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Abstract: Accurate and stable load forecasting has great significance to ensure the safe operation of
distributed energy system. For the purpose of improving the accuracy and stability of distributed
energy system load forecasting, a forecasting model in view of kernel principal component analysis
(KPCA), kernel extreme learning machine (KELM) and fireworks algorithm (FWA) is proposed. First,
KPCA modal is used to reduce the dimension of the feature, thus redundant input samples are
merged. Next, FWA is employed to optimize the parameters C and σ of KELM. Lastly, the load
forecasting modal of KPCA-FWA-KELM is established. The relevant data of a distributed energy
system in Beijing, China, is selected for training test to verify the effectiveness of the proposed
method. The results show that the new hybrid KPCA-FWA-KELM method has superior performance,
robustness and versatility in load prediction of distributed energy systems.

Keywords: load forecasting of distributed energy system; kernel principal component analysis;
fireworks algorithm; extreme learning machine with kernel

1. Introduction

The concept of energy internet will effectively promote world energy production,
consumption and system reform, and drive energy transformation in all countries so as to
achieve energy cleanliness, efficiency, safety, convenience, and sustainable use [1]. As an
important component of energy internet, distributed energy system (DES) has attracted
widespread attention due to its outstanding features for instance safety and re-liability,
high energy efficiency, environmental friendliness, and sustainability [2]. However, the
use of distributed energy (DE) has malpractices such as random output. Therefore, precise
prediction of space-time load of DES has great significance owing to the assistance of
improving the overall stability of the system operation and promoting the effective use of
distributed energy.

For years, with the advancement of mathematical theory and the rapid development
of modern computer technology, the technology and methods of load forecasting are
developing all the time, which mainly includes classical prediction method and modern
intelligent prediction method. Traditional prediction methods, which include time series
method [3], regression analysis method [4], grey theory method [5] and so on, is simple
and mature. However, due to certain defects, the prediction accuracy is unsatisfactory.
Analysis of the time series method ignores the influence of other external factors on account
of taking time factors as the only variable. Consequently, there will be a serious error in
the prediction results when the external environment changes greatly [6]. The regression
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prediction method belongs to a speculate when choosing the explanatory variable or the
way that the explanatory variable is expressed, which affects the diversity of the explanatory
variables and the intractability of some explanatory variables to a certain extent, so as
to cause the regression analysis method to be limited in predicting the load of DES [7].
The grey prediction method has a great fitting effect on the raw data as a smooth discrete
sequence [8]. In contrast, the date of influencing factors of DES load are discrete. Thus,
the accuracy of prediction will be greatly reduced by using grey prediction method. In
summary, classical prediction method is not suitable for load forecasting of DES.

Currently, scholars gradually applied intelligent algorithms into load forecasting
as the emergence of various algorithms. Since intelligent algorithms can simulate the
human brain mechanism, simulation forecast the change of objects through the function
of self-learning and self-optimization, establish suitable models, the prediction accuracy
of intelligent algorithms such as artificial neural network (ANN) has been improved [9].
Due to these elements, scholars began to focus on continuous optimization of ANN and
support vector machine (SVM), so as to enhance the convergence speed and the accuracy of
the prediction results. Zeng, et al. took full account of the weather factors and established
a short-term load prediction method in view of back propagation neural network (BPNN)
which is a typical representative of ANN algorithm [10]. Gwo-Ching proposed a load
prediction model in view of improvement differential evolution (IDE) and wavelet neural
network (WNN) [11]. The ANN model can be used to control the error in a small range,
however, this kind of algorithm converges slowly and is likely to fall into local optimum.
Therefore, for the local optimization of neural networks, some scholars use support vector
machine (SVM) for load forecasting research [12]. Based on SVM, Abdoos et al. [13] and
Barman et al. [14] established load prediction models which promoted the prediction
accuracy compared with the BPNN model. In contrast, for large-scale training samples,
SVM is hard to achieve, and it is hard to solve the multi-classification problem [15].

As a new feedforward neural network, extreme learning machine (ELM), which over-
come the defects of traditional BPNN and SVM, has been applied in a number of prediction
areas and has obtained more accurate prediction results [16–18] for reducing the risk of
falling into the local optimality. Since ELM has poor predict stability because of the charac-
teristics of random initialization of inputting weight and hidden layer offset, Guangbin
Huang et al. [19] introduced a kernel extreme learning machine (KELM) algorithm, which
overcomes the weakness of poor stability of ELM and improves the learning accuracy of the
algorithm. However, the performance of KELM is easily affected by the penalty coefficient
C and the kernel parameter σ, therefore KELM needs to be solved by intelligent algorithms
for parameter optimization with regard to the problems of difficult selection for these
two parameters. The inspiration of fireworks algorithm comes from the explosion of air
fireworks, which is a new type of swarm intelligence algorithm with global optimization
solution of explosive search mechanism, shows great accuracy and high efficiency when
solving complex optimization problems [20]. Thus, FWA to be selected for optimizing the
parameters of KELM in this paper.

It is worth noting that the load forecasting of DES has a number of influence factors if
all load factors are employed as the input characteristics of the prediction method, there
will be a great number of factors due to the strong coupling, non-linearity, and information
redundancy among factors [21]. Therefore, it is also important to reduce the dimension of
input features. Principal component analysis (PCA) has a preferable treatment effect as a
multivariate statistical method to synthesize multiple variables into a few variables, when
it is dealing with various indicators with strong linear relationships [22]. On the other hand,
factors that affect load changes in distributed energy systems, such as humidity, cloudiness,
barometric pressure, and temperature, are non-linear in most cases [23]. However, as a
linear method, PCA, which cannot obtain the high-order characteristics of the data and
ignores the nonlinear information of the data while reducing the dimension. As a result,
this paper uses kernel principal component analysis (KPCA) [24] to map the initial input
variables to the high-dimensional feature space through nonlinear transformation and
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reduce the dimensionality of the input variables while preserving nonlinear information
between the input variables.

In summary, this study preliminarily established the feature set of candidate influence
factors of distributed energy system load and builds a distributed energy system load
prediction model based on KPCA and FWA algorithm to optimize KELM. The other
parts of this article are arranged as follows. The next part introduces the algorithm of
this article, including kernel principal component analysis, FWA algorithm and KELM
model, and constructs a complete prediction framework. The third part selects the practical
cases to verify the effectiveness and stability of the proposed method. The fourth part is
the conclusion.

2. Basic Theory
2.1. KPCA

As a nonlinear principal component model, KPCA which can get more reasonable re-
sult of index reduction compared with PCA, can effectively solve the nonlinear relationship
among variables, and is effectively used in multi-index comprehensive analysis [25]. This
method can compress the information contained in a great quantity of index variables into a
few comprehensive variables that can reflect the original information features. In addition,
by analyzing the index of the inclusive variables, it can process the nonlinear relationship
between the variables and minimize the loss of the original data information [26]. The
basic steps are as follows [27,28].

We set a combination of random vectors containing N random variables, thereinto,
xk ∈ RN(k = 1, 2, . . . , m), and m stands for the input sample size. That is: the initial
input sample data set is M = [a1, a2, . . . , an]

T = [b1, b2, . . . , bm]. By projecting to the space
through nonlinear mapping, the dataset is projected to: M = [φ(b1), φ(b2), . . . , φ(bm)], and

it satisfies
m
∑

k=1
φ̃(bi) = 0.

Get the covariance matrix according to the definition of covariance:

CF =

 C11 · · · C1n
...

. . .
...

Cn1 · · · Cnn

 (1)

C =
1
m

m

∑
i

φ(bi)φ(bi)
T (2)

Solve:
CFWF = λFWF (3)

Get it’s the eigenvalue and the eigenvector, wherein λF is an eigenvalue; WF = ∑M
k=1 αkφ̃(xk)

is the feature vector which is corresponding to the eigenvalue.

K
(
xk, xj = φ(xk

)
·φ(xj)) (4)

Get K̃ by matrix centralization:

K̃ = K− InK− KIn + InKIn (5)

wherein, In is n × n the matrix, satisfy simultaneously Ii, j = 1/n, the Formula (3) is
simplified to:

mλF M = K̃M (6)

After the above calculation, we can use the method of principal component analysis
in traditional PCA to calculate the projection of a data point on the eigenvector, and finally
the kernel principal component of the point can be obtained.
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2.2. Improved Fireworks Model

FWA is the simulation of the whole fireworks explosion process [29]. Fireworks
exploded to make sparks, the sparks make more new sparks at the same time, so as to
constitute rich patterns. Converting the process of fireworks explosion into the calculation
process of FWA, fireworks to be seen as feasible solutions of the problem, and the process of
spark generation is understood as the process of finding the optimal result. In the process of
solving the optimal solution, the influencing factors of FWA include the number of sparks,
the blast radius, and a best group of fireworks and sparks which the next explosion selects.

FWA has a self-regulation mechanism with good local search and global search ca-
pabilities. In FWA, the explosion radius and explosion spark quantity of each firework
is dissimilar. Fireworks with a larger explosion radius and a poor fitness value give fire-
works more “ability to explore”-exploration ability. While the firework with a good fitness
value owns a smaller explosion radius, enabling it to have a greater “ability of excavation”
-exploitability around the location. Furthermore, the introduction of Gaussian mutation
sparks can further enrich the diversity of a population.

Therefore, it can be seen that the three main components of FWA are explosion
operator, mutation operator and selection strategy.

(1) Explosion operator. According to fitness value of fireworks, the amount of spark
and explosion radius produced by each fireworks explosion can be obtained. The calcu-
lation formulas of spark number Si and explosion radius Ai are as follows towards the
fireworks xi (I = 1, 2, . . . , N).

Si = M× ymax − f (xi) + ε

∑N
i=1(ymax − f (xi)) + ε

(7)

Ri = R̂× f (xi)− ymin + ε

∑N
i=1( f (xi)− ymin) + ε

(8)

In Formulas (7) and (8), ymax, ymin denote the maximum and minimum fitness value of
the current population respectively; the fitness value of the fireworks xi denotes expressed
in f (xi); and M adjusts the quantity of explosive sparks as a constant; in addition, R̂
indicates that the size of the fireworks explosion radius is set to a constant; moreover, in
order to avoid zero operation, ε is used as the minimum machine value.

(2) Mutation operator. Mutation operator can add the variety of the spark population.
The variation spark in FWA is the Gaussian mutation sparks created by the explosion sparks
through Gaussian mutation. When selecting fireworks xi, the k-dimensional Gaussian
mutation exercise is used as: x̂ik = xik × e; thereinto, xik represents k-dimensional variation
spark, and e indicates that it conforms to Gaussian distribution.

In FWA, when the explosion spark and mutation spark generated by the operator are
separated from the search space, it must to map them to a new location, the calculation
method is as follows:

x̂ik = xLB,k + |x̂ik|%(xUB,k − xLB,k) (9)

wherein, xUB,k, xLB,k denote the upper and lower search spaces on the k-dimension.
(3) Selection strategy. A certain number of individuals need to be selected for the next

generation of fireworks in explosion fireworks and mutation sparks so as to information
for future generations of fireworks.

Candidates with the best fitness value will become the next generation of fireworks
when K individuals are selected and N is population’s number. For the remaining N − 1
fireworks, the choice is made in a probabilistic way. For fireworks xi, the calculation
method is as follows:

p(xi) =
R(xi)

∑xj∈K xj
(10)

R(xi) = ∑
xj∈K

d
(
xi − xj

)
= ∑

xj∈K
||xi − xj|| (11)
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wherein, R(x) represents the sum of the distances between all samples in the current
individual candidate set. In set, the probability that a sample is selected will decrease when
the individual has a higher density, which it also means there are other candidates around
this individual.

Based on the previous description, the specific process of FWA method is obtained [30]:
Step 1. Initialize parameters, randomly select N fireworks in the solution space, and

initialize its coordinates.
Step 2. Calculate the fitness value f (xi) for each firework and calculated their explo-

sion radius Ri and spark number Si. Randomly select the zD coordinate in kD to update
the coordinates.

Step 3. Firstly, M̂ Gaussian abrupt spark is generated; Then selecting the spark xi,
calculating the result x̂ik of M̂ Gaussian mutation sparks based on Gaussian mutation
formula, and save them to the population of Gaussian mutation sparks.

Step 4. The probability formula is aimed to select the best individual N from the
fireworks, explosion sparks and Gaussian mutation sparks as the next iteration fireworks.

Step 5. Determine the termination condition. If the termination condition is not met,
continue the loop until the best result is output; if it meets, the cycle ends.

2.3. KELM

Huang et al. put forward the theory of extreme learning machine in 2006. On account
of this theory, many scholars have innovated in addition to a variety of models, such as
online sequential extreme learning machine and KELM [31,32]. KELM is a single-layer
feedforward neural network algorithm, which is more accurate than the extreme learning
machine (ELM) algorithm. Compared with BPNN and SVM, the kernel function extreme
learning machine has shorter time to calculate results, faster calculation speed, and greatly
improves the adaptability of the model to the samples [33]. KELM algorithm has been
effectively applied in many fields, which proves its effectiveness in prediction.

The following introduces the construction principle of the general ELM model, and
the specific neural network function is as follows:

g(x) = hi(x)·βi (12)

In the formula: g (x) denotes the output value of the network, hi (x) represents the
output of the i hidden layer neurons corresponding to the input x; βi represents the
connection weights between the i hidden layer neurons and the output neurons.

The regression accuracy of ELM is measured by the error. The smaller the error is, the
greater the accuracy is. Therefore, the minimum output error is calculated to obtain the
optimal result. The formula is as follows:

lim
L→∞
||g(x)− g0(x)|| = lim

L→∞

∣∣∣∣∣
∣∣∣∣∣ L

∑
i=1

βihi(x)− g0(x)

∣∣∣∣∣
∣∣∣∣∣= 0 (13)

In the formula, L represents the quantity of hidden layer neurons; g0(x) represents
the function to be forecasted composed of the target value.

The generalization ability of neural networks is measured by minimizing the output
weight β. Usually β takes its least squares solution, the calculation method is as follows:

β = H+O = HT
(

HHT
)−1

O = HT
(

1
C
+ HHT

)−1
O (14)

In the formula: H represents the hidden layer matrix of neural network; H+ represents
the generalized inverse matrix of H matrix; O represents the prediction target value vector.
On the basis of ridge regression theory, by improving the normal number 1/C, the results
will be more stable with better generalization.
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The introduction of kernel function to KELM algorithm can obtain better regression
prediction accuracy. This paper uses Mercer’ s condition to define the kernel matrix, and
the calculation formula is as follows:{

ΩELM = HHT

Ωi,j = h(xi)·h
(
xj
)
= K

(
xi, xj

) (15)

Kernel matrix Ω replaces random matrix HHT in ELM and uses kernel function to
map all input samples from n-dimensional space to high-dimensional hidden feature space.
After setting the kernel parameters, the mapping value of the kernel matrix Ω is fixed [33].
The kernel function includes RBF kernel function, linear kernel function and polynomial
kernel function, which is usually set as RBF kernel function:

K(µ, v) = exp [−(µ− v2

σ
)] (16)

The parameter 1/C is added to the main diagonal of the unit diagonal matrix HHT,
so that the characteristic root will not be equal to zero, and then the weight vector β* is
obtained. A more stable and better generalization ELM model is obtained. At this time the
output weights of ELM method become [34]:

β∗ = HT(
I
C
+ HHT)

−1
O (17)

In the formula, I denotes diagonal matrix; C denotes penalty coefficient for weighing
the proportion between structural risk and empirical risk; HHT denotes generated by
mapping input samples from kernel functions.

From the above formulas, the output of the KELM model is described as follows:

f (x) = h(x)HT(
I
C
+ HHT)

−1
O =

[
K(x, xi)
K(x, xN)

]T

(
I
C
+ ΩELM)

−1
O (18)

In the kernel KELM algorithm, it is not necessary to give the specific form of the
feature mapping function h(x) of the hidden layer node, and the output value can be gotten
only by knowing the specific form of the kernel function [35]. Furthermore, so the kernel
function is directly in the form of inner product, it is not necessary to set the number of
hidden layer nodes, nor to set the initial weight and bias of hidden layer.

2.4. Model Construction

This paper first determines the feature set of the candidate influence factors of the
distributed energy system and uses KPCA method to deal with the feature dimensionality
reduction, and then uses the fireworks algorithm to optimize the KELM, thus the optimal
value of the penalty coefficient C and the kernel parameter σ is obtained. Finally, the
characteristic data after KPCA reduction are input to get the prediction result. The proposed
composite prediction framework is shown in Figure 1.
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The following are the specific steps of the prediction model.

(1) Initial input variable selection and data processing. The influence factors of the
distributed energy system load are determined by the literature data analysis, and
the candidate input variables C = {Ci, i = 1, 2, . . . , n} are formed, and quantify and
normalize the input data (Ci).

(2) KPCA feature reduction. After step (1), a matrix is formed based on the input data, the

nonlinear mapping function selects the Gauss kernel function k(x, y) = exp(− ‖x−y2‖
2σ2 ).

After the KPCA nonlinear transformation in the Section 2.1, the kernel principal
component is retained when the cumulative variance contribution rate τ is greater
than 90 %, and finally a new input variable matrix is formed.

(3) Initialize the FWA parameter. After many tests, the maximum quantity of iterations
is Maxgen = 500, the quantity of population is PopNum = 30, the quantity of spark
determines the constant M = 100, and the radius of explosion determines the constant
R̂ = 150.

(4) Get the best values of C and σ in KELM. Firstly, C and σ will be randomly assigned,
and then the fitness of each generation will be compared to select the best parameters.
Judge whether each iteration satisfies the stop condition of the algorithm. If yes, the
parameter is the global optimal parameter. If not, start a new cycle until the global
optimal parameter is found.
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(5) Simulation prediction. According to the prediction model above, the short-term load
of distributed energy system is forecasted, and the results of load forecasting are
analyzed and evaluated.

3. Error Measures

It is very important to find the model with the best prediction effect among many
models, and the indexes to evaluate the advantages and disadvantages of prediction models
usually include: relative error (RE), root mean square error (RMSE), average absolute error
(MAPE) and average absolute error (AAE). The smaller the error value, the better the
accuracy of prediction, and the more effective the method. The calculation formula of these
four indicators are as follows:

RE =
yt − y∗t

yt
× 100% (19)

RMSE =

√√√√ 1
N

N

∑
t=1

(
yt − y∗t

yt
)

2
(20)

MAPE =
1
N

N

∑
t=1

∣∣∣∣yt − y∗t
yt

∣∣∣∣× 100% (21)

AAE =
1
N
(

N

∑
i=1
|yt − y∗t |)/(

1
N

N

∑
i=1

yt) (22)

In the formula, yt represents the actual charge at time t, y∗t denotes the predicted
charge at time t, and N represents the data group.

4. Case Study and Results Analysis
4.1. Data Selection and Pretreatment

For the sake of verify the forecasting accuracy of the method, this paper selects the
load data and meteorological data of the distributed energy system in China from 0:00
on 18 June 2018 to 24:00 on 18 June 2019. The charge data from 0:00 on 14 June 2018 to
24:00 on 14 June 2019 are selected as training samples to establish univariate time series.
The charge data from 0:00 on 18 June 2019 to 24:00 on 18 June 2019 are utilized as testing
sample, with the information collection frequency being 15 min. Simultaneously, the
maximum temperature, average temperature, minimum temperature, season type, month,
precipitation regime, day type, wind speed, humidity, and the load value at the same time
in the previous five days are considered as the candidate set for feature selection, totaling
30 candidate features, as shown in Table 1.

Table 1. The whole candidate features.

F1, . . . , F5 LTt−i, i = 1, 2, 3, 4, 5 represents the loads at the same moment in the t − ith day
F6, . . . , F11 MAXTt− i, i = 0, 1, 2, 3, 4, 5 represents the t − ith day’s maximum temperature
F12, . . . , F17 AVGTt− i, i = 0, 1, 2, 3, 4, 5 represents the t − ith day’s average temperature
F18, . . . , F23 MINTt− i, i = 0, 1, 2, 3, 4, 5 represents the t − ith day’s minimum temperature

F24 Seat represents the season in which day t is located, 1 is spring, 2 is summer, 3 is autumn, 4 is winter.
F25 Mt represents the month in which day t is located
F26 Pt represents the tth day’s precipitation
F27 Holt represent whether day t is holiday, 0 is holiday, 1 is not holiday.
F28 Wkt represent whether day t is weekend, 0 is weekend, 1 is not weekend.
F29 Wt represents the wind speed on day t
F30 Ht represents the humidity on day t

Since the collected data is not public, the main statistical indicators are listed in Table 2.
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Table 2. The main statistical indicators of the collecting data.

Parameter Value

The groups of data 35,424
Maximum load (MW) 13.57
Minimum load (MW) 6.15

Maximum temperature(◦C) 38
Minimum temperature (◦C) −12

Number of days in spring (day) 92
Number of days in summer (day) 97
Number of days in autumn (day) 91
Number of days in winter (day) 89

Number of precipitation days (day) 62

For the better training and learning of the proposed model, all input data should
be normalized:

Y = {yi} =
xi − xmin

xmax − xmin
i = 1, 2, 3, . . . , n (23)

In the formula, xi represents the actual value, xmin denotes the minimum value of the
sample, xmax denotes the maximum value, and yi denotes the standardized load.

Furthermore, KPCA is adopted to make principal component analysis of 30 reference
vectors and extract 4 sets of vectors as the input vector of the proposed model.

4.2. KELM for Load Forecasting

After the dimensionality reduction of input features, input parameters are brought
into the KELM model for learning. In this article, the self-programming program is utilized
to the operation in Matlab software. It is It is noteworthy that RBF kernel function is
selected in the article as the kernel function of KELM method. To ensure its precision and
accuracy, the model’s important parameters are obtained and optimized by FWA algorithm.
The parameters of FWA algorithm are set in Section 2.4, hence they are not repeated here.
Through calculation, the KELM model parameters are C = 8.325 and σ = 0.0031.

For the sake of proving the forecasting accuracy of the proposed DES load forecasting
method, this paper also selects the KELM, ELM and BPNN which are not optimized by
FWA to forecast the load data of this sample, and then evaluates and analyzes the prediction
results of the four methods. The structure of the BPNN model is 6-3-1, whose hidden
layer transfer function is expressed as “tansig” function, while the output layer transfer
function is expressed as purelin function, with the maximum time of training being 300,
the minimum error of training objectives being 0.0001, the rate of training being 0.1, and
the original weight and threshold values derived from the model’s own learning. In the
ELM method, the penalty parameter obtained from training C is 10.276 and the kernel
parameter σ is 0.0013. In the KELM model parameters, C is 10.108 and σ is 0.0026.

Table 3 shows the DES load prediction results of BPNN, ELM, KELM, and the method
proposed in the article on the test set.

In order to intuitively analyze, the predicted results in Table 3 are drawn into diagrams,
as shown in Figure 2. It can be found from Table 3 and Figure 2 that the predicted results of
the four methods are not very different from the real data, and the overall trend is consistent.
Among them, the prediction results of KPCA-FWA-DIR method are most similar to the
actual situation, and the prediction results of other models have relatively large errors.
Furthermore, the results show that the prediction curve of KELM method is more accurate
than that of single prediction curve, indicating that the introduction of kernel function
increases the accuracy of the model to a certain extent.
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Table 3. Partial predicted and actual values of the test set (Unit: kW).

Point Actual Value BPNN ELM KELM KPCA-FWA-KELM

1 9282.68 10,008.31 9845.31 9700.31 9491.82
2 9522.65 10,262.08 10,100.77 9766.33 9666.44
3 9232.56 9938.38 9769.71 9646.45 9388.31
4 9333.37 10,125.21 8826.47 8887.60 9186.27
5 9516.76 10,319.69 8868.29 9979.75 9352.31
6 9302.71 9971.11 8750.04 9719.28 9400.67

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
91 9942.66 10,781.72 10,462.36 10,354.18 9715.57
92 9863.11 10,732.35 10,599.49 10,119.45 9681.92
93 9787.53 10,548.22 9289.35 10,039.95 9921.52
94 9436.43 10,214.84 8827.31 9875.32 9579.87
95 9583.09 10,364.49 9002.35 10,039.24 9414.91
96 9701.47 10,477.78 10,278.32 10,073.82 9830.60
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Figure 3 shows the relative errors of the four methods. By observing Figure 4, we can
clearly see the differences in the forecasting results of different models.
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The RE ranges [−3%, 3%] and [−1%, 1%] are usually used as standards to measure
the accuracy of forecasting methods. As shown in Figure 4, the forecasting errors at all
time points of the KPCA-FWA-KELM model are not only in the [−3%, 3%] interval, but
also within [−2.5%, 2.5%]. The minimum value of the relative error absolute values is
0.58% and the maximum value is 2.31%, of which only 8 sample points have errors outside
[−2%, 2%], which are sample points with serial numbers 1, 19, 31, 39, 63, 71, 79 and 91,
respectively. The relative errors are 2.25%, −2.29%, 2.23%, 2.06%, 2.24%, 2.31%, 2.19% and
−2.28%, respectively. In the KELM prediction method, the relative error of 11 prediction
results is controlled in within [−3%, 3%]. The error of the three prediction results is within
[−1.5%, 1.5%], in which the serial numbers are 13, 31 and 45 respectively. Their relative
errors are −1.22%, 1.15% and 1.01% respectively. The minimum absolute value of relative
error is 1.01% and the maximum is 5.89%. In the ELM model, the error of 4 sample points
is controlled in within [−3%, 3%], which are the samples of the sequence number of 7,
68 and 84 respectively. The relative errors are 2.35%, −2.26% and 1.14%, respectively,
but they are all outside the [−1%, 1%] range. Its minimum of the absolute value of the
relative error is 1.14% and the maximum value is 7.52%. The minimum value of absolute
relative error of BPNN method is 1.16%, and the maximum is 10.12%. The error of most
prediction results is in [−9%, −7%] and [7%, 9%], and the fluctuation range is large. From
this point of view, the KPCA-FWA-KELM method has the best prediction effect, followed
by KELM method and ELM method, and BPNN method has the worst effect. It can be
found that KPCA-FWA-KELM modal has the best prediction accuracy and stability, which
shows that FWA algorithm improves the ability of model learning, effectively avoids the
problem of falling into local optimization, and improves the global search ability of KELM.
It is also shown that the prediction results obtained from the KPCA model can achieve
satisfactory prediction results and effectively eliminate the interference of redundant data.
Furthermore, ILSSVM has better performance than LSSVM, SVM and BPNN. This result
shows that LSSVM can achieve better prediction effect after improvement.

The RMSE, MAPE and AAE of BPNN, ELM, KELM and KPCA-FWA-KELM are shown
in Figure 4. We can find that the RMSE, MAPE and AAE of the proposed methods are
1.6158%, 1.6079% and 1.6017% respectively, which are the least error of the above five
methods. Furthermore, errors of RMSE, MAPE and AAE of KELM methods are 4.0873%,
4.0713% and 4.0649% respectively. The RMSE, MAPE and AAE of ELM method were
5.4899%, 5.2693% and 5.0553% respectively. RMSE, MAPE and AAE of the BPNN method
are 7.9917%, 7.8731% and 7.8878% respectively.
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These indexes reflect the overall error of model forecasting and the degree of error
discretization. Therefore, it can be further seen that the overall forecasting effect of the
KELM method is superior to the ELM method and the BPNN method, while the overall
forecasting effect of the ELM method is superior to the BPNN method, indicating that the
overall forecasting performance of the ELM method is significantly improved after the
introduction of the kernel function. The forecasting effect of the KPCA-FWA-KELM method
is better than that of the KELM method. Practice has proved that using FWA algorithm to
select KELM method C and σ can obtain better optimization effect, while KPCA method
can reduce redundant data while ensuring the integrity of input information, so as to
achieve ideal forecasting effect.

In summary, the method proposed in this article optimizes the KELM method by the
FWA algorithm and obtains the appropriate parameters C and σ in the KELM method,
which can effectively decrease the load forecasting error.

On the one hand, KPCA method can ensure the integrity of input information, on the
other hand, it can decrease the noise in the input variables to enhance the effectiveness of
input variables, so as to enhance the accuracy and stability of distributed energy system
load prediction. The data calculation results prove the effectiveness and stability of the
load prediction method proposed in this article.

5. Conclusions

This paper puts forward a hybrid load prediction method that combines KPCA with
KELM optimized by FWA. First, for the sake of forecasting the power load of DES, the
KPCA method is used to select input features. In addition, the FWA method is employed
to optimize the parameters of KELM. Lastly, after the optimized input subset and the
best values of C and σ are obtained, the method is used for load prediction of DES. The
following results are obtained through this study.

(1) KPCA can effectively decrease the influence of non-correlation noise and improve the
prediction performance.

(2) The introduction of FWA optimization algorithm can enhance the global search ability,
and the KELM method optimized by FWA shows good results.

(3) On the basis of the error index, in comparison with ELM, KELM has achieved better
prediction results, indicating that the method of improving ELM by introducing
kernel function is effective (RMSE, MAPE and AAE are respectively 4.0873%, 4.0713%
and 4.0649%). Therefore, the KPCA-FWA-KELM load prediction modal proposed in
this paper is effective and feasible and is expected to become an effective alternative
method for load prediction in power industry.
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