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Abstract: The application of Artificial Intelligence to the industrial world and its appliances has
recently grown in popularity. Indeed, Al techniques are now becoming the de-facto technology for
the resolution of complex tasks concerning computer vision, natural language processing and many
other areas. In the last years, most of the the research community efforts have focused on increasing
the performance of most common Al techniques—e.g., Neural Networks, etc.—at the expenses of
their complexity. Indeed, many works in the Al field identify and propose hyper-efficient techniques,
targeting high-end devices. However, the application of such Al techniques to devices and appliances
which are characterised by limited computational capabilities, remains an open research issue. In the
industrial world, this problem heavily targets low-end appliances, which are developed focusing on
saving costs and relying on—computationally—constrained components. While some efforts have
been made in this area through the proposal of Al-simplification and Al-compression techniques, it
is still relevant to study which available Al techniques can be used in modern constrained devices.
Therefore, in this paper we propose a load classification task as a case study to analyse which
state-of-the-art NN solutions can be embedded successfully into constrained industrial devices. The
presented case study is tested on a simple microcontroller, characterised by very poor computational
performances—i.e., FLOPS —, to mirror faithfully the design process of low-end appliances. A handful
of NN models are tested, showing positive outcomes and possible limitations, and highlighting the
complexity of Al embedding.

Keywords: load classification; Neural Networks; embedding; hyper-constrained devices

1. Introduction

The emerging trend of products smartness is now becoming a minimum requirement
that each commercial appliance should satisfy. Users who once were surprised by sim-
ple smart features of commercial products are now expecting devices to perform highly
complex tasks such as object detection [1], language processing [2], and many others [3].
Therefore, it is a common trend of industries and manufacturers to introduce processors
and controllers in modern commercial products, aiming at satisfying customers requests
and transforming once-dumb devices into smart appliances. However, the ever-increasing
complexity of the smart tasks to tackle does not cope well with the limited computational
capabilities of such commercial appliances. On the one hand, state-of-the-art solutions for
complex tasks rely on Artificial Intelligence (AI) approaches, which require high computa-
tional powers devices. Indeed, Neural Networks (NNs) and Transformers are the de-facto
approaches to tackle such tasks in Al, both of which require GPUs, if not swarm of GPUs
and TPUs to train and run. Moreover, most available Al technologies focus solely on the
final performance, rather than considering minimization of computational requirements,
resulting in requirements of large amounts of energy to run. On the other hand, most
commercial products are designed focusing heavily on resource wastes and cost competi-
tiveness. The introduction of costly components like GPUs or powerful processors just to
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tackle intelligent tasks would produce an undesirable increase of the final product cost,
leading to possible negative outcomes on the market.

It is worth mentioning that there exist possible workarounds to the aforementioned
issue. Indeed, most appliances have also become interconnected, enabling the Internet
of Things (IoT) paradigm [4], where devices sense an environment, updating a remote
user and actuating user decisions. It is possible to leverage such device interconnection to
perform smart decisions remotely, removing the computational burden from edge devices.
However, this workaround raises concerns in terms of security and privacy, as well as
introducing communication bottlenecks and inability for smart devices to work offline.
While some solutions for security—e.g., intrusion detection [5], malware analysis [6],
etc.—and privacy—e.g., federated learning [7], etc.—can be implemented, it is impossible
to fix the offline dumbness of IoT devices as well as their unreliability for real-time or
sensible applications. Indeed, devices required to work in real-time scenarios should be
designed avoiding IoT solutions, as they are intrinsically bounded by poor connectivity
and long-waited responses. Therefore, it would be strongly preferable to design smart
devices characterized by local intelligence—i.e., Artificial Intelligence stored directly in
edge devices.

Understanding the relevance of enabling small and powerful local Al solutions, emerg-
ing research trends focus on the study and proposal of resource-friendly Al techniques:
either focusing on the proposal of novel architectures [8,9], or studying NNs deployability
in embedded scenarios [10]. However, many works on this field vastly underestimate
the resource constraints of devices used in low-end commercial appliances, leveraging
rather powerful devices such as Nvidia Jetsons [11,12] or Raspberry Pis [13]. To avoid such
fallacies, throughout our work we rely on the selection of hyper-constrained embedded
devices, which are common choices for the design of low-end commercial appliances. Such
choice distance ourselves from common research approach where device selection is made
to satisfy resource requirements of Al techniques, hindering results fidelity. Moreover,
while tackling the resource-hungriness issue of common Al solution is a fundamental topic,
it is also relevant to analyse what are the existing possibilities to embed Al techniques
into constrained devices for commercial appliances. Therefore, in our work we present
a relevant case study which aims at analysing what are the available solutions to inject
smartness into embedded devices, presenting some successes and undeniable limitations.
The relevance of our work is two-folded:

(i) we present a realistic case study for embedding Al techniques into constrained
devices;

(ii) we apply such case study over hyper-constrained devices, analysing how available
state-of-the-art techniques can be leveraged on such devices.

2. Case Study

In this section we present the proposed case study. First we introduce the character-
istics of the hyper-constrained device used in our experiments, comparing it with others
commonly-used devices (Section 2.1). Then we present the features of the framework for
our case study in Section 2.2.

2.1. Hardware

The design process of low-end commercial appliances is often characterised by a huge
focus on costs saving. Indeed, even the introduction of a single hardware component could
turn out to be critical to the design of such devices: e.g., adding a costly component to the
hardware needed to build the final appliance may substantially increase its consumer price
and hinder its chances of commercial success. In order to reproduce as faithfully as possible
the cost-saving process, in the following we adopt a hyper-constrained embedding device
as the testing device to run Al techniques. More in details, throughout our experiments we
leverage an OpenMV Cam H7 Plus (https://openmv.io/products/openmv-cam-h7-plus,
accessed on 14 November 2021) microcontroller board. The selected board contains an
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ARM Cortex M7 processor which runs at low clock speed (480 MHz) to obtain low power
consumptions, enabling deployment on edge and battery-powered devices. Moreover,
the selected board stores 32MBs of SDRAM, 1MB of SRAM, and 2 MB of internal flash,
for general purpose storage: such a small amount of memory represents the first obstacle
against using the simple embedded device for Al applications. Indeed, most of the available
state-of-the-art NNs have footprints greater than the memory availability of such device—
see Table 1.

Table 1. Footprints of available state-of-the-art NNs. The number of parameters of each model is
expressed in millions (M). The memory size is expressed in MBs and is computed as four bytes times
the number of parameters, since each parameter is a floating point variable. FLOPs are the number
of floating points operations required to run a single instance of a given model and are indicated in
billions. The upper half refers to models targeting image classification, while the bottom half refers
to models targeting object detection.

Model #Parameters (M) Footprint (MB) #FLOPs (B)
1.0 MobileNet-224 [14] 3.3 13.2 0.28
EfficientNet-B0 [15] 5.3 21.2 0.39
DenseNet-169 [16] 14 56 3.5
Inception-v3 [17] 24 96 57
ResNet-50 [18] 26 104 41
VGG-16 [19] 138 552 16
SSD300-MobileNet [20] 6.8 27.2 1.2
EfficientDet-DO0 [21] 3.9 15.6 2.5
FasterRCNN-MobileNet [22] 6.1 24.4 25.2
SSD300-Deeplab [20] 33.1 132.4 34.9
FasterRCNN-VGG [22] 138.5 554 64.3
YOLOVS3 [23] 40.5 122 71

Running Al techniques does not depend on memory footprint only. Indeed, another
limitation for running Al on that sort of board comes from the computational power of the
device. In order to measure computational power of devices, and compare it with the NNs
computational requirements, the FLOPS and FLOPs metrics are commonly used. FLOPS—
FLoating point Operations Per Second—refers to the number of floating point operations
that a device is capable to complete in one second. FLOPs—FLoating point OPerations-,
on the other hand, represents the number of floating points operations required to run a
single algorithm—e.g., NN inference. Knowing the number of cores of a device, its clock
frequency, and the number of FLOPs per clock cycle that the device is capable to handle,
it is possible to compute the theoretical FLOPS performance of a device by means of the
following equation:

FLOPs

cycle @

FLOPS = cores x clock frequency x

The ARM Cortex-M7 at our disposal is a single-core microprocessor, which runs at
480 MHz, and capable of one FLOP per cycle. Therefore the board used in our experiments
has a theoretical performance of 0.48 x 10° FLOPS. This measure, when compared with the
FLOPs requirements of modern NN, clearly indicates the strong limitations of that sort
of devices for Al applications. Indeed, the ARM board is theoretically capable of running

FLOPs _ ) 583s. This would allow

incoming inputs to be processed at a rate of 1.72 Frames Per Second (FPS), which is not
enough for most real-time commercial solutions. Moreover, our preliminary tests—see
Section 3.1—performed using standard pre-trained MobileNet do not even come close to
those performances, thus increasing concerns on the applicability of Al techniques on that
device. Bigger and more powerful NNs would bear even more burden to the board at
hand, thus making it impossible to run close to real-time inference.

a single inference of a MobileNet (Table 1) in t =
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The selected device for our tests reflects the design pipeline of low-end commercial
appliances. Indeed, the severe constraints of the device differ from most of the embedded
solutions that are leveraged by popular works in the field of constrained Al. To show the
significant differences between our solution and previous works, we now compare the
ARM Cortex M7 processor with other popular solutions. Table 2 clearly points out that the
device we selected for our experiments represents the most constrained device. First of
all, from a bare computationally perspective, the board is the only one not leveraging any
form of GPU assistance for complex computations. Then, given its focus on minimisation
of power consumption, the selected board is the only single-core board, and the only
device whose processor runs below the 1 GHz threshold. These factors combined make our
board the least powerful, having at most one tenth of the computational power (FLOPS)
of other boards. For instance, the most-commonly used device for applying Al solutions
on embedded devices has a whopping 2083 x performance advantage over our board.
Furthermore, from the storage perspective, the ARM-based board is 32-times smaller than
any other board available on the market which was used in Al-based projects. Overall,
given the constrained nature of other devices, it is reasonable to consider the selected board
to be a hyper-constrained device.

Table 2. Comparison between available embedded devices.

Device Name RAM Cores Work Frequency #FLOPS GPU Availability
ARM Cortex M7 (ours) 32 MB 1 480 MHz 0.48 x 10° X
Raspberry Pi-3B+ [24,25] 1GB 4 1400 MHz 5.3 x 10° Broadcom
VideoCore IV
Odroid Xu-4 [26] 2GB 8 2000 MHz 6.25 x 10° Mali-T628 MP6
Latte Panda [26] 4GB 1440 MHz 7.01 x 10° Intel HD
Graphics
Raspberry Pi-4 [13] 8 GB 4 1500 MHz 13.5 x 10° Broadcom
VideoCore VI
Nvidia Jetson-Nano [13,27] 4GB 4 1400 MHz 472 % 10° 128-Core
NVIDIA Maxwell
Nvidia Jetson-TX1 [8,27,28] 4GB 4 1700 MHz 1 x 1012 256-Core
NVIDIA Maxwell
Nvidia Jetson-TX2 [13] 8 GB 6 2000 MHz 1.3 x 1012 256-Core
NVIDIA Pascal
Nvidia Jetson-AGX 16 GB 8 1900 MHz 11 x 1012 512-Core
Xavier [11,26,27] NVIDIA Volta

2.2. Load Classification

State-of-the-art NN models are complex and require high computational resources to
run, hindering their applicability to embedded devices, and putting at risk the deployment
of Al-enabled low-end commercial appliances. However, it should be noticed that those
models have been thought and designed so as to tackle complex and general tasks. Indeed,
classification models presented in the upper section of Table 1 are trained to classify natural
images available in complex datasets like ImageNet [29] or CIFAR-100 [30]. On the other
hand, object detection models of Table 1 are trained over Microsoft COCO [31] or Pascal-
VOC [32]—which are complex datasets containing the most diverse natural images. That
level of complexity is, most of the times, not really required by commercial appliances,
and, more often than not, represents an overkill with respect to the actual application
needs. In fact, many low-end commercial appliances require the use of Al for simpler tasks,
involving few entities—e.g., person detection, face detection, etc.—or simpler research
spaces—e.g., smart-home devices, etc. Moreover, deploying general-purpose architectures
to tackle more narrow-fielded tasks may hinder the success of the Al solution itself. Indeed,
the more NNs are complex—i.e., more parameters —, the more they tend to overfit when
presented with simple tasks.
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Along this line, we now focus on a simple and representative case study, which
aims at faithfully representing the level of smartness actually required by common low-
end commercial devices. The case study we introduce deals with image classification,
and considers the task of load classification. Given a commercial appliance, the simplest and
most common task possibly required by the end user is to automatically identify the input
provided to the appliance. Automatic recognition could ease many processes required
for the proper operation of the appliance at hand, like identification of the process to run,
detection of stopping criteria, reduction of energy consumption and wastes, and the like.
For that sorts of case study, we only rely on the image classification task, as we consider
it enough to satisfy the requirements of most low-end devices. We also limit the problem
to the recognition of a fairly-limited amount of entities—i.e., classes of labels—, given that
many devices target a fairly-small amount of objects. More specifically, here we consider
classifying the load of a common dishwashing machine, identifying four different classes
for the given load.

In order to collect the load classification dataset, we produce a prototype of a standard
dishwashing machine, installing the same embedded device of Section 2.1 inside its loading
cabinet. For each of the four classes of the load classification task we then proceed to take
about 1000 images of common loads that belong to such class. It is worth noticing that
that number of images represents quite a realistic estimate of the number of images to be
collected for a preliminary analysis on the application of Al to commercial appliances: the
image collection and labelling process is a costly and time-consuming one, and companies
typically aim at reducing its costs to the bare minimum. Since input diversity ease the
avoiding of overfitting issues for NNs, we aim at providing as much diversity as possible
inside each class images. Images were collected having a 256 x 256 pixels resolution,
following the OpenMV board settings.

The collected dataset represents an intellectual property of Electrolux Professional.
Therefore, the collected images can not be made publicly available and no further infor-
mation can be disclosed regarding the collected dataset. However, the relevance of the
presented case study should not be affected by the non-disclosure agreement in place.
Up to our knowledge, our work represents the first one combining implementation of Al
techniques on a hyper-constrained embedded device with the proposal of a relevant and re-
alistic load-classification task. A comparison between the collected dataset and commonly-
used image-classification datasets is presented in Table 3. Thanks to its specificity—i.e.,
image content—and to the low number of classes involved, the proposed load-classification
dataset suits the scenario of Al application to low-end commercial appliances more realisti-
cally than the other datasets.

Table 3. Image classification datasets comparison.

Dataset Name Image Content # Classes # Images Image Resolution Dimensions

Ours Dishwasher 4 4K 256 x 256 51 MB
Loads

MNIST [33] Handwritten 10 70K 28 x 28 21 MB
Digits

Fashion-MNIST [34] Clothes 10 70K 28 x 28 36 MB

CIFAR-10 [30] General 10 60K 32 x 32 162 MB

CIFAR-100 [30] General 10 60K 32 x 32 161 MB

EMNIST [35] Handwritten 62 814K 28 x 28 535 MB

Characters

Caltech-101 [36] General 101 9K variable 132 MB

TF-Flowers ! Flowers 5 4K variable 221 MB

Stanford-Dogs [37] Dogs 120 20K variable 778 MB

Food-101 [38] Food 101 101K variable 4.65 GB

ImageNet [29] General 20,000 14M variable 155.8 GB

1 http:/ /download.tensorflow.org/example_images/flower_photos.tgz, accessed on 14 November 2021.
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3. Experiments and Results

In this section we present our experiments on the case study proposed in Section 2,
and the corresponding results. We first analyse possible solutions that leverage state-
of-the-art NN architectures as they are (Section 3.1). New models that rely on state-of-
the-art architectures are then tested in Section 3.2, while some custom-made models are
implemented and compared to other NNs in Section 3.3. Finally, we present a brief study
on the potential for generalisation of the trained NN (Section 3.4).

3.1. State-of-the-Art Models

In order to measure the performance of state-of-the-art NN architectures and show
their limitations on hyper-constrained devices, we start our experiments considering well-
known NN architectures. More in details, we consider the following highly-popular NNs:

®  MobileNet-V2—as one of the most light-weight NN architecture available, it was
picked as the simplest baseline

*  ResNet-50—being one of the most representative NN architecture, it was selected to
show possible run-time issues

e VGG-16—since it represents one of the heaviest NN architecture, it was chosen so as
to stress issues with embedded devices

The selected models were trained via standard Stochastic Gradient Descent over the
train split of the dataset collected in Section 2.2. Training was completed on a general
laptop machine. Computational limitations of the case-study board makes it infeasi-
ble to run the training procedure directly on the microcontroller. Trained NNs were
then converted to TensorFlowLite (https:/ /www.tensorflow.org/lite/microcontrollers, ac-
cessed on 14 November 2021) architectures and deployed on the ARM-based board. The
conversion process is required, since the board runs the MicroPython operating system
(http:/ /micropython.org/, accessed on 14 November 2021) which itself supports Tensor-
FlowLite architectures only. Inference over the testing dataset was run on the OpenMV
microcontroller and performance—both from accuracy and speed perspective—are shown
in Table 4.

Table 4. SOTA models performance when deployed on the OpenMV microcontroller.

Model Memory Footprint Accuracy Inference Time
MobileNet-V2 8.6 MB 29.40% 12.35s
ResNet-50 37.1 MB 30.66% X
VGG-16 115.3 MB 28.55% X

Interestingly enough, the ResNet-50 and VGG-16 models show the common issues
arising when dealing with hyper-constrained devices. Inference for those models cannot
terminate on the board due to memory issues. The reason behind the behaviour is to be
found on their architectures, which rely on fairly big convolutional filters whose footprint
exceeds the 32 MBs available on the microcontroller. Results in Table 4 also shows how state-
of-the-art NNs overfit the learning task. This behaviour was expected and is highlighted by
the poor performances that those models achieve over the testing set (testing set accuracy
for ResNet-50 and VGG-16 was obtained on the training machine). Overfitting issues
are due to the complexity of state-of-the-art models and the simplicity of the dataset at
hand. Finally, results show that state-of-the-art models are not applicable to embedded
hyper-constrained devices as they are characterised by unbearable inference times. Indeed,
the only successfully running model is the MobileNet-V2 model which runs a single
inference step in 12.35 s. Such measure is far from the theoretical value obtained in
Section 2.1 and unsatisfactory for any applicative scenarios.
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3.2. SOTA-Based Models

State-of-the-art models present issues mainly linked with their structural complexity.
In order to solve them and tackle the case study at hand, we propose a handful of NN
architectures that rely on the simplification of state-of-the-art models. We call such NNs
SOTA-based models—as they rely on the concept of state-of-the-art models, but simplify
their structures. More in details, we tackle the structural complexity of SOTA models via
truncation of their architectures. SOTA-based models are built stacking N modules of
operations that characterise a state-of-the-art NN, and appending a simple classification
layer at the end. N is an hyper-parameter of the SOTA-based model and should be ideally
kept small to avoid building complex NNs. Throughout our experiments N was selected
to match the memory requirements of the OpenMV microcontroller.

As an example, consider the MobileNet-based model built from the MobileNet-V2
architecture. The building block of the MobileNet NN is the Inverted Mobile Bottleneck
convolutional layer [14]. Therefore, the MobileNet-based model is obtained stacking to-
gether N = 4 Inverted Mobile Bottleneck convolutional layers, followed by a classification
layer. This represents a trivial and well-known approach for the resolution of NNs com-
plexity issue. However, given the simplicity of most real scenarios where Al is required,
such an approach represents a good solution.

We build one SOTA-based model for each SOTA model considered in Section 3.1.
Similarly to what was done for SOTA models, SOTA-based NNs were trained outside
the microcontroller, converted and then embedded in the OpenMYV board for testing. As
shown in Table 5 a small ablation study was completed considering image scales. For each
SOTA-based model, a new version of the NN was trained considering either 1x or 0.5 x
scaled images. 1x scaled images correspond to the 256 x 256 pixels resolution, while the
0.5x scaled images correspond to the 128 x 128 pixels resolution. This ablation study
was undertaken to establish if small loss in image quality could bring inference speed-up,
and ease the deployment of Al on hyper-constrained devices.

As Table 5 shows and similarly to what happened for SOTA models, the VGG-based
NN applied to 256 x 256 pixels images could not terminate its inference mechanism due to
memory issues. Indeed, the truncation technique we used does not solve memory issues
linked with local structures—i.e., layers—of NNs. However, all other SOTA-based NNs
run successfully on the microcontroller board, showing improved performances over their
Section 3.1 counterparts. The simplification technique applied to NNs successfully solved
the overfitting issue. Indeed, classification performances on testing set of such models are
now satisfactory. Concerning inference time, such truncation technique brought a relevant
speed-up, as it was expected. However, such inference times may not be satisfactory for
real-time applications, yet. Finally, the ablation study shows that small reduction in image
quality can boosts greatly the speed performance of NNs. Results show the existence of
a linear dependency between image resolution and inference time. A 0.5x scaled input
image bear a quarter of the pixels to analyse, therefore requiring a quarter of the time to
obtain a prediction.

Table 5. SOTA-based models performance when deployed on the OpenMV microcontroller. The
subscript of each model represents N, the number of peculiar modules which are stacked to build the
SOTA-based model. The 1x or 0.5x represent the rescaling factor of images.

Model Memory Footprint Accuracy Inference Time
1 x MobileNety 0.73 MB 98.72% 540s

0.5 x MobileNet, 0.73 MB 98.72% 1.37s

1 x ResNet3 1.70 MB 96.64% 41.30s

0.5 x ResNet;3 1.70 MB 95.03% 10.35s

1 x VGG, 1.70 MB 98.15% X

0.5 x VGG, 1.70 MB 97.80% 4711s
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3.3. Custom Models

In order to avoid focusing just on popular and ready available NNs, we design and
test also few super-simple custom NNs. There, models are designed from scratch using
well-known convolutional layers and keeping their complexity to the bare minimum. This
approach allows exploring as many solutions as possible, avoiding incurring into wrong
conclusion about the deployment of Al techniques on constrained devices. Indeed, we aim
at avoiding Al limitations caused by complexity of popular design choices. The designed
NN architectures are thought to be as simple as possible, concatenating as few layers as
possible, and considering simple convolution techniques only. Such NN architectures are
shown in Figure 1, and are presented in details below.

ma = = = = = o = —om

SimpleNet

Input [ I \ | o \ —> Output
L L \ \ _ \ J

ool el el e L o

Light-XSimpleNet
LEGEND ‘ _ Convy + ‘ ‘ - Conva +
Batch Norm S Batch Norm
‘ ‘ - DWsConvy+ ‘ ‘ - Gilobal Pooling =  Classification
L Batch Norm - + Flatten

Figure 1. Custom-made NN architectures (better viewed in color).

3.3.1. SimpleNet

We first build a NN relying on the standard 2D-Convolution operation. Aiming at
the simplest model possible, we construct its architecture by avoiding skip connections,
pooling operations, etc. Therefore, we rely solely on stacking multiple convolutional layers
together. More in details, convolutional layers are concatenated, alternating between
stride-1 layers and stride-2 layers, up until an 8 x 8 pixels embedding is obtained. Stride-
1 convolutional layers are straightforward convolutions that keep the resolution of the
embedding untouched. On the other hand, stride-2 convolutional layers reduce embedding
size by a factor of 2. The width of the NN—i.e., number of filters of convolutional layers—
duplicates at each stride-2 layer, to avoid information compression issues. Finally, a global
average pooling is applied to the 8 x 8 pixels embedding, and a classification layer is
added to obtain the prediction over the input image. SimpleNet architecture is shown in
the upper section of Figure 1.

3.3.2. XSimpleNet

SimpleNet complexity is comparable to the MobileNet-based NN. To build an even
simpler NN architecture, we here rely solely on the stride-2 convolutional layers, getting rid
of the stride-1 convolutions. The NN architecture obtained is an eXtra Simple NN (XSim-
pleNet), shallower than SimpleNet and relying solely on convolutions. More in details,
XSimpleNet is built concatenating stride-2 convolutional layers up until an 16 x 16 pixels
embedding is obtained. Similarly to SimpleNet, the width of the NN duplicates at each
stride-2 layer, to avoid information compression issues. The removal of stride-1 convo-
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lutions produces an architecture whose width increases at each layer. The aim of that
approach is to reduce the NN depth (therefore complexity), while keeping its information
handling capabilities more or less untouched. Finally, a global average pooling is applied
to the 16 x 16 pixels embedding, and a classification layer is added to obtain the prediction
over the input image. XSimpleNet architecture is shown in the middle section of Figure 1.

3.3.3. Light-XSimpleNet

We now aim at building an even smaller and simpler NN architecture than XSim-
pleNet. To do so, however, it would be risky to decrease the depth—i.e., number of
layers—of such architecture. Indeed, XSimpleNet depth is set to the bare minimum needed
to manipulate visual information. Therefore, to build a lighter version of the XSimpleNet ar-
chitecture (Light-XSimpleNet), we here rely on depthwise separable convolution layers [39].
Previously used, standard convolutions perform the channel-wise and spatial-wise compu-
tation in one step. Conversely, depthwise separable convolution splits the computation
into two steps: a single convolutional filter is applied for each input channel (depthwise),
whereas a pointwise convolution is applied to create a linear combination of such output.
The splitting allows for a smaller and faster convolutional layer. The Light-XSimpleNet
architecture is shown in the bottom section of Figure 1.

Table 6 shows the ablation study and performance of the NNs designed from scratch.
Remarkably, the complexity and performance of the SimpleNet architecture is comparable
to the ones of the MobileNet-based NN. On the other hand, XSimpleNet and its lighter
version outperform all SOTA-based models in terms of inference speed, while retaining
a satisfactory accuracy on the test set at hand. Those results represent an encouraging
answer to the application of Al into constrained devices issue. Indeed, many simple Al-
based scenarios are similar to our case study, and the performance of super simple NN
architectures (like XSimpleNet and its lighter version) prove their suitability for solving
such tasks.

Table 6. Custom models performance when deployed on the OpenMV microcontroller. The 1x or
0.5x represent the rescaling factor of images.

Model Memory Footprint Accuracy Inference Time
1 x SimpleNet 1.54 MB 97.57% 6.02s
0.5 x SimpleNet 0.56 MB 95.49% 0.99s
1 x XSimpleNet 0.38 MB 92.60% 1.84s
0.5 x XSimpleNet 0.10 MB 92.25% 033s
1 x Light-XSimpleNet 0.06 MB 92.60% 0.33s
0.5 x Light-XSimpleNet 0.02 MB 89.36% 0.078 s

3.4. Generalisation Testing

While being satisfied by the performance obtained for both SOTA-based models and
custom-made NNs, we deepen their analysis, focusing on their generalisation abilities. In
particular, the best performing NNs were selected and tested over few novel images of
dishwashing loads, which do not belong to the test set. The images are assumed to be
different from images available in the dataset, while still representing dishwashing loads.
Due to time consumption issues, the number of online images available are far less than
the number of images belonging to the test set. However, although being limited in size,
such preliminary generalisation test is meaningful as it shows whether trained NNs can be
deployed safely in real-world scenarios.

Table 7 shows the generalisation capabilities of NNs, comparing SOTA-based and
custom-made architectures. Results highlight how SOTA-based architectures generally
bear higher generalisation capacity. This behaviour is understandable, and probably due
to the SOTA-based model pretraining. SOTA-based models are built on a backbone—i.e.,
the SOTA modules—which is pre-trained on ImageNet. Therefore, those models start their
learning procedure from a general knowledge, allowing them to better generalise concepts.
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Table 7. Best performing models where selected and tested over online images, not belonging to the

test set.
Model Accuracy Average Accuracy
1x MobileNet, 83%
0.5 x MobileNet, 76% o
SOTA-based 1 % ResNets 749, 79.75%
0.5 x ResNet; 86%
1 x SimpleNet 75%
1 x XSimpleNet 67% o
Custom 0.5 x XSimpleNet 73% 66.-5%
1 x Light-XSimpleNet 50%

4. Discussion

Results presented in Section 3 show the relevance of embedding Al into hyper-
constrained devices, highlighting how this is still mostly an open issue. Currently, it
is basically impossible to actually make state-of-the-art NNs work on hyper-constrained
devices as they are. However, SOTA NNs are thought to be run on powerful machines
and tackle complex general tasks. Many, possibly most, tasks to be tackled on embedded
devices do not actually need to bear the complexity burden of general tasks. Our result
in fact show that it is possible to embed simpler versions of state-of-the-art NNs and
custom-built architectures.

The selected NNs show acceptable performance over a simple classification task
that mirrors faithfully realistic scenarios. However, this represents only a partial success.
Indeed, the performance of the embedded architectures is still far from ideal, as they are
characterised by slow speed, hindering Al applicability. Out of the architectures presented,
only three models were capable of producing a single prediction in less than 1 s. That value
represents a strong limitation to any real-time application, which may require running
multiple inferences in shorter time spans. Indeed, such NNs are reliably applicable only
on those applications that require classification to be made one-off. Real-time applications
requiring Al techniques should therefore consider less constrained devices, as the ones
presented in Table 2. Those limitations represent an open issue of Al techniques, and much
research effort is needed to tackle them.

Results also show that architectures obtained from state-of-the-art NNs are more stable
to small, but relevant, variations of the input images. Those architectures benefit from the
pretraining of state-of-the-art models, bearing more general information. When considering
real scenarios, this feature is desirable. In fact, real-world inputs may differ from the ones
available in the training and testing phase. Therefore, we would suggest to consider NN
models derived from state-of-the-art, or at least models showing generalisation abilities,
whenever it is possible. However, results point out the existence of a tradeoff between
generalisation capability and inference speed. Indeed, SOTA-based model are the most
capable of generalisation, while being also the slowest—compared to custom-built models.
This stresses once more how the application of Al to embedded devices is still an open
research issue. The trade-off between performance and speed is not always acceptable,
and a simple-yet-powerful NN architecture capable of running on constrained devices is
desirable and worth of research efforts.

5. Conclusions

In this paper we propose a case study on the applicability of NNs in hyper-constrained
devices. We identify a relevant image classification task, which mirrors as faithfully as
possible many real world scenarios where Al is required. We then consider a set of
NN architectures—ranging from well-established heavy and general models, to custom-
made small and specific models—and embed such NNs in a microcontroller. The chosen
hardware is specifically selected to be as constrained as possible, mirroring the focus on
costs saving that characterise the design process of low-end appliances.
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The extracted results show that state-of-the-art NNs can not be deployed successfully
on such constrained devices. However, SOTA-based and custom-made NNs can be embed-
ded effectively on the microcontroller at hand, showing acceptable accuracy. While being
mostly accurate, such models are still characterised by long inference times, which often do
not cope well with real-time applications. On the other hand, those NNs suit well scenarios
where a one-off prediction is required. The complexity and power-hungriness of NNs
represent strong limitations of Al for low-end embedded hardware. Therefore, a research
effort is required in the field of NNs simplification in order to enable the deployment of
Al-based solutions on hyper-constrained devices.
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