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Abstract: Nickel-based superalloys are particularly suitable for applications under corrosive condi-
tions. Economic advantages can be achieved by limiting the use of materials to the surface region.
Furthermore, the tribological property profile can be significantly improved by surface hardening.
In the present study, the possibility of a process combination comprising a coating and a surface
hardening technology was investigated. For this purpose, Inconel 718 coatings were applied to
austenitic stainless steel by laser cladding. Subsequently, a thermochemical surface hardening by
boriding was carried out. Scanning electron microscopic (SEM) examinations were performed to
evaluate the microstructure. The phase composition was determined by means of X-ray diffraction
(XRD) for the different states of the coating system. The influence of thermochemical hardening was
investigated for different wear conditions. The increase in microhardness and wear resistance clearly
demonstrates the utilization potential of the presented process combination.
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1. Introduction

Nickel-based superalloys are high-performance materials with a unique property
profile [1–8]. The high material costs only justify their use where alternative material
concepts cannot offer a sufficient service life or protection. Coating technologies enable
an economical alternative to traditional monolithic materials. Laser cladding as a coating
process is particularly suitable for such a purpose [4,9–11]. By creating a metallurgical
bond between the cladding and the substrate, high adhesive strengths can be achieved. In
addition, a compact coating structure is produced, which reliably protects the substrate
material from corrosive attack. However, nickel-based superalloys are prone to tribological
attack due to their ductile matrix [7,8,12–17]. Inconel 718 is widely used as feedstock
material. The tribological properties of laser-clad coatings have already been investigated
by several groups [18,19]. For a corrosive and tribological load collective, adaptive solu-
tion concepts are necessary for the component surface. In the field of functionalization
of structural materials, thermochemical surface hardening methods have become well
established. Compared to alternative processes, boriding offers the highest achievable
values with regard to surface hardness and wear resistance [20–29]. The process variant of
powder-pack boriding is particularly suitable for this purpose [23–31]. An adapted process
routine allows for homogeneous surface layers to be formed without silicidation in the
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case of nickel-based alloys. A process combination consisting of a coating step, as well as
surface layer hardening, can provide economic advantages, especially in comparison to
monolithic component design. Such a process combination is currently unexplored in the
case of laser-clad, nickel-based superalloys.

However, a series of studies on the thermochemical surface hardening of coating
systems have proven the fundamental feasibility of this process combination. Initial in-
vestigations were carried out on high-velocity oxy-fuel (HVOF) and plasma-sprayed AISI
316L coating systems [32,33]. Further investigations on the surface hardening of cold gas
sprayed coatings confirmed the results [34,35]. By carburizing, nitriding, and nitrocarbur-
izing at low process temperatures, the formation of an expanded austenitic phase could
be achieved. This has led to a significant increase in wear resistance [32–38]. Investiga-
tions on plasma nitriding of austenitic layers produced by direct laser metal deposition
and laser powder-bed fusion could also confirm the improvement potential [39,40]. First
investigations on the thermochemical surface hardening of powder feedstock materials
for coating processes were carried out [41]. In addition to the methods for interstitial
surface hardening, various possibilities of precipitation hardening by nitriding were also
considered [38]. In comparison to solid solution hardening, a different diffusion behavior
was demonstrated. First investigations showed the suitability of a powder-pack boriding
treatment for improving the wear resistance of thermally sprayed coating systems [42,43].
Laser cladding causes a higher thermal load on the substrate material compared to ther-
mal spraying. Nevertheless, laser-clad coatings are characterized by a higher corrosion
resistance due to their compact structure.

In the present study, the concept of a process combination consisting of a coating step
by laser cladding and subsequent surface hardening by boriding was investigated using
the alloy Inconel 718. The conducted feasibility study clearly showed the potential of such
a process combination.

2. Materials and Methods

For the experimental procedure, a gas atomized Inconel 718 powder (Praxair NI-202-3)
with a particle size of d90 = 45 µm and d10 = 16 µm was used. The coating was applied to a
round blank of grade AISI 316L with a thickness of 6 mm and a diameter of 100 mm. Prior
to the coating process, the blanks were cleaned with alcohol. The coating was performed
with a high-speed laser cladding system, consisting of a TRUMPF BEO D70 Optic, which
was equipped with the prototype of a TRUMPF 7-ray nozzle, and a TRUMPF TruDisk
6001 laser source. The powder was fed during the deposition process using a plate feeder.
The feed rate, which results from the path velocity and the trace offset, was controlled by
the axial rotation of a conventional industrial robot. The synchronization of both systems
by the robot controller allowed for the implementation of a constant feed rate depending on
the diameter during the entire coating process. The processing of the powder was carried
out according to the parameters stated in Table 1.

Table 1. Laser cladding parameters for Inconel 718.

power (W) 4000
Spotsize (mm) 1.8

path velocity (m·s−1) 0.42
trace offset (mm) 0.3

overlap (%) 83
feeding rate (g·min−1) 35

Ar gas flow rate (L·min−1) 12
No. of passes 1

In order to remove the surface roughness, a grinding treatment and subsequent polish-
ing were performed according to standard metallographic procedures. The thermochemical
treatment by powder-pack boriding was carried out using a process routine developed for
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nickel alloys. In the present study, 50–100 nm B4C powders were chosen, since boronizing
powder mixtures often allow for boronizing to be achieved in a shorter time for the same
boronizing temperature compared to micron-sized powders [44]. The process parameters
are shown in Table 2.

Table 2. Powder-pack boriding parameters for Inconel 718.

boriding agent 90 wt% B4C + 10 wt% NaBF4
temperature 900 ◦C

duration 2 h, 8 h
atmosphere Ar

The feedstock powder and the laser-clad coatings were subjected to X-ray fluores-
cence (XRF) analysis in a Fischerscope X-ray XAN device (Helmut Fischer, Sindelfingen,
Germany) to determine the chemical composition in three comparative measurements.
An acceleration voltage of 30 kV, a current of 1 mA, a Ni primary filter, and a collimator
diameter of 0.6 mm were applied.

Metallographic cross-sections of the coating were prepared according to a metallo-
graphic standard routine. Etching was performed using a solution consisting of 50 mL HCl
and 150 mL HNO3 with an etching time of 15 s. The microstructure of the coating was inves-
tigated by scanning electron microscopy (SEM) using an LEO 1455VP (Zeiss, Oberkochen,
Germany) microscope. The morphology, microstructure, and chemical composition were
investigated by means of secondary and backscattered electron imaging.

A surface microhardness measurement was carried out by nanoindentation. For this, a
Fischerscope HM 2000 XYp (Helmut Fischer GmbH, Sindelfingen, Germany) with a Vickers
tip was used for progressive measurement with a load of 10 mN. Borosilicate glass BK7
was used as the calibration standard. At least ten single measurements were considered for
the calculation of the average microhardness and the standard deviation.

Crystallographic studies were carried out by XRD measurements using a D8 DIS-
COVER diffractometer from the Bruker Corporation (Billerica, MA, USA). Monochromatic
Co-Kα X-ray radiation was utilized for all measurements. A voltage of 40 kV, a current
of 40 mA, a sampling rate of 24◦ h−1, and a diffraction angle range of 20◦ to 130◦ was
used. The X-ray sensor used was a LynxEye-XE detector, the aperture size after the beam
gun was 2 mm, and a polycap was used to obtain a parallel beam emission. The data
was evaluated using Rietveld refinement. Elemental analyses of the borided layers with
depth resolution were performed by glow discharge spectroscopy (GDOS) with a GDA
750 (SpectrumaAnalytik GmbH, Hof, Germany). For the measurements, a 2.5 mm anode,
operating under 800 V, and 25 mA under 3 hPa Ar pressure were used.

Furthermore, detailed studies to determine the influence on the tribological properties
were conducted. The sliding wear behavior was investigated utilizing a ball-on-disk test,
using the Tetra basalt tester (Tetra, Ilmenau, Germany). For the investigation of the wear
behavior under reciprocating conditions, a Wazau SVT 40 device (Wazau, Berlin, Germany)
was used. The wear test parameters are summarized in Table 3.

Table 3. Wear test parameters.

Ball-On-Disk Test Reciprocating Wear Test

force 20 N force 26 N
radius 5 mm frequency 40 Hz
speed 96 RPM time 900 s
cycles 15,916 amplitude 0.5 mm

counter-body Al2O3 (ø 6 mm) counter-body Al2O3 (ø 10 mm)

The wear depth of the ball-on-disk test was determined by tactile measurements
utilizing a Hommel-Etamic T8000 device (Jenoptik, Villingen-Schwenningen, Germany).
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For the evaluation of the reciprocating wear tests, a Keyence VK-X200 laser scanning
microscope (Keyence, Osaka, Japan) was used.

3. Results

The chemical composition was determined for the feedstock powder, as well as
the coating in the as-clad state, the as-ground state, and both borided states by XRF
spectrometry. Five measurements were conducted for each state. The normalized values of
the main alloying elements are shown in Table 4.

Table 4. Chemical composition measured by XRF, in wt%.

Sample Ni Cr Fe Nb Mo Ti

feedstock powder 53.1 19.1 18.5 5.1 3.3 0.9
coating (as-clad) 53.4 19.5 19.0 4.4 2.7 1.0

coating (polished) 53.8 19.0 18.9 4.5 3.0 0.8
coating borided 2 h 58.4 15.5 18.1 4.4 2.9 0.6
coating borided 8 h 68.0 9.7 15.2 4.2 2.7 0.2

coating 50 µm above substrate 53.8 19.1 18.9 4.6 2.7 0.9

The results of the XRF measurement reveal a good correlation between the chemical
composition of the Inconel 718 powder feedstock and the coating system. This consistency,
which was already achieved in the as-clad state, confirms the process quality. The results
could be confirmed in the polished condition. XRF measurements within GDOS calottes
demonstrated an excellent agreement of the chemical composition to the polished state.
This confirmed a homogeneous chemical composition without elemental gradations over
almost the entire coating thickness. Consequently, mixing between the substrate and
coating material, as well as the vaporization of constituents, was largely prevented. Due
to diffusion enrichment with boron, the ratios of the alloying elements in the immediate
surface area shifted in relation to each other. Nickel increased significantly with the
increasing treatment time compared to chromium and iron. The average thickness of the
coating was approximately 500 µm. After mechanical finishing, the thickness was reduced
to about 230 µm. The transition zone was crack-free and ensured good metallurgical
bonding. Limited intermixing appeared only within the immediate interfacial area.

After laser cladding, thermochemical boriding treatments were carried out. Figure 1a,b
shows exemplary SEM images of the coating after boriding using backscattered electron
imaging. Despite the deviation from the intended composition, a homogeneous precip-
itation layer formed for both states. The thickness of the boride layer after a treatment
of 2 h is at least 22 µm. No cracks, pores, or other structural defects were visible. The
smooth transition from the boride layer to the Inconel 718 cladding ensured strong ad-
hesion between the two layers. Thermochemical diffusion coatings often provide better
adhesion with the substrate compared to faster coating application techniques, such as
thermal spray coating [45]. At an increased boriding duration of 8 h, an increase in dif-
fusion depth to almost 65 µm was observed. Additionally, irregularities were detected
on the surface, which increased with the duration of the boriding treatment. Three areas
could be distinguished in the cross-sectional microstructures. The topmost double-phase
boride layer displayed a homogeneous structure. The diffusion zone underneath the boride
layer exhibited an irregular morphology and contained grain-boundary precipitates. The
precipitates extended far along the grain boundaries until they reached the core of the
Inconel 718 cladding, which was unaffected by the diffusion of the boron.
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Figure 1. Microstructural SEM cross section images (BSD) of the laser-clad coating of Inconel 718 for a boriding duration of
(a) 2 h and (b) 8 h.

In order to identify the elemental distribution within the boride layer and the diffusion
zone, GDOS measurements were carried out. The results of the qualitative analyses are
shown in Figure 2. Depending on boriding time, a constant plateau for boron intensity
was observed, which is characteristic of the boride layer. Beyond a certain depth, the
boron intensity decreased abruptly. This corresponded to the diffusion zone containing the
precipitates as detected in the SEM. In the immediate surface, increased nickel intensities
could be detected, especially in the case of the 8 h boriding treatment. This result is in
line with the results of the XRF measurements. However, within the borided layer, the
gradient between the main alloying elements diminished. Independent of the treatment
time, a simultaneous but gradual increase in the relative intensities of the main alloying
elements was observed, starting from a depth of about 20 µm. The GDOS measurements
complement the characterizations of the structure of the boride layer, which was also
analyzed by SEM.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 9 
 

  

(a) (b) 

Figure 1. Microstructural SEM cross section images (BSD) of the laser-clad coating of Inconel 718 

for a boriding duration of (a) 2 h and (b) 8 h. 

In order to identify the elemental distribution within the boride layer and the diffu-

sion zone, GDOS measurements were carried out. The results of the qualitative analyses 

are shown in Figure 2. Depending on boriding time, a constant plateau for boron intensity 

was observed, which is characteristic of the boride layer. Beyond a certain depth, the bo-

ron intensity decreased abruptly. This corresponded to the diffusion zone containing the 

precipitates as detected in the SEM. In the immediate surface, increased nickel intensities 

could be detected, especially in the case of the 8 h boriding treatment. This result is in line 

with the results of the XRF measurements. However, within the borided layer, the gradi-

ent between the main alloying elements diminished. Independent of the treatment time, 

a simultaneous but gradual increase in the relative intensities of the main alloying ele-

ments was observed, starting from a depth of about 20 µm. The GDOS measurements 

complement the characterizations of the structure of the boride layer, which was also an-

alyzed by SEM.  

  

(a) (b) 

Figure 2. Elemental distribution within the diffusion layer of Inconel 718 laser-clad coatings meas-

ured by GDOS (a) 2 h (b) 8 h. 

The phase composition was determined by XRD measurements. The diffraction pat-

terns of the coatings are shown in Figure 3 as a function of boriding time. In the as-clad 

state, the coating exhibited a single-phase microstructure consisting of the gamma (γ) 

phase with a face-centered cubic (fcc) crystal structure. Successful inert gas control in the 

process was confirmed by the absence of oxides on the surface. The results of the two 

borided samples confirmed the successful formation of a boride layer. BNi2 was detected 

Figure 2. Elemental distribution within the diffusion layer of Inconel 718 laser-clad coatings measured
by GDOS (a) 2 h (b) 8 h.

The phase composition was determined by XRD measurements. The diffraction
patterns of the coatings are shown in Figure 3 as a function of boriding time. In the as-clad
state, the coating exhibited a single-phase microstructure consisting of the gamma (γ) phase
with a face-centered cubic (fcc) crystal structure. Successful inert gas control in the process
was confirmed by the absence of oxides on the surface. The results of the two borided
samples confirmed the successful formation of a boride layer. BNi2 was detected as the
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main boride phase in both (2 h and 8 h) cases. FeB could be detected as an additional phase
and was detectable at significantly lower intensities for both treatment durations. With
increasing boriding time, the intensity of the BNi2 phase increased significantly, which
hinted at an increase in the boride layer thickness. The characteristic peaks of FeB occurred
more intensely at higher angles for 8 h of treatment, indicating a high depth of detection.
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A successful formation of a precipitation layer was possible by diffusion enrichment
with boron. To investigate the influence of the treatment condition on the resulting proper-
ties, surface hardness measurements have been conducted. The results are summarized
in Table 5. For both treatment regimes, the resulting hardness exceeded 1600 HV0.001
and was significantly higher than the reference hardness of Inconel 718 with 377 HV0.001.
Although a higher average microhardness was determined for a longer duration of the
thermochemical treatment, no clear trend can be derived due to the high standard deviation.
The main reason for this was structural defects within the precipitation layer.

Table 5. Surface microhardness HV 0.001 of borided Inconel 718 laser-clad coatings.

Untreated Borid Layer 2 h Borid Layer 8 h

377 ± 35 1628 ± 352 1708 ± 375

The wear behavior was investigated using ball-on-disk and reciprocating ball-on-
plane tests. The results are summarized in Figure 4. Compared to the untreated condition,
boriding significantly improved the wear resistance under both wear conditions. In the
ball-on-disk test, the borided coating offered almost full protection under the test conditions
used for sliding wear. Significant improvements could also be seen in the reciprocating
wear test. The maximum wear depth of the borided coating was in the range of the
thickness of the boride layer.
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