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Abstract: Human Activity Recognition (HAR) has become an active field of research in the computer 

vision community. Recognizing the basic activities of human beings with the help of computers and 

mobile sensors can be beneficial for numerous real-life applications. The main objective of this paper 

is to recognize six basic human activities, viz., jogging, sitting, standing, walking and whether a 

person is going upstairs or downstairs. This paper focuses on predicting the activities using a deep 

learning technique called Convolutional Neural Network (CNN) and the accelerometer present in 

smartphones. Furthermore, the methodology proposed in this paper focuses on grouping the data 

in the form of nodes and dividing the nodes into three major layers of the CNN after which the 

outcome is predicted in the output layer. This work also supports the evaluation of testing and 

training of the two-dimensional CNN model. Finally, it was observed that the model was able to 

give a good prediction of the activities with an average accuracy of 89.67%. Considering that the 

dataset used in this research work was built with the aid of smartphones, coming up with an effi-

cient model for such datasets and some futuristic ideas pose open challenges in the research com-

munity. 

Keywords: human activity recognition; sensors; accelerometer; cell phones; dataset; deep learning; 

convolutional neural network; activity prediction 

 

1. Introduction 

The accurate measurement of daily activities performed by people has gathered at-

tention for both researchers and the gadget industries. This has given rise to the subject 

matter of Human Activity Recognition (HAR). The goal of this research is to recognize or 

predict the action performed by a human subject using certain specialized sensors capable 

of recording related data [1]. A wide range of activities encompasses HAR including walk-

ing, running, sitting, standing, jogging, sleeping, nodding, raising the hand, etc. Wearable 

devices, smart bands, cell phones and smartphones, are handy pieces of equipment to 

identify and analyze what a person is doing. Such gadgets provide a wide spectrum of 

sensors that can be used with ease in day-to-day life with stellar performance and high 

accuracy. Since people are becoming more conscious about their health, exercise tracking 

and sleep tracking has become a fashionable trend for many health enthusiasts, who rely 

heavily on such devices and sensors for such purposes. The behavioral information col-

lected from these sensors is used by researchers to meet needs in the medical and 

healthcare industries and smart homes [2]. The data recorded in such a manner are also 
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advantageous for many industries and technology giants as it helps them in directing their 

research and development towards a product that can be potentially launched in the mar-

ket in future. Additionally, numerous challenging applications, including automated vis-

ual surveillance systems and human–computer interaction (HCI) based on several senses 

(multimodal), require some level of HAR. Thus, in such cases, an accomplished recogni-

tion of human behaviour becomes critical [3]. 

The research in the field of HAR has been going progressively since the 1980s. One 

of the reasons is the advent of high-tech computers and smartphones. Smartphones are 

frequently used by most of the population in most countries of the world. The need to 

replace human beings with computers to supervise activities of other human beings has 

kept the research of HAR going. Sensing technologies are widely used in Ambient As-

sisted Living (AAL) and smart homes. Some existing solutions include physiological, en-

vironmental, and vision sensors that frequently assist in human behaviour and activity 

recognition for health monitoring purposes. Activity recognition is one of the core features 

of a smart home. Aged and mentally retarded persons suffer from numerous kinds of 

health issues. As a result, it can lead to improper performance of activities of daily living 

in such populations. Therefore, the detection of abnormal behaviours becomes indispen-

sable for elderly and dependent people to ensure that they perform their activities cor-

rectly with minimum deviation [4]. This can ensure that they are safe and feeling well [5]. 

Furthermore, suitable types of sensors are also used for different applications such as 

Falls, Indoor localization, ADL recognition and Anomaly detection. Wearable sensors 

such as certain accelerometers are used as sensing modalities for all such applications ex-

cept for Indoor localization [2]. This supports the fact that an accelerometer is a widely 

used sensor for activity recognition. 

There are two major challenges to be tackled for human activity recognition. Firstly, 

it is tough to manage the huge amount of information produced by the devices and sen-

sors. Secondly, understanding the mapping of data to well-defined movements of the 

body becomes difficult. Nonetheless, there are a few methodologies that have achieved 

incredible results in bringing out useful information from the readings produced by sen-

sors [6,7]. Mostly, their experiments required the participants to carry devices in a partic-

ular position and orientation. It also required attaching the device to different areas of the 

body, such as the arms, waist, or wrist. Consequently, the data gathered in such a con-

strained situation with limitations on device orientation and the number of activities could 

influence the effectiveness of those models. The ideal scenario is implausible as the device 

orientation can change with every individual as per their convenience and lifestyle. De-

pending on their clothing, body shape and size and their behaviour, the positioning of the 

device is likely to change. Last but not least, several other commonplace activities, namely 

eating, drinking, talking, typing, writing, smoking, etc., have also been included for recog-

nition. However, their recognition is less reliable because carrying them out requires fre-

quent hand movements. A solution to this problem is to use motion sensors that can be 

worn on wrists. Other activities, including ascending stairs and descending stairs, cycling 

and biking are more recognizable when sensors are placed near the pockets. Activities 

such as these provide better repeating patterns in readings, provided that the sensors are 

worn at the pocket position. However, the wrist and pocket positions have been primarily 

used for individuals in seclusion [6,8–11]. For these reasons, HAR models based on artifi-

cial intelligence (AI) show a high amount of dependency on the positioning and orienta-

tion of the devices and wearable sensors. Additionally, the results of such models also 

depend indirectly on the type of human activity being carried out. 

To address the aforementioned issues, the data used in this work were collected 

through controlled laboratory conditions. The accelerometer readings were collected from 

the sensors worn by the subjects as they carried out the six activities—jogging, walking, 

going upstairs, going downstairs, standing and sitting. The data so obtained are in a raw 

time-series format. The examples or samples are further accumulated into six classes, 

where each class is provided with a unique label associated with the corresponding 
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activity. Furthermore, activity recognition is carried out using a predictive model as shall 

be presented in this paper. The model is based on a Convolutional Neural Network 

(CNN), which is an important classification tool in deep learning. Hence, the major con-

tributions of this paper are listed as follows: 

1. Demonstrating the methodology behind the transformation of accelerometer data 

into appropriate classes, so that it can be fed into the convolutional neural network 

to perform HAR. 

2. Illustrating that it is plausible to perform HAR with prevalent sensors such as accel-

erometers, and devices such as commonly used smartphones, and still achieve accu-

rate results. It does not have to include a sophisticated machinery and devices or 

highly complex algorithms for most of the time to obtain appreciable and useful out-

comes. Thus, this paper gives a fundamental and preliminary approach towards 

HAR. 

3. To validate the proposed 2D CNN model through extensive experiments. 

The remainder of this research paper is organized as follows: Section 2 presents the 

literature review and previous works related to human activity recognition. This section 

also compares other datasets and techniques that have been used in the past. Section 3 

presents the problem description and proposed method and highlights the software tools 

used. Section 4 illustrates the structure of the dataset, accelerometer data of each activity, 

data collection, data balancing, data standardization and frame preparation and data 

splitting. In addition, this section also discusses the development of the proposed CNN 

model. Section 5 discusses the experimental results along with a comparison between the 

performance of LSTM and the CNN model used in this paper for HAR. Finally, Section 6 

presents the conclusion of this research work and gives ideas for future work. 

2. Related Work 

The research in the field of HAR has been going on for more than a decade. One of 

the reasons is that most mobile phones today have sensors included in them. The accel-

erometer has been one of the most widely used mobile sensors for HAR. Moreover, some 

of the earlier research works used more than one accelerometer located on several areas 

of the subject’s body [12]. It was primarily because mobile phones with accelerometers 

were less prevalent a decade before. Bao and Intile [13] used five biaxial accelerometers in 

their research. The experiment consisted of 20 persons. To collect data from them, the ac-

celerometers were placed on distinct parts of the body such as the non-dominant and up-

per arm, dominant ankle and wrist and the subject’s right hip. They recognized 20 activi-

ties of daily living by creating models using decision models, instance-based learning, 

C4.5 and Naïve Bayes classification algorithms. Their experiment deduced that the most 

suitable position of the accelerometer to place was on the user’s thigh. This finding sup-

ports the decision implemented during data collection that the pants pocket has been a 

suitable position for the subject to carry their phones in. On contrary, Krishnan et al. [14] 

criticized the use of accelerometers on thighs as the collected data were inadequate for 

classifying activities such as walking, sitting, lying down, etc. Therefore, they emphasized 

the necessity of multiple accelerometers. Although these systems using multiple sensors 

can identify varied human activities, they lack practicality and convenience as it requires 

the users to wear several sensors on their bodies. 

Studies on HAR have also been conducted using a combination of sensors of diverse 

types. Choudhary et al. [15] employed a multimodal sensor apparatus consisting of seven 

types of sensors, viz., visible/IR light sensor, tri-axial accelerometer, humidity/tempera-

ture reader, barometer, microphone, visible light phototransistor, and a compass. They 

were able to identify activities such as brushing teeth, ascending and descending stairs, 

standing, sitting, walking and an elevator moving up and down. Such a multi-sensor ap-

proach indicates that there lies a remarkable capability in mobile sensor data, especially 

when a wide range of sensors are incorporated. More recent works based on multiple 
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sensors have been implemented in [16,17]. In these studies, more advanced sensors such 

as gyroscope, GPS (Global Positioning System), magnetometer, etc., have been used apart 

from the accelerometers. Long-themed activities can be recognized more precisely and in 

a realistic scenario with the aid of such advanced sensors. 

In the knowledge area of HAR, other datasets apart from the one used in this paper 

have been published previously. The UCI (University of California, Irvine) HAR dataset 

is one of the notable datasets which has been widely used in different works and compar-

isons. This dataset was proposed in [18] and it was built from the data gathered from 

inertial sensors embedded in smartphones. There was a total of 30 participants involved 

in the experiment. Each person performed six activities, viz., walking downstairs, walking 

upstairs, standing, sitting, laying down and walking. Using the embedded sensors, linear 

acceleration and angular velocity associated with the three axes were captured with a fre-

quency of 50Hz. The size of the sliding windows was 2.56 s, and the signals were sampled 

with 50% overlap (128 readings/window) between them. For each record in the dataset, 

the time and frequency domain variables consisted of a 561-feature vector, which conse-

quently yielded reasonable outcomes. However, the dataset is collected in constrained 

laboratory circumstances with restrictions on a fixed placement and orientation of the de-

vice. Due to such a limitation, in a real-time scenario, the results obtained would not be 

trustworthy as the users could use their phones in suitable ways. 

The next notable dataset is the HARSense dataset, one which has been used in [19]. 

For robust comprehensive data collection, two sensors (accelerometers and gyroscopes) 

were used from two different smartphones and two mounting locations in the subject’s 

body were used viz. front pocket and waist. In total, 16 features were collected from the 

sensors present in both smartphones. This was carried out with the help of an Android 

application. Some of the prominent features consisted of gravitational acceleration, grav-

ity, rotational rate, and rotational vectors. The dataset generation adopted a physique-

based technique in which the data of multiple subjects were clubbed based on the resem-

blance of their height and weight. The downside of this dataset generation technique is 

that it is bound to involve participants with a similar physique. This is likely to result in a 

lesser number of participants, and hence, fewer data. 

The Universidade da Coruña (UDC) dataset is yet another promising and flexible 

dataset used in [1]. The major principle used while collecting data for this dataset is to 

make it more realistic and applicable in real life which was a lack in dataset developed so 

far in HAR. The highlighting feature of this dataset is that the smartphone used to collect 

data can be put in various places of the subject’s body and not only in the pockets or 

around the waist. However, the challenge lies in developing a model that could use such 

a complex dataset and predict varied states of human activities such as inactive, active, 

walking and driving. 

Furthermore, many other works built their own datasets and carried on with their 

research on HAR. For instance, in [20], the experiment consisted of nine different orienta-

tions of the smartphone. They proposed an online support vector machine (SVM) model 

to solve the problem. They also made comparisons between their approach with some 

other state-of-the-art techniques such as Random Forest, CNN, etc. Following the same 

line, Deep Learning methods have also been used to prepare datasets for HAR. The results 

in [21] show that these methods are futuristic as they can predict non-stationary activities 

such as running, jogging, or walking more efficiently. Additionally, it has been found that 

SVM provides better results in predicting activities that take place for shorter periods. 

Moving on, models using the long short-term memory (LSTM) approach are becoming 

popular for both HAR and abnormal human activity prediction [5]. The main advantage 

of LSTM techniques is that they do not require feature extraction in advance to proceed to 

model training. However, they require huge datasets for accurate classification outcomes. 

In addition, they need excess time for model training and to avoid overfitting (and under-

fitting), a suitable stop criterion is also required. For instance, in [22] and [23], we can see 

that the LSTM model yielded particularly reliable results. In fact, Bi-LSTMs (bidirectional 
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LSTMs–an improved version of regular LSTMs) used in [22] have shown exemplary re-

sults as the neural network adopts prospective learning, and thus the results are obtained 

with accuracy as high as 95%. 

Moreover, these studies have also used the sliding window approaches in their meth-

ods for performing HAR, as can be seen in [24]. Again, this approach depends on the kinds 

of human activities taken into consideration, placement of the sensor (accelerometer has 

been used as a sensor), classification methods used and the window size (in seconds). For 

example, Hemalatha et al. [25] used Frequent Bit Pattern-based Associative Classification 

(FBPAC) to identify activities such as walking, sitting/standing, lying down and falling. 

The classification algorithm used a pattern mining based approach to identify the classes 

corresponding to human activities. The sensor in this study was placed around the chest 

of the subject. With a window size of 10, they achieved an in-subject classification accuracy 

of 92%. 

The aforementioned methods and techniques have their own advantages. Some of 

their limitations include: 

1. The dataset used in the proposed methods which showed better results have a 

smaller number of participants. For producing generic HAR outcomes, a bigger size 

of data collected from several participants is advantageous. 

2. Except for one or two proposed methods, there is a meagre analysis and in-depth 

study carried out on already existing methods, which may still bring comparable re-

sults such as the newly developed methods. 

3. Less emphasis might be given to the evaluation of the models so developed for per-

forming HAR. 

These points are sources of motivation for this paper. Hence, in this paper, an already 

existing deep neural network method viz. CNN is used to perform the prediction of hu-

man activities. Furthermore, it has also been taken care that the model used in this re-

search work is well evaluated before it is put into use. Finally, the dataset used in this 

paper is that of Wireless Sensor Data Mining (WISDM) as it has been the most widely 

used, including its first use in [12] and later in many others, including [26–36]. This shows 

that the dataset used is authentic. Moreover, the dataset boasts a maximum number of 

participants comparatively. Table 1 shows a qualitative comparison between various da-

tasets used for HAR.  
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Table 1. A brief and qualitative comparison between some datasets used for HAR. 

 UCI HAR 

WISDM 

(Used in This 

Work) 

UDC HAR HARSense 

Human activities studied 

Walking, Walking 

upstairs, Walking 

downstairs, Sitting, 

Standing, Laying 

Walking, Jogging, 

Upstairs, Down-

stairs, Sitting, 

Standing 

Inactive, Active, 

Walking, Driving 

Walking, Standing, Upstairs, 

Downstairs, Running, Sitting 

Smartphone orientation Fixed Fixed Free Fixed 

Smartphone positioning Waist 
Front pants leg 

pocket 

As per the indi-

vidual’s choice 
Front pocket and waist 

Sensor frequency Fixed Fixed Not fixed Fixed 

Dissimilar Individuals Yes Yes Yes No 

Type(s) of sensors used 
Accelerometer; gy-

roscope 

Accelerometer; gy-

roscope 

Accelerometer; 

gyroscope; mag-

netometer; GPS 

Accelerometer; 

gyroscope 

Number of subjects in-

volved in the study 
30 36 19 12 

3. Research Methodology 

In this section, Section 3.1 presents a description of our problem associated with the 

recognition of human activities. Next, Section 3.2 gives a brief introduction about the 

methodology used in general and then the step-by-step approach followed to perform 

human activity recognition (HAR). Finally, Section 3.3 presents the software tools used in 

the implementation of this research. 

3.1. Problem Description 

Human activity recognition plays a key role in studying interactions between human 

beings. It assists in understanding the interpersonal relations of the person. Intuitively, it 

is difficult to extract the same without human intervention because it consists of compre-

hending complex factors such as their psychological state, their physiological state and 

their personality that makes them unique as a person [37]. Additionally, human activity 

recognition can support the surveillance systems to identify any criminal activity. More-

over, HAR is a significant function for monitoring the health of patients to ensure their 

well-being. There is a plethora of activities that humans perform in their daily lives. How-

ever, this work focuses on the identification of few basic human activities such as walking, 

jogging, sitting, standing, going downstairs and going upstairs. Each class of activity is 

labelled from 0 to 5, which shall be differentiated using the CNN model, as mentioned 

below in Table 2. 

Table 2. Human activities and their corresponding labels. 

Human Activity Label 

Downstairs 0 

Jogging 1 

Sitting 2 

Standing 3 

Upstairs 4 

Walking 5 
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3.2. CNN for Human Activity Recognition 

A convolutional neural network, abbreviated as CNN or ConvNet, is a deep learning 

method that falls under the category of artificial neural networks (ANN). It is mostly ap-

plied to analyze visual imagery in common [38]. CNNs have had pioneering results over 

the years in an array of fields related to pattern recognition, from voice recognition to 

image processing and video recognition. Additionally, they also have applications in rec-

ommender systems [39], image classification, image segmentation and analysis, natural 

language processing [40], brain–computer interfaces [41] and financial time-series [42]. 

The striking feature of CNN is that it reduces the number of parameters in neural net-

works. This advantage has motivated researchers to build bigger models to work out so-

phisticated tasks, which was otherwise not achievable with classic artificial neural net-

works [43]. 

The CNN architecture consists of three layers viz. an input layer, hidden layers and 

an output layer. The hidden layers consist of convolutional layers which perform a dot 

product (Frobenius inner product) of the convolution kernel with the input matrix asso-

ciated with the layers. The activation function related to this dot product is ReLU. A fea-

ture map is generated using the convolution operation. Furthermore, it contributes to the 

input of the next layer. Pooling layers and fully connected layers are the next type of layers 

that enter the picture. The pooling layers minimize the dimensions of data through the 

combination of the outputs of neuron clusters into a single neuron in consecutive layers, 

respectively. Therefore, the computational power required to process the data is reduced. 

On the other hand, the fully connected (FC) layer extracts the features from the previous 

layers along with their corresponding filters and accordingly performs classification. In 

this type of layer, the Softmax activation function is used to classify inputs. The outcome 

of this function is the probability value lying between 0 and 1. 

The input layer requires that the data be reshaped. In 2D CNN, the kernel moves in 

two directions and hence the adjective “2D” is used to refer to such CNNs. The input and 

output data of 2D CNN are 3-dimensional. Therefore, the proposed 2D CNN model is 

given 3-dimensional input data as the values of three accelerometer readings (x, y, z-axes). 

The accelerometer readings represent time-series data. It is to be noted that the individual 

accelerometer data of each axis are 2-dimensional. The first dimension represents the 

time-steps and the second dimension represent the acceleration for the respective axis. 

Furthermore, the CNN networks are prone to overfitting data due to the full connectivity 

of its layers. Overfitting can be regularized using weight decay, skipped connections or 

dropout [44] methods. During the development of the 2D CNN model, we have used the 

dropout method to reduce overfitting. Additionally, the activity data are collected from 

each person involved in the experiment for each activity to minimize overfitting. After 

pre-processing of data is complete, each record (associated with each activity) is fed into 

the neural network. Once reshaping of data takes place, the convolutional layer, pooling 

layer, and the fully connected layers present in the hidden layer perform the necessary 

operation on the data with Softmax activation at the final layer. The activities can be clas-

sified into six classes which implies the creation of 6 output values, one for each activity. 

Figure 1 indicates the CNN model development to perform HAR. 
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Figure 1. CNN model development [45]. 

Now, we briefly describe the model development process as depicted in Figure 1. 

The human subject performs any one of the six activities. The accelerometer data are rec-

orded for the three axes (x, y and z). For pre-processing this recorded data, it must be 

reshaped before feeding it into the neural network. During reshaping, it must be ensured 

that each person has multiple two-dimensional records which hold 80 time slices for each 

of the three accelerometer readings. Every record corresponds to a unique label. There are 

six unique labels, each representing the discussed human activities. Next, those records 

are fed into the neural network during training. Moving on to the input layer, this layer is 

a vector with 240 elements (flattened representation of 80-time slices for 3 accelerometer 

readings each). Furthermore, the three hidden layers have 100 nodes each. The layers are 

fully connected. There is also an additional layer for reshaping the input into an 80 × 3 

matrix and a Softmax activation layer as the ending layer. Finally, coming to the output 

layer, the six available labels, viz., 0, 1, 2, 3, 4 and 5 can be observed in Figure 1. The net-

work would eventually provide the probabilities regarding each output class. 

3.3. Software Tools Used 

The experiment with the CNN model conducted in Section 4 was implemented in the 

Python programming language. Keras [46] is the major library of Python that was used 

along with TensorFlow [47]. A Jypyter Notebook was chosen as the implementation plat-

form. Moreover, other important Python libraries used during model development and 

data analysis were matplotlib [48], scikit-learn [49], pandas [50] and NumPy [51]. 

Moving on, the model needs to be compiled and fitted. Thus, a mini-batch size is 

fixed experimentally to 80 samples. This process is supported using an optimizer such as 

ADAM [52]. It is an algorithm that can be used to rationalize the network weights itera-

tively for the concerned training data. It provides better optimization than classical sto-

chastic gradient descent methodology. 

4. Experiment Study 

In this section, the implementation work behind the activity recognition task is ex-

plained. Section 4.1 explains the dataset and the data collection process. Section 4.2 de-

scribes the six activities concerning the accelerometer readings. Section 4.3 explains how 

data are balanced in the dataset. Section 4.4 discusses the data standardization and frame 

preparation for the study. Section 4.5 briefly explains the splitting of data for training and 

testing purposes. Finally, Section 4.6 presents the development of the 2D CNN model 

along with model evaluation and the confusion matrix. 
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4.1. Data Collection 

This research uses the WISDM dataset [12] as described in Table 1. A total of 1,098,209 

examples are present in the dataset. A total of 36 participants participated in the experi-

ment. To collect data for this experiment, every participant was required to carry a 

smartphone running on the Android operating system during the performance of each of 

the six activities. The subjects were required to carry their Android phones in a pocket 

situated in the front portion of their pants. Furthermore, they were advised to sit, walk, 

stand, jog, climb upstairs and go downstairs for specific durations of time. 

An Android application, running on the smartphone, controlled the data collection 

from the accelerometer during activity performance by the subjects. The application used 

in the experiment comprised a graphical user interface, which permitted the experiment 

supervisor to record the subject’s name and label the activity that the subject performed. 

Furthermore, the application also provided a feature to start and stop collecting data. In 

addition, the application enabled the supervisor to control the type of data from different 

sensors (e.g., gyroscope, accelerometer) and to set the frequency of data collection. Over-

all, the data from the accelerometer were collected every 50 milliseconds at the rate of 20 

samples per second. 

For example, Table 3 shows a part of the dataset with the activity details of partici-

pant with user ID 33. The participant is performing the jogging activity. The time column 

consists of the timestamps in numeric form, which is generally the phone’s uptime in na-

noseconds. The corresponding coordinate values of the three axes are also included in the 

table. 

Table 3. Activity details of a typical subject of the experiment. 

 
User 

ID 
Activity Time x y z 

0 33 Jogging 49105962326000 −0.6946377 12.680544 0.50395286 

1 33 Jogging 49106062271000 5.012288 11.264028 0.95342433 

2 33 Jogging 49106112167000 4.903325 10.882658 −0.08172209 

3 33 Jogging 49106222305000 −0.61291564 18.496431 3.0237172 

4 33 Jogging 49106332290000 −1.1849703 12.108489 7.205164 

4.2. The Activities 

In this research study, the activities that are taken into consideration are: walking, 

going upstairs, going downstairs, sitting, jogging and standing. There are two reasons 

why these activities were selected. Firstly, these activities are quite common, and many 

people perform them in their everyday lives. Secondly, these activities also involve move-

ments of the body that take place for a considerable amount of time, hence recognizing 

them becomes an easy task. Moreover, most of these activities show repetitive patterns in 

body movements, which can make their recognition easier [12]. When the data are rec-

orded for respective activities, the accelerometer readings (acceleration values) are rec-

orded in the three axes, viz., x-axis, y-axis and z-axis. For this study, the horizontal motion 

of the subject’s leg is captured in the x-axis. The upward and downward motion of the 

body is captured in the y-axis. Lastly, the forward motion of the subject’s leg is captured 

in the z-axis. 

Figures 2a–f shows six plots for each activity performed by a typical human subject 

who had participated in the experiment. Before depicting the accelerometer values of the 

three axes in their graphical forms, a check for null or missing values was performed. It 

was found that there were no null values in the reading, thus ensuring that the data are 

well-filtered before representation. Every plot consists of three subplots representing ac-

celeration values concerning the x, y, and z-axis. As mentioned before, the data are rec-

orded at a frequency of 20 Hz, i.e., 20 samples per second. As only 180 records are consid-

ered from the beginning, each plot illustrates an interval of 9 s for the respective activities 



Appl. Sci. 2021, 11, 12099 10 of 21 
 

(calculation: 0.05 * 180 = 9 s). It could be observed that sitting and standing activities as 

seen in Figures 2e and 2f, respectively, do not display recurring behaviour but do possess 

distinguishing patterns with respect to points on the x, y and z axes. In contrast, the rest 

of the four activities (Figures 2a–d), which involve carrying out repeated motions, do 

show recurring patterns in the plots. An important aspect of the plots in Figure 2 that 

should be noted is that the values of the y-axes have the highest magnitudes of accelera-

tion compared with other axes. This is because of Earth’s gravity, which causes an accel-

eration of 9.8 m/s2 towards the centre of the earth. Due to this, the accelerometer measures 

9.8 m/s2 in the direction of the Earth’s centre. 

  

(a) Walking 

 
(c) Downstairs 

(b) Upstairs 

 

(d) Jogging 

 

(e) Standing 

 

(f) Sitting 
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Figure 2. Plots representing accelerometer readings for the six human activities (a–f). (a) Accelerometer readings for Walk-

ing. (b) Accelerometer readings for Upstairs. (c) Accelerometer readings for Downstairs. (d) Accelerometer readings for 

Jogging. (e) Accelerometer readings for Standing. (f) Accelerometer readings for Sitting. 

The approximate periodic patterns for the activities shown in Figure 2a–f show a re-

lationship between time and accelerometer reading values. Additionally, as per expecta-

tion, standing and sitting activities have constant acceleration values when there is a neg-

ligible motion before and after sitting or standing. The plot for walking shown in Figure 

2a shows more variations and many peaks as it involves more motion. The distance be-

tween two consecutive peaks on the y-axis and z-axis represents the time taken by the 

subject to perform a stride while walking. The adjacent values of the x-axis plot are lesser 

in magnitude comparatively and display the peaks in association with the remaining two 

axes. For jogging activity (Figure 2d), similar trends such as walking are seen for the data 

related to the y-axis and z-axis. Nonetheless, the extent of magnitudes of acceleration on 

the y-axis is more than that present in walking, with an observable shift in the negative 

direction. Additionally, it can be observed that jogging involves comparatively more var-

iation and higher frequency due to repetitive motions of the body. 

For downstairs, as seen in Figure 2c, each small peak in the y-axis plot indicates that 

the subject is going down by one stairstep. Similarly, the z-axis values show that the sub-

ject is moving down each stair, but with acceleration in the negative direction. Next, the 

x-axis plot displays a progression of small peaks in a semi-regular fashion, wherein the 

acceleration is wavering between positive and negative magnitudes. For upstairs (Figure 

2b), there is a sequence of semi-regular peaks in the x-axis with greater magnitudes ini-

tially. In the y-axis, the peaks are occurring in regular intervals. The z-axis data have 

slightly spaced peaks, which shows that the subject takes a longer time to climb upstairs 

in comparison with downstairs. 

4.3. Data Balancing 

The initial data from the dataset are highly unbalanced. It can be seen from Figure 3 

that a greater amount of data for walking and jogging activities is present compared with 

other activities. This is because the number of training examples or samples for those two 

activities have been collected in abundance compared with the rest of the activities during 

the actual experiment. The training examples or samples are crucial for model develop-

ment and human activity prediction. As CNNs are supervised deep learning models, they 

require huge set of input data and known responses to the output data for learning. 

Greater number of samples assist in better learning of the CNN model and hence lead to 

better prediction, provided that the number of samples for all the six activities are equal. 

It is also clear from Figure 4 that the total number of participants in the experiment is 36. 



Appl. Sci. 2021, 11, 12099 12 of 21 
 

 

Figure 3. Training examples by activity type. 

 

Figure 4. Training examples by user. 

Furthermore, from Figure 4, it is obvious that user 20 has recorded the highest 

amount of data for the experiment. On the other hand, user 4 has recorded the least 

amount of data. Hence, there is non-uniformity in the recording of data by participants as 

well. However, this non-uniform distribution of training examples is less of a concern as 

we are more interested in the greater number of examples for different activities with little 

stress over who performs them. However, for better prediction and recognition of human 

activities, it is crucial to have balanced data for each of the six activities. From Figure 3, 

we can observe that the data are highly skewed towards walking and jogging. If this issue 

is avoided, it might result in overfitting during training, which could lead to an unwanted 

performance drop of our machine learning model [53]. Since equal importance is ought to 

be given for all the six activities, it is necessary to observe the activity which has the least 

number of examples. It is a standing activity with 3,555 examples. Therefore, data are bal-

anced by considering 3,555 training examples from each of the six activities. The balanced 

number of training examples by activity type is shown in Figure 5. 
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Figure 5. Balanced number of training examples for each activity type. 

Furthermore, the columns present in Table 3 are in string format. However, the val-

ues of x, y and z are required in the format of floating-point numbers for further pro-

cessing. Thus, the datatype of x, y and z column is changed to “float64”, representing 

floating-point values. After the dataset is balanced, all the activities are brought in a single 

Data frame. Moving on, the activity variables are converted into categorical values. Labels 

(output/target variables) from 0 to 5 are given to activities, viz., going downstairs, jogging, 

sitting, standing, going upstairs and walking, respectively, with the help of an array of 

size 6. 

4.4. Data Standardization and Frame Preparation 

The values of x, y and z can be seen in Table 3 for the jogging activity performed by 

user 33. It can be observed that the respective values show a variance of greater magnitude 

between them in their respective columns. To decrease variance among the data, a stand-

ard scaling technique was used, which resulted in values with much lesser variance, as 

seen in Table 4. 

Table 4. Standardized data with lesser variance in x, y and z values. 

 x y z Label 

0 0.000503 0.000503 0.000503 5 

1 0.073590 0.073590 0.073590 5 

2 −0.361275 −0.361275 −0.361275 5 

3 1.060258 1.060258 1.060258 5 

4 −0.237028 −0.237028 −0.237028 5 

... ... ... ... ... 

21325 −0.470217 −0.470217 −0.470217 3 

21326 −0.542658 −0.542658 −0.542658 3 

21327 −0.628514 −0.628514 −0.628514 3 

21328 −0.781444 −0.781444 −0.781444 3 

21329 −0.800225 −0.800225 −0.800225 3 
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The features are standardized by removing the mean and scaling to unit variance. 

For instance, consider a sample X. The standard score of the sample X is calculated as: 

z = (X − u)/s 

where u is the mean of the training samples and s is the standard deviation of the training 

samples. During implementation to obtain the standardized data, the data were firstly fit 

and then transformed using the fit_transform () method under the sklearn.preprocessing. 

StandardScaler class. These data are further converted into a data frame using the pandas. 

DataFrame class. 

Data frame preparation is necessary as the subjects will be performing their activity 

for a random period of time, but only a certain amount of data can be fed into the neural 

network at a time. Therefore, with the help of a Data frame, it is possible to analyze the 

data in two dimensions. It also helps in dividing the data into batches that need to be 

processed by the model. For this purpose, the frequency is taken as 20, and the frame size 

is taken to be equal to 80 (frequency * 4). This implies that 80 * 3 samples will be fed to the 

model in a batch, considering all three dimensions. The hop size is taken as twice as the 

frequency, i.e., equal to 40. This implies that the advancement on the Data frame will be 

made with 40 data samples. Thus, the number of records in each dataset can be calculated 

as: 

(No. of training samples of an activity * Total no. of activities/hop size) = 3555 × 6/40 

≈ 533. 

4.5. Splitting Data for Training and Testing 

The complete dataset is split into a training set and a test set as it is necessary for 

training and evaluating the model. While splitting the data, care was taken that the data 

present in the test set did not affect the training set data. This is ensured by allocating 80% 

of available data for training and the remaining 20% of data for testing. This approach can 

also prove beneficial for analyzing the overall performance of the model during training 

and validation. The idea behind splitting is to let the neural network learn from the data 

generated by few persons who have been through the experiment. Additionally, since 

each two-dimensional record should hold 80 time slices for the accelerometer readings, 

the data are reshaped as follows: 

Before reshaping 

Shape of the training set = (532, 80, 3) 

Shape of the testing set = (532,) 

where 532 represents number of samples which is approximately equal to the calculated 

number of records, which is 533; 80 is the width, i.e., the number of time slices is 80 and 3 

represents the height (3 accelerometer readings from x, y and z axes). 

After reshaping 

Shape of training set = (425, 80, 3)   ; since, 532*0.8 ≈ 425 

Shape of testing set = (107 80, 3)   ; since, 532*0.2 ≈ 107 

where 425 and 107 are the number of samples in the training and the testing set, respec-

tively. The reason for reshaping is to ensure that the data input to the model are in the 

correct shape. Next, we are interested in knowing how well our model predicts the bodily 

motions of persons it has not come across. 

4.6. The 2D CNN Model 

After the prerequisite steps were completed, the next step was the development of a 

two-dimensional convolutional neural network. The data were, therefore, made ready to 

be processed by Keras. Moving on, the model was developed using five layers. The first 

layer is the sequential layer, which enabled us to add further layers to the neural network. 

This layer also performs reshaping of the data by bringing them into the “old” format. 

The filter size for this layer is set to 16. Following the previous layer, the next three layers 
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are the hidden layers. Six classes were used in the model (going downstairs, jogging, sit-

ting, standing, going upstairs, walking). The aforementioned layers use the Rectified Lin-

ear Unit (ReLU) as a universal activation function and have a filter size of 32. The kernel 

size for the first four layers is (2,2), which implies that the height and width of the convo-

lution window are 2 and 2, respectively. Lastly, the fifth layer comprises the dense layer 

which identifies the six classes and runs a Softmax activation function for multi-class 

probability calculation. To reduce overfitting, a dropout of 0.1 is used for the sequential 

layer and a dropout of 0.2 is used for the next three hidden layers. Next, for the dense 

layers, a dropout of 0.5 is used. The model is finally built. The input, convolution, pooling, 

fully connected and output layer is depicted in Figure 6. The next step is the compilation 

of our model. This is carried out by executing ADAM optimizer with a learning rate of 

0.001, the loss is taken as sparse categorical cross-entropy and the metrics are based on 

accuracy. Furthermore, the training data are fitted into the model with 10 epochs and the 

training begins. The first epoch had achieved an accuracy of only 24% with training, 

whereas the validation was 42.06% accurate. Coming to the tenth epoch, the training was 

highly accurate with 93.88% accuracy whereas the validation was 89.72% accurate. Section 

4.6.1 describes how well the model has learnt, and the final confusion matrix for activity 

prediction is shown in Section 4.6.2. 

 

Figure 6. Different layers of the 2D Convolutional Neural Network. 
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4.6.1. Model Evaluation 

After the training is finished, it is necessary to gauge our model so that we can be 

sure that it can predict human activities well enough. For this purpose, two learning 

curves were plotted, which are presented in this paper. Figure 7 shows the plot of training 

and validation accuracy values for all the ten epochs. Next, Figure 8 shows the plot of 

training and validation loss values for all the ten epochs. 

 

Figure 7. Graph depicting model accuracy. 

 

Figure 8. Graph detecting model loss. 

From Figure 7 and Figure 8, we can conclude that the CNN model has been trained 

with high accuracy. Additionally, in Figure 8, the validation loss is less than the training 

loss. This shows that the developed model is neither overfitting nor underfitting. 

4.6.2. The Confusion Matrix 

Finally, the six activities are predicted using a confusion matrix. For this, the test data 

are passed in an appropriate function, and as a result a 6 × 6 matrix is obtained with the 

diagonal squares containing the probabilities of recognition of each of the six classes (See 

Figure 9). 
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Figure 9. Confusion matrix showing the prediction scores of each activity. 

5. Results and Discussion 

Based on the confusion matrix as seen in Figure 9, we conclude that the proposed 2D 

CNN model was successful in predicting the human activities with the accuracies seen in 

Table 5. 

Table 5. Human activity prediction scores. 

Activity Prediction Accuracy (%) 

Downstairs 89% 

Jogging 94% 

Sitting 100% 

Standing 100% 

Upstairs 61% 

Walking 94% 

From Table 5, it can be concluded that the 2D CNN model was perfectly able to rec-

ognize sitting and standing activity. Moreover, activities such as jogging, walking and 

downstairs were predicted with good accuracy. However, the upstairs activity has the 

least accuracy because the model becomes confused with the downstairs activity due to 

the similar nature of both the activities. The average accuracy of predicting the six activi-

ties is 89.67% 

Now, to substantiate the efficacy of the method that we put forward in this paper, we 

compare it with a state-of-the-art method, namely a popular method such as the LSTM. 

The results are summarized in Table 6.  
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Table 6. Comparison of accuracy between 2D-CNN and LSTM. 

Activity LSTM Accuracy (%) 2D CNN Accuracy (%) 

Downstairs 86% 89% 

Jogging 96% 94% 

Sitting 92% 100% 

Standing 94% 100% 

Upstairs 87% 61% 

Walking 99% 94% 

From Table 6, it can be said that LSTM fares well in the prediction of all the six activ-

ities with high accuracy. However, the 2D CNN model performs better in activities such 

as downstairs activity, standing and sitting. Additionally, the average accuracy of predict-

ing the same activities using LSTM is found out to be approximately 92.33%. Even though 

LSTM has higher average accuracy, the 2D CNN model still fares well in activity predic-

tion. 

6. Conclusions 

This paper presented a 2D CNN model for recognizing and predicting simple human 

activities with the help of an existing dataset based on accelerometer readings. The pro-

posed model identifies and predicts the majority of the six activities with a high degree of 

accuracy—over 85% of the time, on average. The approach of building the convolutional 

neural network in a two-dimensional format and its application in HAR is the highlighted 

feature of our work. This paper also shows how important research on human activity 

recognition has become in present times, with newer methods coming over time. 

In addition, this paper also shows how learning evaluation is necessary before pro-

ceeding towards model development. This helps in comparing the learning scores with 

the actual prediction scores of the model, and thereby a consistency check can be per-

formed. Moreover, the results obtained in this paper were comparable with a renowned 

state-of-the-art method—the LSTM. 

Our future work can focus on working on newly developed datasets that are more 

aligned with real-life scenarios, consisting of a greater number of activities to predict and 

a bigger number of participants. Otherwise, an effort can also be made to collect data, per 

se, with a greater number of participants with different lifestyles, behaviour, ageing, sex, 

etc. Another future work could include abnormal human behaviour prediction. With the 

help of a functional activity recognition system, one can supervise the dependent persons 

such as the elderly people in smart homes and evaluate their activity level for healthcare 

services. Moreover, for all the residents staying in smart buildings, human activity recog-

nition can be utilized in checking their comfort level concerning factors such as tempera-

ture and humidity. Last but not least, 1D and 3D approaches towards building the CNN 

model could be tried out for predicting human activities in future. 
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