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Abstract: Rail clips are essential components of rail fastening systems that clamp the rails to sleepers.
Fatigue damage of rail clips has been recently reported in railway lines. However, there has been a
lack of research investigating this fatigue issue. The KR-type rail fastening system has been recently
developed and used in some domestic railways. This study aimed at evaluating the structural
behavior and fatigue performance of the KR-type rail clip. The assembly test performed in the
laboratory showed that the stresses induced in the rail clips after tightening, particularly at the stress
concentration locations, exceeded the yield stress, indicating that the rail clip could be vulnerable to
fatigue cracking when combined with the stress range during repeated trainloads. The finite element
analysis results, which revealed a good correlation with the experiments, were used to evaluate the
fatigue performance of the rail clip by adopting the modified Goodman fatigue criteria. The fatigue
evaluation results indicated that when the vertical rail displacement during train operation exceeded
2 mm, the rail clips could potentially suffer from fatigue failure.

Keywords: rail fastening system; rail clip; fatigue; finite element analysis

1. Introduction

A rail fastening system clamps rails to railway sleepers or railway ties and is the main
component of a railway track that delivers the trainload to the substructure. A rail clip (or
rail clamp) is an essential part of a rail fastening system and provides a clamping force
linking the rail and sleeper together to prevent tipping and the longitudinal and transverse
displacement of the rail.

A rail clip can be vulnerable to fatigue cracks because it is acted upon by high initial
stresses during the assembly process and fluctuating stresses from repeated trainloads.
Fatigue damages of rail clips have been reported in South Korea and other countries (see
Figure 1 as an example) [1,2]. If fatigue damage of multiple rail clips occurs simultaneously
in a railway track, potential train derailment could occur, placing passenger comfort and
riding safety at risk.

Although the assessment of fatigue performance of rail clips plays such a vital role
in terms of ensuring safety, limited research has been performed to investigate the exact
cause of any fatigue damage on rail clips in the field. Past research has mainly focused on
investigating the mechanical behavior and structural dynamics of rail fastening systems
by employing numerical analyses, including understanding the interaction between track
components [3–5]. There is a dearth of research evaluating the fatigue life of rail clips. A
method to analyze the stress-based fatigue reliability of a rail clip under random train
loading was also developed. The sensitivity analysis showed that the equivalent stress
range had the largest influence on the fatigue reliability index. However, the fatigue
evaluation technique proposed by the authors was based on crack propagation under the
assumption of a small initial crack. The fatigue crack initiation life was not considered [6].
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range had the largest influence on the fatigue reliability index. However, the fatigue eval-

uation technique proposed by the authors was based on crack propagation under the as-

sumption of a small initial crack. The fatigue crack initiation life was not considered [6].  

Failure analysis of fatigue cracking was performed in the tension clamp SKL15 of the 

rail fastening system DFF-300. The fatigue performance of the tension clamps was deter-

mined based on both field measurements and finite element analyses (FEA). The authors 

evaluated the fatigue performance of the tension clamps, considering both the initial stress 

from the assembly process and the stress amplitude from repeated trainload, using the 

modified Goodman and Gerber diagrams to analyze the possibility of fatigue cracking [1].  

The KR-type rail fastening system has been developed in South Korea and used in 

some domestic railways. Figure 2 depicts the main components and assembled configu-

ration of this rail fastening system. The fatigue performance of the rail clip has been as-

sessed by conducting a simple fatigue test; however, a thorough fatigue performance in-

vestigation has not been conducted yet. In this study, both the structural behavior and 

fatigue performance of the KR-type rail fastening system were evaluated through labora-

tory tests and FEA. A laboratory assembly test was first performed to investigate the sys-

tem’s global response and local deformation pattern in an effort to identify potential fa-

tigue vulnerabilities in the presence of stress concentration on the rail clip. The natural 

frequencies of the rail clip were also determined by performing a modal test in the labor-

atory. FEA was then conducted to supplement and compare the output with the experi-

mental results. In FEA, the assembly process and the vertical rail movement of a train 

passage were simulated in two steps to capture the stress states from which one could 

assess any potential fatigue failure of the rail clip by using the modified Goodman dia-

gram.  

 

Figure 1. Damaged rail clip. 
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Figure 2. The KR-type rail fastening system: (a) components; (b) assembled configuration. 

Figure 1. Damaged rail clip.

Failure analysis of fatigue cracking was performed in the tension clamp SKL15 of
the rail fastening system DFF-300. The fatigue performance of the tension clamps was
determined based on both field measurements and finite element analyses (FEA). The
authors evaluated the fatigue performance of the tension clamps, considering both the
initial stress from the assembly process and the stress amplitude from repeated trainload,
using the modified Goodman and Gerber diagrams to analyze the possibility of fatigue
cracking [1].

The KR-type rail fastening system has been developed in South Korea and used in
some domestic railways. Figure 2 depicts the main components and assembled configura-
tion of this rail fastening system. The fatigue performance of the rail clip has been assessed
by conducting a simple fatigue test; however, a thorough fatigue performance investiga-
tion has not been conducted yet. In this study, both the structural behavior and fatigue
performance of the KR-type rail fastening system were evaluated through laboratory tests
and FEA. A laboratory assembly test was first performed to investigate the system’s global
response and local deformation pattern in an effort to identify potential fatigue vulnerabili-
ties in the presence of stress concentration on the rail clip. The natural frequencies of the
rail clip were also determined by performing a modal test in the laboratory. FEA was then
conducted to supplement and compare the output with the experimental results. In FEA,
the assembly process and the vertical rail movement of a train passage were simulated in
two steps to capture the stress states from which one could assess any potential fatigue
failure of the rail clip by using the modified Goodman diagram.
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2. Laboratory Measurements
2.1. Tensile Coupon Test

Tensile coupon tests with three test specimens were performed to measure the me-
chanical properties of SPS9A spring steel used in KR-type rail clips using the Korean
Industrial Standards [7]. The results of the tensile test are shown in Table 1. Figure 3 shows
the stress–strain curve of the material. The modulus of elasticity was approximately 205
GPa. The average values of 0.2% offset yield stress, tensile strength, and elongation were
1377 MPa, 1509 MPa, and 9.6%, respectively.

Table 1. Steel mechanical properties.

Specimen
No.

Yield Stress
(MPa)

Tensile Strength
(MPa)

Elongation at Failure
(%)

1 1383 1517 11.0
2 1379 1514 9.3
3 1368 1497 8.5
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2.2. Assembly Test

An assembly test was performed in the laboratory to evaluate the structural behavior
of the rail clip during fastening, as shown in Figure 4. A torque of 250 ± 25 N·m was
applied to the screw spike using a torque wrench until the central part of the clip came in
contact with the guide plate. A combination of displacement transducers and rosette strain
gauges was placed in specific locations of the clip to measure its global and local responses
during the fastening procedure. The strain gauges were installed at highly curved locations
where high stress concentration was expected.

Figure 5 illustrates the global response of the clip. The vertical axis represents the
torque applied to the screw spike for fastening the clip to the rail, while the horizontal
axis represents the average vertical displacement at the central end of the clip, as shown in
Figure 5. Elastic behavior was exhibited until the clip came in contact with the guide plate,
at which point the torque applied was approximately 230 N·m at the vertical displacement
of 11.4 mm. From the rosette strain gauge measurements during the fastening process,
the maximum principal strains at three locations (i.e., R1, R2, and R3 in Figure 6) were
calculated and plotted as shown in Figure 6. During the unloading procedure, the strains
upon complete removal of torque were measured. The presence of some residual strains
indicated that the strains during tightening exceeded the yield strains, particularly at
locations R2 and R3. It should be noted that such local plastic behavior exhibited by the
clip during fastening would have been more obvious if the strain gauges were placed at
locations with more severe stress concentrations.
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After the assembly of the rail fastening system was completed, a modal test was
performed to identify the natural frequencies of the clips using an impact hammer and an
accelerometer. Figure 7 shows the configuration of the modal test setup. The accelerometer
was installed at one side of the rail clip arm, and an impact hammer was used to strike the
other side (see Figure 7). A total of three tests were performed. The average values of the
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first, second, and third natural frequencies through modal analysis were 871 Hz, 1025 Hz,
and 1272 Hz, respectively.
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3. Finite Element Analysis
3.1. Modeling Details

In addition to the laboratory testing, FEA was performed to study the structural
behavior of the rail clip, including the stress fields acting on it. Due to the complex shape
of the clip, 3D scanning of the clip was performed, and the scanned shape of the clip was
imported into the FEA software Abaqus [8]. The 3D solid elements (referred to as C3D8R
in Abaqus) and the inelastic material properties were applied to the model. The trilinear
input material model of the analysis (shown in Figure 8) was assumed based on the tensile
coupon tests outlined in Section 2.1. A Poisson’s ratio of 0.29 and an elastic modulus of
205 GPa were assigned. To account for the stiffness of the elastic pad underneath the rail,
spring elements with a stiffness of 12,500 N/mm were added in the vertical direction at the
clip-to-rail contact location. Total number of nodes, elements and degrees of freedom of
the model were 15,867, 12,880 and 47,601, respectively. Minimum size of an element was
2.2 mm and aspect ratio was limited to 1:4. The size of the element was determined based
on a mesh convergence test.
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Figure 8. Properties of the input material.

Two loading steps were applied to simulate the installation of the rail clip and vertical
displacement during train operation, as shown in Figure 9. In step 1, the top surface of the
central part of the clip was tied to the center point, and a vertical displacement was applied
to this center point, simulating the tightening of the screw spike. The level of displacement
applied in step 1 was 11.4 mm, based on the laboratory measurements in Figure 5. In step
2, vertical displacements of 1 mm, 2 mm, and 3 mm were applied to the clip-to-rail contact
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location to simulate the movement of the clip during train operation. In step 1, modal
analysis was also performed to evaluate the natural frequencies and the corresponding
mode shapes.
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Figure 9. Loading steps of finite element analysis.

3.2. Results of Analysis

The results obtained through FEA were first verified by comparing it with the ex-
perimental results. Figure 10 provides a comparison of the maximum principal strains
between the strain measurements in the laboratory assembly test and the FEA results in
step 1. Figure 10a–c show a comparison of the strains along the circumference at the three
different cross sections of the rail clip, which are denoted by “Left”, “Center”, and “Right”
in Figure 10d. The boundary position marked in Figure 10b is near the region contacted
between the rail clip and the guide plate. The plot of the strains obtained from the analysis
is shown through the black solid lines. The red dots are the strains measured from the
assembly test. A comparison of strains revealed a good correlation with an average error
of about 14%. Table 2 shows the natural frequencies and their associated mode shapes
obtained through the frequency analysis performed in Abaqus. The natural frequencies are
also compared with the measured ones from the laboratory modal test in this table. The
comparison of natural frequencies indicated a good correlation, with an error of about 15%.

The global response in the two loading steps is plotted in Figure 11. The vertical
axis represents the vertical force applied to the torque location while the horizontal axis
represents the vertical displacement at the clip end in step 1. As shown in Figure 11,
although the global response typically exhibits elastic behavior, a slight plastic behavior is
also observed as the applied force approaches closer to the tightened end (i.e., the initial
straight line gets inclined a little toward the tightened end).

Figure 12 depicts the contours of the maximum principal stress. While Figure 12a
shows the contours after the completion of step 1 (which simulates the assembly process),
Figure 12b shows the contours for steps 1–2 (which simulates the vertical movement of the
rail clip from the train passage) (i.e., the contours in Figure 12b represent the stress range).
It should be noted that the stresses were relieved due to the train passage, because the
downward vertical movement of the rail reduced the clamping force of the rail clip. Since
both mean stress (or maximum stress) and stress amplitude affect fatigue performance,
the locations where the maximum stress or the stress amplitude were high can potentially
represent fatigue crack initiation. These locations were identified in the red color of the
stress contours in Figure 12.
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Table 2. Comparison of natural frequencies (test vs. Abaqus).

Mode Test
(Hz)

Abaqus
(Hz)

Error
(%) Mode Shape

1st 871 999 14.7
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A fatigue test was conducted at Hybrid Structural Testing Center at Myongji University
using a 100 kN dynamic actuator with the loading frequency of 5 Hz. The rail clips were
tested for various constant displacement ranges from 0.8 mm to 4 mm. Irrespective of the
constant displacement ranges, KR-type rail clips have revealed that fatigue cracks occur at
two different locations and propagate along different paths. Figure 13 shows the failure
modes (failure modes 1 and 2) from the fatigue test, which were compared with the ones
obtained through FEA. From Figure 13, it can be observed that the crack initiation points
identified from the fatigue tests are similar to the stress concentration locations obtained
through FEA.
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4. Fatigue Performance Evaluation

The rail clip is a structure designed in such a way that the initial stress generated
during the assembly process is relieved by the trainload during train operation. Stress
ranges, due to the relieved stress and high initial stress, render the rail clip susceptible to
fatigue cracking. The possibility of fatigue failure can be evaluated by the equation based
on the fatigue criteria, which is given as follows [9]:



Appl. Sci. 2021, 11, 12074 9 of 11

Modified Goodman equation :
σm

Su
+

σa

Se
≤ 1 (1)

where σm and σa are the mean stress and stress amplitudes, respectively. Su and Se are
the tensile strength and endurance limit of the material, respectively. The endurance limit
generally lies within the range of 35–60% of the tensile strength of the material [10,11]. The
endurance limit of 528 MPa (35% of the tensile strength) was conservatively selected. From
Equation (1), the fatigue failure (through a planar graph represented by the stress amplitude
and average stress) can be determined. The straight line obtained through the fatigue
equation, shown in Figure 14, is related to the fatigue limit. If the actual stress amplitude is
greater than the fatigue limit, fatigue cracking can occur. The fatigue performance for the
two possible failure modes was determined using this approach.
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From Equation (1), the fatigue limit can be determined by both the mean stress and the
stress amplitude, and these stresses vary with the maximum stress. Thus, the maximum
stress and maximum stress amplitude are two key factors that determine the fatigue limit.
The maximum stress and maximum stress amplitude can be determined from step 1 and
the difference between steps 1 and 2 (i.e., steps 1–2) during analysis, respectively. The
maximum principal stresses for the two failure modes for step 1 and steps 1–2 are tabulated
in Table 3. Vertical displacements of 1, 2, and 3 mm are also considered.

Table 3. Stress conditions for fatigue performance evaluation.

Failure Mode 1 Failure Mode 2

Vertical Displacement 1 mm 2 mm 3 mm 1 mm 2 mm 3 mm

Maximum principal stress
for step 1

Maximum stress (step 1)
σmax (MPa) 1208 1250

Minimum stress (step 2)
σmin (MPa) 1096 983 870 1135 1018 902

Mean stress
σm (MPa) 1152 1095 1039 1192 1134 1076

Stress amplitude
σa (MPa) 56 112 169 58 116 174

Maximum principal stress
for steps 1–2

Maximum stress (step 1)
σmax (MPa) 1076 1217

Minimum stress (step 2)
σmin (MPa) 959 841 723 1092 965 839

Mean stress
σm (MPa) 1017 956 900 1155 1091 1028

Stress amplitude
σa (MPa) 59 117 176 63 126 189



Appl. Sci. 2021, 11, 12074 10 of 11

Figure 14 shows the fatigue performance evaluation of the rail clips for various vertical
displacements of the rail. When the vertical displacement was 2 mm or larger, the stress
amplitudes either approached or were greater than the fatigue limit. However, when the
vertical displacement was 1 mm, the stress amplitude was far below the fatigue limit,
indicating that if the rail was installed at the site where the vertical displacement was 2 mm
or larger, fatigue failure could potentially occur. It should be noted that the measured peak
strain after assembly was higher than the analysis result. Thus, actual mean stress could be
higher resulting lower fatigue performance.

5. Conclusions

In this study, the structural behavior of the KR-type rail clip was analyzed by conduct-
ing laboratory tests. The fatigue performance of the rail clip was also evaluated through
FEA. The following conclusions can be drawn:

1. During assembly testing, a high level of initial tensile stress, exceeding the yield stress,
acted in some locations where a high stress concentration was expected. Such high
initial stress, when combined with the stress range during train passage, indicates
that the rail clip could be vulnerable to fatigue cracking.

2. The fatigue test results of the KR-type rail clips showed two different failure modes.
The crack initiation points observed from the test matched well with the maximum
principal stress concentration segments obtained through FEA. The comparison of
natural frequencies of the clips, between the test results and those obtained through
FEA, also showed a good correlation.

3. The results obtained through FEA were used to evaluate the fatigue performance of
the KR-type rail clip by adopting the modified Goodman fatigue criteria. The results
indicated that when the rail vertical displacement due to train operation was 2 mm or
less, it was unlikely for fatigue failure to occur.

4. The evaluation of fatigue performance in this study was based on the initial stress
and alternating stress acting on the rail clip. Further research, to analyze the impact of
other parameters, including the residual stress and decarburized layer of the rail clip,
might be required to obtain more conclusive and accurate fatigue evaluation results.
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