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Abstract: The emerging technology of 3D printing can not only be used for rapid prototyping,
but will also play an important role in space exploration. Additive manufactured parts can be used
in diverse space applications, such as magnetic shields, heat pipes, thrusters, etc. Three-dimensional
printed parts offer reduced mass, high possible complexity, and fast printability of custom-made
objects. On the other hand, materials which are not excessively damaged by the harsh conditions in
space and are also printable by available technologies are not abundantly available. This review gives
an overview of recent metal additive manufacturing technologies and their possible applications in
space, with a focus on satellites and rockets, highlighting already applied technologies and materials
and gives an outlook on possible future applications and challenges.

Keywords: powder bed fusion; microsatellites; thrusters; structural components; space flight; aerospace;
aeronautics

1. Introduction

Additive manufacturing (AM), also called 3D printing, belongs to the emerging tech-
nologies of our time. After being used for rapid prototyping at the beginning, current rapid
production is enabled for many applications due to increasingly improved technologies.

While the technologies of fused deposition modeling (FDM) or stereolithography
(SLA) are most often used in the low-cost sector to print 3D shapes from diverse poly-
mers [1], technologies such as selective laser melting (SLM), selective laser sintering (SLS),
electron beam melting (EBM), and direct energy deposition (DED) can even be used to
form metal products [2].

Besides fast production without the necessity to prepare a time- and cost-intensive
injection mold beforehand, additive manufacturing has the advantages of allowing prepa-
ration of nearly unlimited shapes, including diverse forms which could not be produced
by common techniques such as injection molding, and thus of building lighter and never-
theless stable objects [3,4]. On the other hand, the mechanical properties of the 3D printed
objects may be reduced in comparison with other manufacturing methods due to layerwise
production, and residual stress and deformation may cause problems in the application of
additively manufactured parts [5,6].

While these aforementioned problems must be overcome by careful process engineer-
ing, additive manufacturing is especially interesting for aerospace applications where fast
development and mass reduction are of high importance [7]. Another reason why additive
manufacturing is important for space applications, e.g., of satellite and rocket parts, is
the possibility to prepare custom-made objects at a high speed of production, without
the necessity to prepare expensive molds beforehand. This article thus gives, after a brief
introduction of the most common metal additive manufacturing methods, an overview of
possible applications of metal AM for modern aeronautics, as they are investigated in recent
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research studies and already applied. Finally, it summarizes the remaining challenges and
indicates possible future applications.

The paper is organized as follows. Starting with an overview of diverse metal additive
manufacturing techniques, applications for microsatellites, such as thrusters, structural
components, and antennas, are described together with a few other applications reported
in the literature. Each section contains applications at the laboratory stage, where basic
research is necessary to evaluate the potential for future applications, along with mature
applications which are already used in actual satellites and rockets. Finally, future potential
applications are described.

2. Metal Additive Manufacturing Techniques

While polymer 3D printing usually works by placing a molten filament on the desired
positions or polymerizing a liquid resin at defined places, metal additive manufacturing
is usually based on metal powders or even metal wires. Typical materials used for metal
AM include aluminum, stainless steel, titanium, or cobalt chrome [8]. According to ASTM
standard F2792 [9], metal AM processes can be subdivided into powder bed fusion and
directed energy deposition.

Powder bed fusion processes generally include a powder bed in which energy is
deposited at defined positions to either melt or sinter the metal powder by a laser or an
electron beam. As an example, Figure 1 depicts the process of selective electron beam
melting (SEBM) [10]. The four-step process starts with the application of a powder layer,
which is heated, molten, until the layer is fully produced, and the platform can be lowered
to enable application of the next powder layer.
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Figure 1. Selective electron beam melting process. Left: Process chamber. Right: 4-step process for building one layer.
From [10], originally published under a CC-BY license.

It must be mentioned that the process works in “controlled vacuum”, i.e., the chamber
is pumped to approximately 10−4 to 10−5 mbar before helium is inserted to reach a low
pressure of about 10−3 mbar, to prevent electrostatic charging [10]. Electrons are emitted
from a tungsten filament or a LaB6 cathode and, as in scanning electron microscopy, are
accelerated and focused using electromagnetic lenses [11]. The object is built in layers of
typical thicknesses between 0.05 and 0.15 mm. Generally, a new powder layer is preheated
to temperatures between 300 and 1100 ◦C for different metals to start sintering, e.g., to
around 400 ◦C for pure copper and 900–1100 ◦C for Ti–48Al–2Cr–2Nb powder [12,13],
in this way increasing the electrical conductivity and thus avoiding repulsion of charged
powder particles [14], then melted where desired, lowering the platform, applying a new
powder layer of defined thickness on the platform, and starting with the next preheating
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step. Literature reports indicate that selective electron beam melting results in relatively
coarse surfaces and internal microstructures [15], but on the other hand in low residual
stress [16].

Besides selective electron beam melting, there are several laser-based processes that
work with a powder bed. One is the aforementioned selective laser melting (SLM), using a
laser to fully melt the powder, in this way creating dense layers so that no post-treatment
(as in SLS) is necessary [17]. Instead of the electron beam described previously, here a
laser beam scans the surface, focused with normal glass lenses. SLM usually works in a
nitrogen or argon atmosphere to avoid oxidation during the fusion process, with nitrogen
having a larger thermal conductivity, which is advantageous for cooling the specimens that
are produced [18,19]. The SLS process is in principle identical, with a different nature of
powder fusion [20]. The process and the melt pool formation are depicted in Figure 2 [20].
Similar to the aforementioned selective electron beam melting, here a laser beam is used to
melt the powder in the upper layer, before the build plate is lowered, and a new powder
layer is placed in the build area by the recoater (Figure 2a). The geometry of the melt pool,
produced by laser heating, is depicted in detail in Figure 2b.
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In addition to these typical powder bed fusion processes, there are also directed energy
deposition (DED) processes used for metal additive manufacturing. Figure 3 depicts two
typical DED systems [21], working with a laser or electron beam and powder or wire feed,
respectively. In both cases, the material used to build an object is deposited only at the
required position, either as a powder (Figure 3A) or as a wire (Figure 3B), opposite to the
aforementioned powder bed processes where the powder is provided along the whole
building area. These materials are again heated by laser (Figure 3A) or electron beam
(Figure 3B), similar to the aforementioned techniques.

Electron-DED again works in vacuum, while laser-based DED systems use inert gases
as described for the powder bed fusion processes. In the powder-based DED systems,
an inert gas can be introduced into the melting region together with the metal powder
(Figure 3A). It is even possible to use multiple nozzles for powder introduction so that
objects can be prepared from material mixtures, differing along the specimen [22]. It is also
possible to use plasma as the energy source, such as gas metal arc welding [23]. Generally,
laser- and plasma-produced parts usually need post-treatment due to high residual stress
in the specimens, which has to be relieved and the necessity to improve the microstructure,
while stress is usually lower for electron-beam produced parts which are nearly fully
densely produced [24].
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Another additive manufacturing technique working with a wire is the wire-arc ad-
ditive manufacturing (WAAM), in which a wire feed is molten by an electric arc source,
allowing for additive manufacturing of steel and several alloys [25,26].

Additionally, it should be mentioned that some of the alloys which are highly interest-
ing for space applications have been processed with especially well-suited metal additive
manufacturing methods. A compositionally graded alloy from CoCrMo and Inconel 718,
enabling fitting the material at each position to the required working conditions, was pro-
duced by laser powder bed fusion [27]. SEBM is often used to prepare Ni-based superalloys
for high-temperature applications [28].

Generally, it must be mentioned that the morphological properties of additively
manufactured specimens can significantly differ from the designed structures, and the
mechanical properties can show large deviations from the wrought material due to the
inclusion of air voids or other microstructural differences [29,30]. Other problems related
to the different methods are the aforementioned necessity to work in vacuum or inert
gas atmosphere and the often highly challenging parameter optimization for each new
material, including different batches of nominally identical materials. Furthermore, each
material has different challenges, such as the problem of hot cracking at grain boundaries
in Ni-based superalloys, occurring during the final solidification stages [31].

As this brief overview of some common metal additive manufacturing methods shows,
there are diverse techniques available with different advantages and challenges, which
are steadily being developed for using metal additive manufacturing in increasingly more
applications. The next sections give an overview of possible applications in aerospace
research and industry.

3. Microsatellites

Microsatellites have emerged during the last few years since they are relatively inex-
pensive and can be used for a broad range of applications [32,33]. There have been diverse
attempts to use 3D printing techniques for different parts of microsatellites, using polymers,
metals, and hybrid materials, which were previously reviewed by our group [34], so that
here only a brief overview of the most recent reports is given.

Funase et al. reported on a water resistojet thruster system called “Aquarius” for the
EQUULEUS CubeSat, which is planned to explore the Earth–Moon Lagrange point, whose
vaporization chamber is prepared from the aluminum alloy AlSi10Mg and in which the
cavity and flow paths are produced by additive manufacturing by a not-nearer defined
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technique [35]. The same material was used for selective laser melting of a whole CubeSat
structure to improve the accessibility to internal components by using a modular backplane
system [36].

Yendler et al. prepared a thermal management system for high power CubeSats to
reach effective heat dissipation and used additive manufacturing by ultrasonic welding
combined with CNC subtractive manufacturing for the preparation of the whole sys-
tem, consisting of a rollout deployable radiator, a phase change material based thermal
accumulator, and structurally integrated heat pipes [37].

In his dissertation thesis, working on a CubeSat power management subsystem for
the ALSat#1 mission, Panagopoulos reports that one of the partners of the consortium
uses metal additive manufacturing for the structural design of the satellite, without more
specific information about the exact technique [38]. A CubeSat structure was also reported
to be manufactured using selective laser sintering [39].

An antenna for low-Earth orbit microsatellites, produced by electron beam melting,
was reported by Arnaud et al. [40]. Similarly, metasurface antennas especially for CubeSats
and SmallSats were built by metal additive manufacturing combined with CNC milling [41].
Larger structures, such as a solar panel, were prepared by SLM, allowing for printing a
double-layer aluminum structure with I-shaped beams (Figure 4), which was found to
show significantly increased shielding, improved mechanical properties, and reduced mass,
as compared to a conventional aluminum honeycomb panel [42].
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Generally, diverse parts of microsatellites have been prepared by metal additive
manufacturing, interestingly not only in the laboratory, but also by companies such as
Rocket Lab, SpaceX, or Blue Origin [43–45]. For the future, even printing directly in space
was announced [46], indicating that this area of additive manufacturing for microsatellites
has already reached a certain process maturity.

While not much progress has been reported throughout the last year regarding metal
additive manufacturing of microsatellites, many studies investigated the use of metal addi-
tive manufacturing for different parts of rockets, spaceships, etc. which will be discussed in
the next sections.

4. Thrusters

Thrusters can be categorized based on diverse working principles, such as Hall
thrusters showing a high thrust efficiency and high ion beam density due to a moderate



Appl. Sci. 2021, 11, 12036 6 of 15

magnetic field applied to the acceleration zone [47], pulsed plasma thrusters [48], electro-
spray thrusters working with ionic liquid propellants [49,50], etc. While Hall thrusters are
most often used for satellites [51], applications requiring lower energies, such as the afore-
mentioned CubeSats or other microsatellites, can be driven and navigated by microcathode
arc or other plasma thrusters, field emission thrusters, electrospray thrusters, or different
sorts of electric thrusters [52–55].

One of the important differences between conventional production methods and
additive manufacturing is the possibility to use more lightweight designs, but on the other
hand to ensure the reliability of the 3D printed object in spite of possible differences in
the mechanical or other physical properties, as compared to subtractive manufacturing
methods. Meisel et al. and Woods et al., e.g., discussed the redesign of a NASA thruster
applied for spacecraft attitude control, as it is enabled by switching from conventional
manufacturing to powder-bed fusion of the metal alloy Inconel®718 [56,57]. They applied
different specific designs for additive manufacturing and showed that manufacturing
time and costs could be reduced by the new freedom of design, given by the additive
manufacturing process. The same material was investigated by Soller et al. who also tested
stainless steel 316 L and CoCr for high-temperature applications in a liquid rocket engine
injector, especially an injector head for an expander cycle and a gas generator setup, finding
a large potential mass reduction of approximately 25% due to an optimized design and
significantly reduced manufacturing costs for the selective laser melting process [58].

Different designs were also discussed by Borgue et al. who compared a design for
a gridded ion thruster with full design freedom with a second one taking into account
limitations of additive manufacturing and found that only the latter could be manufac-
tured [59]. Figure 5 depicts the design for the maximized thruster performance (Figure 5a)
and the more realistic design, taking into account material and geometry limitations, e.g.,
disregarding multimaterial structures. While the latter is less innovative, it can be manufac-
tured according to recent technological methods. However, new developments may enable
additive manufacturing of the first design, too, which would lead to higher perceived
performance because of the rounder chamber shape.
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limitations. (1) Aluminum chamber, (2) connecting point importing the propellant, (3) channels guiding the gas, (4) gas
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From [59], originally published under a CC-BY-NC-ND license.

Besides the aforementioned materials, several metals and metal alloys were investi-
gated as possible 3D printing materials for thrusters. Inconel®625 was chosen by Taka-
hashi et al. who developed a thruster for the use with hydrazine based on binder jetting
3D printing to reduce the surface roughness as compared to laser-based additive manu-
facturing techniques [60]. In this way, production time and complexity could be reduced;
vibration tests showed an equivalent performance of the 3D printed parts in compari-
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son with flight-proven models, and hot-firing tests showed stable combustion, while the
pressure roughness was slightly larger than in conventionally produced thrusters.

Another material class often used for aerospace applications is titanium aluminide
alloys, containing the ordered γ-TiAl phase [61]. Seidel et al. used electron beam melt-
ing combined with laser metal deposition to produce a thruster nozzle from γ-TiAl for
a cold-gas propulsion system, which can be used for navigation of small satellites to
nanosatellites [62,63]. The authors pointed out the necessity to use a material that could
withstand temperatures of more than 700 ◦C, which are necessary to increase the propellant
efficiency in cold-gas propulsion systems [64]. Furthermore, either investigations of the
interaction between γ-TiAl and the often used propellant ammonia are necessary [65],
or noble gases should be used as propellants instead [66].

Tommila et al. investigated laser powder bed fusion of a nickel alloy for the production
of very small nozzles with diameters below 1 mm, as they are used in electrothermal or
chemical thrusters of small satellites [67]. They found typical printing-derived surface
features of the as-printed nozzles to cause shock wave reflections and other thrust losses
in comparison with conventionally produced nozzles of similar surface roughness, and
suggest postprocessing of the nozzle exit cone to avoid such shock-inducing protrusions.

Powder bed laser processing was also used to prepare specimens from platinum
rhodium alloy as well as tantalum and tungsten, finding that platinum rhodium additively
manufactured parts could be used to build a combustion chamber and nozzle [68]. The
authors suggest building the inner surface of a thrust chamber from noble metal alloys
such as platinum rhodium or platinum iridium, while the outer wall could be prepared
from tantalum and tungsten.

Sangregorio et al. used selective laser melting to produce grids and keeper electrodes
in ion thrusters from molybdenum and found the surface roughness to be problematic,
but manageable by postprocessing, and the mechanical properties to reach about 80% of
those gained with conventional production techniques [69]. Similarly, Guo et al. described
SLM used for the production of ion engine grids as well as for printing ion extraction
systems and ion optics [70].

Miniaturized Hall thrusters were built by Olano et al. using SmCo permanent magnets
to create the necessary magnetic field even under high temperatures and a 3D printed
anode from stainless steel 316, produced by selective laser melting of a more complex
design than possible with conventional techniques [71]. As Figure 6 shows, the anode
design significantly influences the propellant distribution, so that more sophisticated 3D
printing enables tailoring the propellant distribution more homogeneously than that of
equipment prepared by traditional manufacturing.
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Another aspect, the reduction of manufacturing costs, was in the focus of a recent
study of Hoffman and Grubisic who combined selective laser melting with off-the-shelf
components to build a 20 cm-diameter microwave discharge ion thruster [72]. They found
the ion production cost sufficient, while the mass utilization efficiency needed more future
research to increase the thruster performance.

In these and many other studies, investigating possibilities to use metal additive
manufacturing for the preparation of thruster parts [73–77] report that the main problems
are related to the reduced mechanical properties in comparison with wrought material
and the necessity to postprocess the printed parts to reduce undesired surface roughness
or printing artifacts. However, as these examples show, there are already well-working
processes and several materials that can be used for this purpose, so that further imple-
mentations especially in CubeSats and other microsatellites and smaller satellites can be
expected in the near future.

Besides these technologies typically used in satellites, it is also possible to use dif-
ferent alloys for liquid rocket channel-wall nozzles [78,79] and other liquid rocket engine
component applications [80,81], as well as to prepare composite propellant grains for solid
rockets [82,83].

5. Structural Components

Structural parts of spacecraft have to show sufficient mechanical properties, combined
with the necessity to withstand harsh conditions, especially regarding outer parts of satel-
lites, rockets, etc. Metal 3D printing in general can be used to combine these necessities with
the possibility to build lightweight structures and possibly even to use a modular design
to enable change and service of single components [84]. Further, it can make fabrication
quite fast, which was demonstrated by Orme et al. who used direct metal laser sintering
to design, optimize, prepare, test, and finally launch different AlSi10Mg components for
a satellite within half a year [85–87]. The process included mass optimization by a bionic
design of the parts, optimized in several cycles.

Important parts of the construction of satellites are metal brackets connecting the
satellite body with reflectors and feeder facilities. Allevi et al. performed a thermoelastic
stress analysis on such brackets, produced by electron beam melting from a titanium-based
alloy [88]. This analysis was applied to investigate the difference between CAD constructed
and printed components. The method applied for this investigation, thermoelastic stress
analysis, is based on thermal motions in a material due to dynamical load at a suitable
frequency, made visible by a thermocamera. Results of the experimental investigation are
depicted in Figure 7, showing the stress concentration in Figure 7a and opposite stress
components on the upper and lower curvature in Figure 7b.
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Zhang et al. reported on vibration tests performed on AlSi10Mg manufactured by
direct metal laser melting to form a lightweight satellite structure based on lattice sandwich
panels, with a mass reduction of more than 50% as compared to conventionally produced
satellite structures [89]. Similar mass reductions of around up to 50% can also be found
for the previously applied laser beam melting technology in the space industry, often
working with aluminum alloys. Begoc et al. compared laser beam melting of the often
used AlSi7Mg0.6 with a new high-strength alloy named Scalmalloy® and developed the
optimized parameters for the additive manufacturing process, resulting in better fatigue
performance of Scalmalloy® in alternated traction compression up to 104 cycles and very
low porosity rate, making it a promising material for the space industry [90].

It should be mentioned that while these results are often highly promising, space
industry companies have to ensure that structural components will not be damaged under
the extreme conditions in space, so that extended tests are performed before additively
manufactured structural components are really sent into space, and only few of such
components have been used in satellites, etc. [91–93]. This is different for elements with
lower requirements according their mechanical properties, such as antennas.

6. Antennas

Telecommunication satellites need to enable high data transmission rates, resulting
in the necessity to have large bandwidth and high power levels, which require special
antenna designs with many horns per antenna. These complex design requirements suggest
the use of additive manufacturing. Kilian et al. compared conventional and additive
manufacturing of waveguides and radio frequency (RF) components, combining different
components to reduce mass and power loss [94]. They found elliptical cross-sections to be
advantageous for waveguides, with lower losses as compared to conventional rectangular
waveguides. While linear polarization showed good antenna quality, the accuracy of
circularly polarized waveguide components has to be further increased.

Gill et al. used direct metal laser sintering of AlSi10Mg to prepare antenna feed arrays
for the Ka band based on high-efficiency horns, which are typically used as feed elements
in high-throughput satellites using multibeam antennas [95]. The antenna feed array
constructed according to typical limitations of 3D printing, such as reduced use of support
that can easily be removed by machining, rounding off sharp corners, etc., is depicted in
Figure 8, mounted on a plate for tests in an anechoic chamber. The authors successfully
performed RF tests at 27–30 GHz and found a first natural frequency of 502 Hz, which is
in the correct range for space payload systems. Furthermore, mechanical tests showed
adequate results, making such antenna feed arrays suitable for communication satellites.
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Instead of antennas, Peverini et al. investigated additively manufactured fifth- and
sixth-order waveguide filters for the Ku/K band [96]. They compared filters prepared
by selective laser melting of steel 1.2709 with silver plating, Ti6Al4V with silver plating,
and the usual AlSi10Mg with an SLA printed polymer with copper plating and found the
latter be problematic due to the adhesion between metal plating and polymer base. All
the prototypes, on the other side, showed sufficient RF reflection and transmission in the
pass and stop bands, respectively, with the aluminum based waveguide filter showing
the lowest insertion loss. Similarly, the group optimized dual-polarization waveguide
components for the Ka-band, prepared by selective laser melting [97].

Other research groups concentrated on metamaterial filters for the K-band [98], waveg-
uide antennas for the Ku band [99,100] or other bands [101,102]. Generally, here the me-
chanical and thermal requirements are less rigorous in comparison with the aforementioned
applications; thus, most studies are based on state-of-the-art metal additive manufacturing,
taking into account design for the respective technique and possibly a postprocessing
step to avoid too high roughness. Because of these reduced requirements, additively
manufactured antennas can be expected to be used in the near future.

7. Other Spacecraft Components

While the aforementioned components are recently most often prepared by metal
additive manufacturing, there are some other possibilities to use these techniques for
satellites or rockets and in future manned space missions.

Li et al., e.g., used selective laser melting of permalloy to prepare magnetic shields
for fiber optic gyroscopes in spacecraft [103]. They found recrystallization annealing to
improve the soft magnetic performance and the overall magnetic performance of the
additively manufactured parts to be similar to traditional processing methods.

Taking a flow connector as an example, Borgue et al. suggested a design for additive
manufacturing method especially for space applications [104]. While design for additive
manufacturing usually takes into account the limitations of the 3D printing process, here
also the functionality was discussed in different workshops and interviews with partic-
ipating companies, resulting in a cost-efficient design and production method which is
suggested to further reduce future development time and costs.

Other aspects taken into account are the general possibility to reduce space debris by
proper additive manufacturing design of small satellites [105] or the idea of 3D printing in
space, especially in the ISS or in future manned space missions to repair components [106].
Combining such promising attempts as the special design for additive manufacturing
for space [104] with the potential advantages of reduced weight, time, and space debris
can be expected to lead to an increase of 3D printing approaches for diverse spacecraft
components.

8. Conclusions and Outlook

As this brief overview of recent developments in metal additive manufacturing shows,
many satellite and spacecraft components can already be prepared by these 3D printing
techniques, while several challenges still remain. Translating the fast progress of polymer-
and metal-based additive manufacturing technologies and the steady development of new
techniques into the near future, it can be assumed that many of the recent problems, e.g.,
related to surface roughness or insufficient mechanical properties, will be solved by the
expected progress of the technologies themselves and by developing strategies to make
new metals printable by these techniques.

An important point which has to be taken into account is the redesign for a specific
additive manufacturing process, taking into account its limitations and making use of new
freedom of design in order to optimize the mechanical, morphological, temperature-related,
and other properties of the 3D printed objects.

Additionally, future research has to concentrate on further developing the 3D printing
techniques described here in order to reduce shape deviations from the design and improve
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the mechanical properties of additively manufactured objects toward the values reached
by the wrought material. Further, optimizing the printing parameters for the materials
especially well suited for space applications is necessary. In this way, it will be possible to
reduce not only the mass of several components, but also development time and costs.
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