock bridge by the wing crack interaction, the stress
intensity factor at the wing crack tip is obtained by Equations (15) and (17) for the case
where the wing cracks are aligned in the direction of the principal compressive stress.

KI = KI
wing + K′1 = 2τe f f [

3
4
(sin

θ

2
+ sin

3θ

2
) e−

l
a + sin θ(1− e−

l
a )]

√
a + l

π
arc sin(

a
a + l

)− σ3
√

πl +
2aτe f f cos β

N−1/2
A − 2(l + a sin β)

√
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Based on Equation (18), it can be seen that the interaction of multiple wing cracks
resulting in rock bridge damage makes the stress intensity factor at the crack tip larger than
that of a single wing crack.

Based on the fracture mechanics criterion, it is well known that wing crack will
propagate when the mode-I stress intensity factor KI at the wing crack tip reaches rock
fracture toughness KIC. According to the Equation (18), the linkage of stress state (σ1, σ3)
and crack growth is obtained as:

σ1 =

{
2BC +

√
πl(1 + BE)

}
σ3 + KIC

2AC + AE
√

πl
(19)

where

A =
sin(2β)− µ{1 + cos(2β)}

2
(20)

B =
sin(2β) + µ{1− cos(2β)}

2
(21)
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+ sin
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) e−
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l
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√
a + l

π
arc sin(

a
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E =
2a cos β

N−1/2
A − 2(l + a sin β)

(23)

3.2. Relationship between Microcrack Growth and Macroscopic Strain

For rock materials, microcrack extension triggers the increasing damage, which causes
the degradation of mechanical properties. Based on Weibull distribution [26], the damage
can be expressed as [27]:

D = 1− exp(−mε1) (24)

where m is the material constant, ε1 is the axial strain.
According to the density and size of the microcracks, the damage can be defined

as [16]:
D = π(l + a sin β)2NA (25)

D0 = π(a sin β)2NA (26)

where NA is postulated as a constant in the given rock sample in this study, which can be
obtained by using the initial damage D0.

In single rock sample, the identical value of damage can be achieved from Equations
(24) and (25). Combining the Equations (24) and (25), the relationship between microcrack
length and macroscopic strain can be obtained.

ε1 = − 1
m

ln[1− D0(
l

a sin β
+ 1)

2
] (27)

l = a sin β

{
[1− exp(−mε1)]

1/2

D01/2 − 1

}
(28)

3.3. Stress–Strain Relationship during Progressive Failure

Substituting Equation (28) into Equation (19), the expression of stress–strain relation-
ship during progressive failure can be obtained.

σ1(ε1) =

[
2BJ1 +

√
π J3(1 + BJ2)

]
σ3 + KIC

2AJ1 + AJ2
√

π J3
(29)

where

J1 = [
3
4
(sin

θ

2
+ sin

3θ

2
) e−

J3
a + sin θ(1− e−

J3
a )]

√
a(1 + J3/a)

π
arc sin(

1
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) (30)

J2 =
2 cot β

D−1/2
0 π1/2 − 2[J3/(a sin β) + 1]

(31)

J3 = a sin β

{
[1− exp(−mε1)]

1/2

D01/2 − 1

}
(32)

The contributions of the mode-II and mode-III stress intensity factors to wing crack
growth are much less than that of mode-I stress intensity factor [28,29]. Therefore, these
contributions to the axial strain of rock are negligible in this study.

4. Results
4.1. Triaxial Tests and Parameters Determination

The macro–micro damage model for rock materials has been established, and its feasi-
bility and rationality still need to be verified by example analysis. A series of conventional



Appl. Sci. 2021, 11, 12154 11 of 19

triaxial compression tests were carried out to verify the proposed damage constitutive
model in this study. The rock used in this study is red sandstone collected from a mining
area in Hunan Province, China. The mineral components of the sandstone samples were
detected by X-ray detection. The red sandstone samples are mainly composed of quartz,
anorthite, gismondine and clay cements. The average dry density of the sandstone sam-
ples was 2.31 g/cm3 at room temperature. The selected rock samples belong to the same
rock block, which ensures the reliability of the test results. To ensure homogeneity of the
sandstone samples, the sandstone samples were taken from a great thickness of sandstone
strata, and have no obvious defects. The sandstone samples have good uniformity of
appearance, no obvious stratigraphic structure, and no weak layers visible to the naked
eye. At the same time, the P-wave of the sandstone samples was measured to single out
the specimens with velocities which were too small or large. The rock samples have been
processed as cylinders, with the height of 100 mm and the diameter of 50 mm according
to size requirements of the International Society for Rock Mechanics (ISRM). The conven-
tional triaxial compression tests were carried out on the RMT-301 material test system
from Wuhan University in China. The machine’s maximum axial compressive force is
1500 kN, and the maximum confining pressure is 70 MPa. The triaxial tests were conducted
under the displacement control mode to capture the post peak behavior. During the test,
the system directly records the load and the displacement. The conventional triaxial tests
were conducted, which was divided into two steps. First, σ1 and σ3 were applied to a
predetermined value (the confining pressure) by the hydrostatic pressure conditions. The
predetermined value remained unchanged for 15 s. Second, σ3 remained unchanged. Then,
the loading was switched to an axial displacement control, and the axial loading rate was
set as 0.002 mm/s until rock fails. As shown in Figure 7, the failure modes of the red
sandstone samples are mainly splitting failure (uniaxial compression) and compression
shear failure (triaxial compression).
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Some micro-parameters in the current damage model were hardly measured directly
by experiment. Therefore, the specific values of micro-parameters were obtained by
comparing the experimental and theoretical data, which provides an important help for
applying the proposed analytical model to real rock. This process was repeated until the
theoretical results achieved a good agreement with the experimental results. The specific
method for selection of model parameters is as follows.

At low-stress levels, the initial crack does not slide when shear does not overcome
friction (i.e., µ|σn|). The rock is in the elastic stage. When axial stress σ1 reaches the crack
initiation stress σ1c, wing cracks start to form from the initial main crack tips. Substituting
cracking angle θc = 0.392π = 70.5◦ and the effective shear stress τeff acting on the main
crack surface into Equation (9), the most dangerous crack is that lying at the main crack
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inclination angle β which maximizes Kinfl
I . Then, it can be found that tan(2β) = −1/µ.

Therefore, the crack initiation stress σ1c can be obtained:

σ1c =

√
1 + µ2 + µ√
1 + µ2 − µ

σ3 +

√
3√

1 + µ2 − µ

KIC√
πa

(33)

There is a statistical relationship between rock uniaxial compressive strength σc
and fracture toughness KIC: σc = (55~82)KIC [30]. For the red sandstone sample with
σc = 73 MPa, it is assumed that the fracture toughness KIC = 73/82 = 0.9 MPa·m−1/2 can
be obtained. The crack initiation stress is about 40% of the peak stress [31]. Therefore,
a linear relationship between confining pressure σ3 and axial crack initiation stress σ1c
was suggested as σ1c = 1.44σ3 + 30.5 MPa based on the triaxial compressive test results.
Combining this experimental relationship and Equation (33), the parameters a and µ can be
obtained (i.e., µ = 0.18, a = 1.2 mm). At the same time, the main crack inclination angle β is
also obtained (i.e., β = 50◦). It is noted that since the length and orientation of microcracks
in the rock are arbitrarily distributed, numerical simulation of this propagation of every
microcrack is not practical. Therefore, a homogenization method is used to investigate the
deformation and mechanical properties of rock, that is, microcracks inclination angle β
and size a are assumed as an average value for numerous and randomly distributed initial
microcrack in natural rock. This method provides an assistance in applying the current
model to analysis the strength and failure in rock. The initial damage D0 of rock is generally
between 0.01–0.1. D0 = 0.046 is selected by comparison with theoretical and experimental
results. The material constant m = 16, which can be approximately determined according
to the shape of stress–strain test curve and peak strain value. The sensitivity of parameters
is discussed in detail in the following section.

4.2. Verification of the Present Model
4.2.1. Verification of Current Model by the Sandstone Triaxial Experiment Results

As shown in Figure 8, the theoretical stress–strain curves are obtained. The changing
trend of experimental curves and theoretical curves are consistent. With the increase of axial
strain, the axial stress first increases to a peak value, and then decreases gradually. It can be
seen that the proposed damage constitutive model can simulate the stress–strain response
in the failure process of the sandstone samples well. Especially in the stage before peak
stress, the simulation results are very similar to the experimental results, and can objectively
characterize the constitutive relationship of sandstone samples before peak stress. For the
stress–strain curve at lower pressure, there is a certain deviation between the theoretical
curves and the experimental curves in the post-peak stress stage. The reasons for deviation
could be as follows. First, the failure from strain localization is approximately studied by
global failure of the wing crack model. The global failure is achieved by considering the
interaction of the adjacent wing cracks and the additional stress caused by rock bridge
damage. Second, the model parameter m is a constant value, which is used to determine
the stress–strain curves under different confining pressures. With the increase of confining
pressure, theoretical curves are more consistent with experimental curves of sandstone
samples. The peak stress and corresponding peak strain also increase with the increase
of confining pressure. It can be observed from Figure 9 that the crack initiation stress
and peak stress predicted by the proposed model are in good agreement with the test
results. Both of them increase with the increase of confining pressure. Furthermore, the
difference between crack initiation stress and peak stress also increased with the increment
of confining pressure.
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4.2.2. Reliability Verification of Current Model

In order to verify the reliability of the proposed damage constitutive model, it is
necessary to use the test data of different types of rock to verify the proposed model in this
study. Therefore, the test data of granite [32] and Jinping marble [33] triaxial compression,
used by other authors [34,35], are also used here for verification and comparison. The
fitting results simulated by the proposed damage constitutive model and the stress–strain
curves of the testing results are shown in Figure 10. It can be observed that the axial
stress increases with the increment of strain before it reaches peak value. The axial stress
would decrease with the increment of strain after peak value. These theoretical results
are consistent with published experimental results. It indicates that the proposed damage
constitutive model in this study can simulate the mechanical behavior of different types of
rock and has good applicability.
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5. Discussion
5.1. Effects of Initial Microcrack Size a and Friction Coefficient µ on Stress–Strain Relationship

It can be observed from Figure 11 that when the number of microcracks in rock sample
remains unchanged, the larger initial microcrack crack size, the smaller the corresponding
axial stress under the condition of an identical strain value. It indicates that the increment
of initial microcrack crack size (i.e., initial damage) reduces the compressive strength. The
reasons are as follows. The stress intensity factor KI at the wing crack tip increases with
the increase of initial microcrack size, which can be clearly seen from Equation (15) and
Figure 5. However, the fracture toughness of rock remains unchanged. Therefore, a small
external force can make the microcrack propagate, resulting in the reduction of compressive
strength. The peak strain corresponding to the peak stress increases with the increase of
the initial crack size.
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It can be observed from Figure 12 that the axial stress increases with the increase of
friction coefficient at the given strain. It means that the increment of friction coefficient
enhances rock the compressive strength. The reasons are as follows. With the increase
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of friction coefficient, the ability of microcrack to resist shear slip increases. Under the
same normal stress, the effective shear stress acting on the microcrack surface decreases,
resulting in the decrease of stress intensity factor KI at the wing crack tip. Because the
fracture toughness of rock remains unchanged, it needs larger external force to make the
microcrack propagate. Therefore, the compressive strength of rock increases.
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5.2. Effect of Parameter m on Stress–Strain Relationship

It can be observed from Figure 13 that the change of parameter m has little effect
on the peak stress. The peak strain corresponding to the peak stress decreases gradually
with the increase in the value m. The change in the value m has a great influence on the
shape of the stress–strain curves. The slope of the stress–strain curve before the peak stress
gradually increases with the increase in the value m, indicating that rate of increase in
the axial stress gradually increase. Moreover, the stress–strain curves after the peak stress
gradually become steeper, indicating that the rate of decrease in the axial stress gradually
increase. Therefore, the parameter m can be used to reflect the brittleness and ductility
of rock materials to a certain extent. The larger the parameter m, the more brittle the
rock becomes.
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5.3. Effect of Fracture Toughness KIC on Stress–Strain Relationship

It can be observed from Figure 14 that the axial stress increases with the increase of
fracture toughness KIC at the given strain. According to fracture mechanics, when the
fracture toughness KIC of rock increases, the stress intensity factor KI at the wing crack tip
must increase in order to make microcrack propagate. Therefore, the compressive stress
must increase accordingly, that is, the peak strength of rock increases. The peak strain
corresponding to the peak stress decreases with the increase of the fracture toughness KIC.
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5.4. Effect of Initial Damage D0 on Stress–Strain Relationship

It can be observed from Figure 15 that the axial stress decreases with the increase
of initial damage D0 at the given strain. As is known, rock materials contain numerous
initial microcracks, which makes it have initial damage. When the initial microcrack size is
constant, the greater the number of microcracks in rock sample, the larger initial damage.
With the increase of initial damage D0, the bearing capacity of rock gradually decrease.
Therefore, the compressive strength of rock decreases. The peak strain corresponding to
the peak stress increases with the increase of the initial damage D0.
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6. Conclusions

In this work, a new calculation model for the mode-I stress intensity factor KI at
wing crack tip was proposed and a corresponding damage constitutive model was also



Appl. Sci. 2021, 11, 12154 17 of 19

established. Based on theoretical and experimental studies, the following conclusions can
be drawn:

(1) Through studying the cracking and propagation laws of compressive–shear rock
cracks under remote stress field, a new calculation model for the mode-I stress in-
tensity factor KI at wing crack tip was proposed considering the interaction of wing
cracks and the additional stress caused by rock bridge damage. The results showed
that compared with the classical model proposed by Horii and Nemat-Nasser [2] (i.e.,
Equation (1)), the proposed calculation model can accurately predict the cracking
angle of wing crack. Compared with S model (i.e., Equation (4)), when the equivalent
crack propagation length is long, the proposed criterion has a higher accuracy than
the Equation (4). Compared with LK model (i.e., Equation (5)), when the equivalent
crack propagation length is short (l/a < 1), the prediction accuracy of this model is
higher than that of Equation (5). In conclusion, the proposed calculation model can
simulate the whole range of variation of wing crack length from being extremely
short to very long.

(2) Based on the modified calculation model for the mode-I stress intensity factor KI, a
homogenization method is used to establish the macro–micro damage model for rock
materials by combining the relationship between microcrack growth and macroscopic
strain. By comparing the test curves with the theoretical curves, the results show that
the proposed damage constitutive model can both simulate stress–strain response in
the failure process of the sandstone samples, and identify the peak strength of rock
well. Furthermore, comparing experimental and theoretical relations between crack
initiation stress and confining pressure, model parameters (i.e., µ, a, and β) hardly
measured by test are solved. The proposed macro–micro damage model based on
micromechanics can continuously describe the relationship between stress–strain
curve for rock materials, which provides a simple and easy method to study the effect
of microcrack growth on the progressive failure process of rock under compression
loading.

(3) Effects of initial microcrack size, microcrack friction coefficient, fracture toughness,
initial damage and parameter m on the stress–strain relationship are studied. It
was found that with the increase in the value m, the peak compressive strength of
rock remains unchanged, and the corresponding peak strain decreases gradually.
Parameter m can be used to reflect the brittleness and ductility of rock materials to a
certain extent. The peak compressive strength of rock increases with the increase of
microcrack friction coefficient and fracture toughness. However, the peak strength of
rock decreases with the increase of initial microcrack size and initial damage.
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