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Featured Application: This study conducted an investigation on the spatial structure of large-
scale boundary layer turbulence simulated by a wind tunnel, and through comparative analysis
with isotropic turbulence theory, some improved coherence models are proposed based on the
experimental results.

Abstract: Three types of turbulence fields were investigated using a research method combining
wind tunnel tests and theoretical analysis to further explore the spatial structure of atmospheric
boundary layer turbulence, which was passively simulated by a wind tunnel. The fundamental
theory of turbulence is introduced, and some traditional theoretical coherence models based on
isotropic turbulence theory are derived. The difference between the theoretical results and the
passive simulation of atmospheric boundary layer turbulence was compared and discussed. The
analysis results show that the passively simulated atmospheric turbulence basically conformed to
the homogeneous isotropic turbulence assumption on the horizontal plane, but the interference of
the nonisotropic turbulence components cannot be ignored either. Finally, some improvements were
made to the traditional coherence function model based on the experimental results to apply the
passively simulated atmospheric boundary layer turbulence.

Keywords: atmospheric boundary layer turbulence; isotropic turbulence theory; spatial structure;
coherence function; wind tunnel

1. Introduction

The spatial structure of atmospheric boundary layer turbulence is one of the most
critical studies in turbulence theory and is also a core subject in a variety of fields, such as
transportation, aircraft, and structural wind engineering [1]. Some turbulence parameters
such as the average wind speed, integral length scale, fluctuating wind spectrum, and
coherence function are the fundamental functions of wind load prediction and wind-
induced vibration evaluation of structures, particularly in the design of wind-sensitive
structures [2]. Meanwhile, the study of the spatial structure of atmospheric boundary
layer turbulence is extremely difficult. There are still many problems that have not yet
been fully understood due to its many influencing factors [3,4]. It is necessary to conduct
extensive research.

According to the current research progress, the main research methods include nat-
ural wind field measurements, wind tunnel tests, numerical simulations, and theoretical
research. Field measurement is the most direct and effective method to obtain the 3D char-
acteristics of boundary layer turbulence. Kaimal et al. [5], Solari [6], Kareem [7], Mann [8],
and Simiu et al. [9] previously used the field measurements from monsoons or typhoons
to study turbulence characteristics and proposed classic turbulence models that are still
widely used today. Statistical analyses on the main characteristic parameters of boundary
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layer turbulence, including the wind profile, integral scale, wind spectrum, and coherence
function, were conducted by Li [10], Cao [11], Fenerci [12], Tao [13], and Zhao [14], among
others, and they provided valuable references for engineering practice. Although field
measurement plays an important role in the study of turbulence characteristics, it must be
noted that it is generally difficult to achieve due to uncontrollable factors such as the long
measurement period and high costs [15].

Many researchers have studied the spatial characteristics of the boundary layer using
theoretical analyses or numerical simulations, resulting in a variety of solutions to com-
plex turbulence problems [1,3,8,16,17]. Many classic turbulence theory models, such as
isotropic turbulence theory and related improved models, have been developed [1,3,5,18].
However, deriving the turbulence theory and solving the motion equation are extremely
difficult [2,9,19]. Although turbulent problems can be solved using a variety of assump-
tions and simplifications, obtaining theoretical or numerical solutions that are completely
consistent with the actual situation is difficult [20,21]. The complexity and the uncertainty
of the theoretical and numerical methods are not conducive to wider applications in the
field of wind engineering, and further development is required [22].

With the advancement of experimental technology, many researchers have attempted
to simulate atmospheric boundary layer turbulence using wind tunnels, and this method
has gradually become one of the most important research methods in the field of structural
wind engineering [23,24]. After much research, it has become possible to simulate wind
fields that are similar to natural wind and even unusual wind fields, such as typhoons and
downbursts [25]. Turbulent wind fields simulated by wind tunnels have some issues that
cannot be overlooked due to some technical limitations. That is, it is difficult to ensure that
all of the statistical parameters of the simulated turbulent flow such as the wind velocity
profile, the turbulence intensity, and the integral length scale are consistent with natural
wind. However, the wind tunnel test has the advantages of a consistent performance
and high work efficiency, and it is still an effective research method for wind engineering
research [26,27]. As a result, research into the spatial structure of simulated turbulent flow,
as well as comparisons with field measurements or theoretical results, can aid in achieving
a better understanding of its properties. Based on this, describing its spatial structure with
reference to existing theoretical models will help improve wind tunnel test technology and
enhance the reliability of wind engineering research.

This study focused on the spatial characteristics of atmospheric boundary layer tur-
bulence passively simulated by a wind tunnel, and it attempted to improve the relevant
theoretical expressions based on experimental data. Combined with the existing turbulence
theory, the 3D spatial characteristics of the simulated turbulence were analyzed in conjunc-
tion with the existing turbulence theory, and the lateral and vertical correlations of various
fluctuating velocity components were extensively discussed. Theoretical predictions were
compared to observed data. Some improved empirical coherence models are proposed
under certain assumptions to describe the spatial correlation of the simulated boundary
layer turbulence field.

2. Theoretical Considerations

The correlation of any two points in time and space can be represented by the prod-
uct average value, and the correlation function Rij(r, τ) is a second-order covariance
tensor [3,19,23,28]:

Rij(r, τ) =
〈
ui(x, t)uj(x + r, t + τ)

〉
(1)

Based on incompressible homogeneous isotropic turbulence theory and Taylor’s frozen
hypothesis, it is assumed that any order of statistics does not change when the fluctuating
wind moves in space [29]. The number of correlation functions of each pulsation component
in Equation (1) will be greatly reduced; only the correlation function on the main diagonal
is not 0, that is, Rij(r) = 0, (i 6= j). Therefore, the correlation function of boundary layer
turbulence can be described by two main correlation functions, that is, an along-wind
correlation function f (r) along the axial direction and a lateral correlation function g(r) [30].
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Since the equations in this study contain many parameters and variables, a list of variable
symbols is added, as shown in Table 1.

Table 1. List of symbols.

ui(x, t) Time history of wind velocity
Rij(r, τ) Correlation function
Ru, Rv, Rw Correlation coefficients
r Distance at lateral and vertical directions
x, y, z Corresponding structural axis
∆y, ∆z Span-wise distance of two directions
u, v, w Velocity components of turbulence
Sij(), Si(), Pij(), Qij() Spectrum
a, n Shape and length scale factor
L, Lu, Lv, Lw Integral length scale
Iu, Iv, Iw Turbulence intensity
σu, σii Root mean square values
U, Uz, U0 Average wind velocity
k1, k, Wave number
f Frequency
Cohu ( ), Cohi() Coherence function
J0, J1 Bessel function of the first kind
Γ Gamma function
Kζ , K1−ζ , Kγ, K1−γ, K0, K1 Bessel function of the second kind
η, ζ, κ1, γ, β, ϕ, ϑ, υ, ψ, θ, c, δ Coefficients of the theoretical coherence model
cj

u, cj
v, cj

w Decay factor of coherence model
ηχ, θχ, Bκ , BD Correction parameters in empirical coherence models
a1, b1, a2, b2, A1, A2, C1, C2 Fitted await parameters in empirical coherence models

According to the relationship between the correlation function and the power spec-
trum, the turbulent spectrum model can be derived. In practice, resolving the fluctuating
wind spectrum is a difficult process. The following spectrum model can be obtained under
the assumption of homogeneous isotropic turbulence [1,3,29]:

Su(k1) =
4σ2

u L

[1+(2πak1)
2]

n+1/2

Si(k1) =
2σ2

ii L[1+8π2a2k2
1(n+1)]

[1+(2πak1)
2]

n+3/2

(2)

The coherence with different velocity components is introduced as one of the basic
functions to calculate the wind-induced response and is mainly used to describe the
correlation between two gusty components in the frequency domain.

Coh2
ij(k1, r) =

∣∣Sij(k1, r)
∣∣2

Si(k1, r1) · Sj(k1, r)
=

P2
ij(k1, r) + Q2

ij(k1, r)

Si(k1, r) · Sj(k1, r)
(3)

where Pij(k1, r) and Qij(k1, r) are, respectively, the cross-spectral and squared spectral
density functions. Qij(k1, r) is generally small and always assumed to be zero. Based
on the correlation function and the turbulent spectrum model, the following coherence
model Cohii(k1, ∆y) for v and w components based on isotropic turbulence theory can be
obtained [31]:

Cohi(k1, ∆y) =
Si(k1, ∆y)

Si(k1)
= 1− |∆y|2

U
·
∫ ∞

0

Si(
√

k2 + k2
1)

Si(k1)
· J1(
|∆y|

U
k1)dk1 (4)

Equation (4) is not suitable for the lateral coherence of u component velocity fluctua-
tions; thus, the continuity equation needs to be introduced. Roberts and Surry [16] derived
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a coherence function Cohu(k1, ∆y) based on spectral tensor analysis, which was extended
by Kristensen and Jensen [18] for horizontal separation:

Cohu(k1, ∆y) =
Su(k1, ∆y)

Su(k1)
= 1− ∆y2 ·

∫ ∞

0

kSu(k)
Su(k1)

· G(∆y ·
√

k2 − k2
1)dk (5)

where G(ψ) = J0(ψ)/2 + J(ψ)/ψ, and ψ = ∆y ·
√

k2 − k2
1. By substituting the wind

fluctuation spectrum into Equations (4) and (5), the theoretical coherence model can be
obtained, and the following expression will be obtained by substituting the von Kármán
spectrum model:

Cohu(k1, ∆y) =
21+1/ζ

Γ(−ζ/2)
·
[

η−ζ/2Kζ/2(η)−
η1−ζ/2

2
K1+ζ/2(η)

]
(6)

Cohi(k1, ∆y) =
21+ζ/2

Γ(−ζ/2)
·
[

η−ζ/2Kζ/2(η) + ξ ·
υ2η1−ζ/2K1+ζ/2(η)

1 + (32πk1Lx
u/3β)

]
(7)

where η = ∆y
L ·
√

1 + (υ/β)2, β =
√

π · Γ( ζ
2 )/Γ( ζ+1

2 ), υ = 2πLk1, and ζ is a constant
related to the fluctuating velocity component, taking 1 for the lateral component and −1
for the vertical component.

If substituted into the Dryden spectrum model, the following theoretical expression
can be obtained:

Cohu(k1, ∆y) = θK1(θ)−
θ2

2
K0(θ) (8)

Cohi(k1, ∆y) = θK1(θ) + ζ · υ2θ2

1 + 3(2πk1L)2 K0(θ) (9)

where θ = ∆y
L ·
√

1 + (2πk1L)2. The derivation and the calculation process of the theoretical
model are complex, making it unsuitable for engineering practice applications. Based on the
normalized von Kármán spectrum model, Krenk [32] proposed the following normalized
cross-spectral density:

Pij(κ1, r) =
1

Γ(γ)
· [(κ1r

2
)

γ
Kγ(κ1r)− (

κ1r
2

)
γ+1

K1−γ(κ1r)] (10)

where γ reflects high-frequency effects, and κ1 is the corrected wave number,

κ1 =
√
(2πk1)

2 + 1/L2.
When γ = 1/2, Hansen [33] proposes the following coherence mode:

Cohi(κ1, r) = (1− 1
2

κ1r) · exp(−κ1r) (11)

When γ = 6/5, ESDU 86010 [34] proposes the following simplified expression:

Cohu(k1, r) = exp(−1.15 · ϕ1.5) (12)

Cohi(k1, r) = exp(−0.65 · ϕ1.3) (13)

where ϕ is a dimensionless coefficient, ϕ = [(0.747ϑ)2 + (2πck1r)2]
1/2

, ϑ = r/L,

c = 1.6ϑ0.12/δb or 1, whichever is greater, b = 0.35ϑ0.2, and δ = [(0.747ϑ)2 + (2πck1r)2]
1/2

.
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In addition, there is a classic exponential coherence function model proposed by
Davenport [4]. In the Davenport model, the decay factor of the boundary layer turbulence
is taken as a constant, cj

i = 10.

Cohi(k1, r) = exp(−cj
ik1r) (14)

Although strictly isotropic turbulence does not exist in the natural atmospheric bound-
ary layer, under a series of simplifications and assumptions, it is still an effective theory
to describe the characteristics of atmospheric turbulence [3,4,18,29,32]. However, it can-
not be ignored that when the low frequency and the distance are large, the theoretical
model may overestimate the correlation of wind fluctuations. According to the isotropic
turbulence theory, the cross-spectrum of different fluctuating turbulent components is only
nonzero on the diagonal and fully conforms to the assumption of spherical symmetry on
the horizontal plane, but the cross-power spectrum of the actual along-wind and vertical
components is nonzero, i.e., Suw(k1, ∆y, ∆z) 6= 0. In the vertical direction, the phase angle
ϕ(k1, 0, ∆z) = 0 is also different from the actual situation [35]. Due to the influence of the
earth’s rotation, gravity, temperature, and pressure difference, the isotropic turbulence will
become nonisotropic over time. As a result, this study investigated the spatial structure
of large-scale boundary layer turbulence that was passively stimulated by a wind tunnel,
and based on the experimental results, improved coherence function models are proposed
through comparative analysis with isotropic turbulence theory.

3. Experimental Setup

All the tests were conducted in a closed circuit-type boundary layer wind tunnel with
a 22.5 (width) × 4.5 m (height) test section (XNJD-3). The traditional passive method was
used to simulate the atmospheric boundary layer (i.e., upstream spires and the surface
roughness on the wind tunnel floor). This study simulated three types of typical atmo-
spheric boundary layer flows, where BL1, BL2, and BL3 denote the ground categories over
open country terrain, suburban areas, and urban landforms, respectively (GB50009-2012,
Architectural Industry Press of China [36]).

Near the station where the measurements were to be taken, a rounded rod was fixed
across the tunnel to support two Cobra Probes for lateral coherence tests. Cobra Probes
are a type of wind speed measurement instrument that is frequently used in wind tunnel
testing applications, where airflow conditions are intentionally and regularly changed.
To increase the spacing combination number along with the lateral separation distance,
seven observation points were established. The lateral separation between two adjacent
points ranged from 0.05 to 0.45 m, with the greatest separation distance reaching 1.3 m. The
effects of height on lateral correlation were investigated using three different observation
points at 0.6 m, 0.9 m, and 1.2 m in height. Eleven measurement points were marked along
the height in the vertical direction, with vertical spacing ranging from 0.03 to 1.62 m. The
simulation and test of the turbulent wind field are shown in Figure 1. With point 1# taken
as the starting point, the measuring point layout is shown in Table 2.

Table 2. Layout of observation points (unit: m).

Probe Layout 1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11#

Lateral
direction 0 0.45 0.6 0.65 0.73 0.95 1.3 - - - -

Vertical
direction 0 0.05 0.25 0.48 0.71 0.91 0.96 1.11 1.14 1.31 1.62
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Figure 1. Turbulent wind field simulation and testing.

The flow field characteristics were calibrated by a Cobra Probe, and the wind fluctua-
tions in three directions were measured simultaneously. A frequency response of more than
2000 Hz indicates that the Cobra Probe is stable and reliable when measuring turbulence.
The wind velocity measurement uncertainty was about 0.18 m/s, the Cobra Probe was in
good condition, and the test method was reasonable. The sampling frequency of turbulence
in this study was 256 Hz, and the sampling period was 120 s, allowing the data length to be
up to 30,720 and meeting the requirements of the coherence analysis [18,23,26,31,35]. The
measured average wind velocity (Uz) and the turbulence intensities (Iu) of three incident
turbulences at various heights are shown in Figure 2, where z0 is the reference height, U0
is the corresponding average wind velocity, and z is the height of the probe. It is demon-
strated that the exponent model can reasonably fit the profile of the average wind velocity.
Because of the large size of the test section, a larger-scale wind field can be simulated, and
the turbulence characteristics will be closer to atmospheric boundary layer turbulence,
which has certain advantages in analyzing the turbulent spatial structure.
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4. Results and Discussion
4.1. Statistical Parameters of Turbulence

The turbulent spectrum of three fluctuating velocity components of BL1 at z = 0.9 m
is shown in Figure 3, where Su( f ), Sv( f ), and Sw( f ) represent the spectral density of along-
wind, lateral, and vertical wind fluctuation components. The measured spectrum agrees
well with the theoretical models in the low-frequency range, which is consistent with other
heights and turbulence flows. However, the fitting accuracy of the two theoretical models
differs in the high-frequency range. The von Kármán spectrum model retains a good
fitting accuracy, but the Dryden model has a higher attenuation rate at high frequencies,
resulting in deviations from the test results. Figure 3 also shows the fitting result of the
−5/3 exponential attenuation curve, which shows that the simpler −5/3 exponential
attenuation theory can be used for description in the high-frequency attenuation area. This
result demonstrates that theoretical simulation can better describe the spectral properties
of passively stimulated turbulence, but there are some differences in the high-frequency
inertial subregion and the dissipation region. The integral length scale can be obtained by
fitting the von Kármán spectrum model using the nonlinear least square method. Table 3
displays the statistical parameters of the three turbulence fields.
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Table 3. Statistical parameters of turbulence field.

Wind Field
Type

Integral Length Scale Turbulence Intensity

Lu (m) Lv (m) Lw (m) Iu (%) Iv (%) Iw (%)

BL1 1.216 0.376 0.301 12.8 10.7 8.4
BL2 1.158 0.351 0.268 20.8 18.2 16.7
BL3 1.027 0.324 0.232 27.1 22.1 18.3

According to the statistical turbulence parameters of several wind fields, the simulated
wind field is basically consistent with the natural atmospheric turbulence, which can meet
the research requirements. The length scales and the turbulence intensities for the three
velocity components in Table 3 deviate slightly from the conditions typically seen in the
atmospheric boundary layer. There are some limitations to the experimental observations
due to the insufficiency of the commonly used wind tunnel [8,37]. For example, the
turbulence intensity is different from the actual situation (i.e., Iu > Iv > Iw), and the difference
between the three components is smaller than the field measurement result of the natural
wind. This indicates that the wind velocity fluctuations of the w component of the simulated
BL flows are stronger than those of the natural atmospheric boundary layer turbulence.

4.2. Lateral Spatial Structure

For lateral separation distances, the wind data were measured in the simulated tur-
bulent boundary layer flows for nine cases. The time domain ensemble average shown
in Equation (1) was used to calculate the correlation coefficients of different turbulent
components, as shown in Figure 4.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 22 
 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n 
co

ef
fic

ie
nt

s

Δy /m

 Ru

 Rv

 Rw

 
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n 
co

ef
fic

ie
nt

s

Δy /m

 Ru

 Rv

 Rw

 
(a) (b) 

Figure 4. The correlation coefficients of different turbulent fluctuation components: (a) BL1 flow; (b) BL3 flow. 

For transverse slender structures, such as long-span bridges, the spatial structure of 
the along-wind fluctuating component u  and vertical fluctuating component w  is gen-
erally more concerned. By fitting the cross-correlation coefficients ( ( )g r ) measured in the 
BL1 wind field using the theoretical correlation function model [23,29,31], the parameters 
n  and L  were obtained, as shown in Figure 5. 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n 
co

ef
fic

ie
nt

s

Δy /m

 Measured, Ru

 Theoretical results, g(r)

 
10-2 10-1 100 101

10-5

10-4

10-3

10-2

10-1

100

101

S u(k
1)

k1

 Measured
 Theoretical results, Equation(7)

 
(a) (b) 

Figure 5. The isotropic characteristics of the along-wind component: (a) lateral correlation coefficient of along−wind com-
ponent; (b) along−wind velocity spectrum. 

In Figure 5a, the lateral correlation of the along-wind fluctuating wind component 
can be sufficiently described by homogeneous isotropic turbulence theory, and the fitting 
result is 0.614n =  and 0.797L = . The fitting result of the along-wind fluctuating wind 
spectrum deviates from the theoretical model, but the error is within acceptable limits, as 
illustrated in Figure 5b. The results show that homogeneous isotropic turbulence theory 
works well with a horizontal lateral spacing. It can be used to accurately describe the en-
ergy distribution and spatial structure of the fluctuating velocity components in the fre-
quency domain. 

Using the same method, the parameters n  and L  in the lateral correlation function 
of the vertical fluctuation component were fitted, as shown in Figure 6. The comparison 
results show that homogeneous isotropic turbulence theory can also be used to describe 
the lateral correlation of the w  component of the simulated atmospheric turbulence. The 
fitting result is 0.412n =  and 0.523L = . The fitting parameter n  is relatively close to 
the von Kármán spectrum model ( 1/ 3n = ), and the length scale is the same as the result 

in Table 3, 2 uL L≈ , but there is a gap from the natural atmospheric turbulence. This result 

Figure 4. The correlation coefficients of different turbulent fluctuation components: (a) BL1 flow; (b) BL3 flow.

For the simulated boundary layer turbulence, the lateral correlation of the three tur-
bulent fluctuation components is Rv > Ru > Rw. According to the theoretical analysis
of isotropic turbulence in the previous section, it can be seen that the turbulence satisfies
180◦ symmetry on the horizontal plane at the same height. For the horizontal and lat-
eral distances, the v component is equivalent to the along-wind correlation function, and
the u component and the w component are the lateral correlation functions. The experi-
mental data show that the along-wind turbulent component correlation is stronger than
the vertical fluctuating wind component, indicating that the isotropic turbulence theory
can describe the lateral correlation distribution of the stimulated turbulence. However,
there are differences between the two results, and this difference becomes more signif-
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icant as the turbulence intensity increases, indicating the influence of the nonisotropic
turbulence component.

For transverse slender structures, such as long-span bridges, the spatial structure of
the along-wind fluctuating component u and vertical fluctuating component w is generally
more concerned. By fitting the cross-correlation coefficients (g(r)) measured in the BL1
wind field using the theoretical correlation function model [23,29,31], the parameters n and
L were obtained, as shown in Figure 5.
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In Figure 5a, the lateral correlation of the along-wind fluctuating wind component
can be sufficiently described by homogeneous isotropic turbulence theory, and the fitting
result is n = 0.614 and L = 0.797. The fitting result of the along-wind fluctuating wind
spectrum deviates from the theoretical model, but the error is within acceptable limits, as
illustrated in Figure 5b. The results show that homogeneous isotropic turbulence theory
works well with a horizontal lateral spacing. It can be used to accurately describe the
energy distribution and spatial structure of the fluctuating velocity components in the
frequency domain.

Using the same method, the parameters n and L in the lateral correlation function
of the vertical fluctuation component were fitted, as shown in Figure 6. The comparison
results show that homogeneous isotropic turbulence theory can also be used to describe the
lateral correlation of the w component of the simulated atmospheric turbulence. The fitting
result is n = 0.412 and L = 0.523. The fitting parameter n is relatively close to the von
Kármán spectrum model (n = 1/3), and the length scale is the same as the result in Table 3,
L ≈ 2Lu, but there is a gap from the natural atmospheric turbulence. This result shows that
the vertical component roughly satisfies the homogeneous isotropic assumption, and the
fluctuating wind spectrum agrees well with the von Kármán spectrum model. Although
the lateral correlation function differs from natural atmospheric turbulence, the error is
within engineering practice’s acceptable range.
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In summary, although the statistical parameters of the wind tunnel-simulated turbu-
lent wind field are different from the theoretical results and natural atmospheric turbulence,
the lateral spatial structure can still be described approximately by isotropic turbulence
theory. The coherence function, which is one of the fundamental functions for calculating
the wind-induced response of wind-sensitive structures, is also different from the theoret-
ical derivation or the field-measured value, and some targeted corrections are required.
Relevant studies [16,17,19,37,38] have shown that many factors in natural atmospheric
turbulence will affect the coherence function, such as turbulence, the integral scale, and
the vertical wind speed gradient. Representative lateral coherences are shown in Figure 7,
where the coherences for z = 0.6 m are plotted against k1.
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According to the results of the measured coherence function, some basic characteristics
of the lateral coherence function of the simulated atmospheric turbulence can be summa-
rized. To begin with, the lateral coherence of the simulated turbulent wind field differs
from isotropic turbulence theory and the field-measured results of natural atmospheric
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turbulence, both of which can be considered to approximate the horizontal homogeneous
isotropic assumption. Second, the lateral distance and the turbulence integral scale have
the greatest influence on the lateral coherence. The type of wind field and the height of
the measuring point above the ground will have an effect on the attenuation rate, but
only a minor effect on the overall distribution trend of the coherence function, which
can be ignored in engineering applications. To further verify the correlation between the
experimentally measured coherence and the theoretical result, Figure 8 shows the fitting
conditions of the existing models.
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Figure 8. Comparisons between experimentally measured coherence Cohu and the existing models: (a) ∆y/Lx
u = 0.04;

(b) ∆y/Lx
u = 0.12; (c) ∆y/Lx

u = 0.2; (d) ∆y/Lx
u = 0.26; (e) ∆y/Lx

u = 0.44; (f) ∆y/Lx
u = 0.63.
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For the coherence with a measured value that is too small, the discreteness is large
and the noise interference is strong, meaning the analysis significance is minor. For
this reason, this investigation requires the selected coherence function Cohu > 0.1. The
fitting results show that when the dimensionless distance is 0.04 ≤ ∆y/Lx

u ≤ 0.63, the
measured data are in good agreement with the theoretical models, indicating that the
experimental data and the degrees of freedom in the calculation are reasonable. The
isotropic turbulence theory-derived Dryden model and von Kármán model can sufficiently
describe the coherence of the along-wind component and have high fitting accuracy under
all spacing combinations. This demonstrates that the along-wind fluctuation component
can be accurately described by the theoretical coherence function model under a lateral
spacing. Based on the assumption of horizontal homogeneous isotropic turbulence, the
correlation of the along-wind fluctuating velocity component at any lateral spacing can be
sufficiently described for the simulated turbulence field, which simplifies the analysis of
the structure’s wind resistance performance.

In Figure 9, the value of the low-frequency region and the attenuation rate of the
vertical component coherence function are different from those of the along-wind com-
ponent. Davenport’s exponential experience model is no longer applicable. Especially
when ∆y/Lx

u ≤ 0.26, the fitting result is seriously smaller than the measured data, and
the attenuation law in the low-frequency region cannot be accurately described. When
∆y/Lx

u ≤ 0.26, the Dryden and von Kármán coherence function model can describe the
distribution trend of the vertical component coherence function, but the fitting result in the
low-frequency region is higher than the measured data. When ∆y/Lx

u > 0.26, the fitting
deviation gradually becomes significant as the distance increases.
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Based on the theory of isotropic turbulence, scholars have modified the lateral coher-
ence function model of grid turbulence to describe the influence of nonisotropic compo-
nents on the spatial structure of turbulence. Although the 3D structure of atmospheric 
boundary layer turbulence is more complicated than grid turbulence, it is a simple and 
effective method for improving the existing theoretical model based on the horizontal iso-
tropic turbulence assumption. This study examined the stretching effect of nonisotropic 
turbulence components on vortices of various scales using correction of the turbulence 
integral scale and wave number and attempted to extend this correction method to atmos-
pheric boundary layer turbulence. Based on the von Kármán coherence model, the modi-
fied model form of the vertical component is 
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The fitting results of the coherence function show that the vertical fluctuating com-
ponent is significantly affected by the shear stress of the boundary layer, resulting in the
rotation or stretching of the vortex, meaning that the turbulent spatial structure under a
horizontal lateral spacing gradually becomes “nonisotropic”. Given the importance of the
coherence of the vertical component in wind-induced vibration analysis, and the fact that
the accuracy of the existing empirical or theoretical model cannot meet the requirements of
engineering practice, some improvements are required.
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Based on the theory of isotropic turbulence, scholars have modified the lateral coher-
ence function model of grid turbulence to describe the influence of nonisotropic compo-
nents on the spatial structure of turbulence. Although the 3D structure of atmospheric 
boundary layer turbulence is more complicated than grid turbulence, it is a simple and 
effective method for improving the existing theoretical model based on the horizontal iso-
tropic turbulence assumption. This study examined the stretching effect of nonisotropic 
turbulence components on vortices of various scales using correction of the turbulence 
integral scale and wave number and attempted to extend this correction method to atmos-
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u = 0.2; (d) ∆y/Lx
u = 0.26; (e) ∆y/Lx
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u = 0.63.

The fitting results of the coherence function show that the vertical fluctuating com-
ponent is significantly affected by the shear stress of the boundary layer, resulting in the
rotation or stretching of the vortex, meaning that the turbulent spatial structure under a
horizontal lateral spacing gradually becomes “nonisotropic”. Given the importance of the
coherence of the vertical component in wind-induced vibration analysis, and the fact that
the accuracy of the existing empirical or theoretical model cannot meet the requirements of
engineering practice, some improvements are required.

Based on the theory of isotropic turbulence, scholars have modified the lateral coher-
ence function model of grid turbulence to describe the influence of nonisotropic compo-
nents on the spatial structure of turbulence. Although the 3D structure of atmospheric
boundary layer turbulence is more complicated than grid turbulence, it is a simple and
effective method for improving the existing theoretical model based on the horizontal
isotropic turbulence assumption. This study examined the stretching effect of nonisotropic
turbulence components on vortices of various scales using correction of the turbulence
integral scale and wave number and attempted to extend this correction method to at-
mospheric boundary layer turbulence. Based on the von Kármán coherence model, the
modified model form of the vertical component is

Cohw(k1, ∆y) =
21+ζ/2

Γ(−ζ/2)
·
[

ηχ
−ζ/2Kζ/2(ηχ)−

ηχ
1−ζ/2K1+ζ/2(ηχ)

BK

]
(15)

ηχ =
∆yβ

a1Lx
u
·
√

1 + (2πk1a1Lx
u/β)b1 BK = 1 +

8
3
· (2πk1a1Lx

u/β)b1 (16)

Using a similar definition, a modified model based on the Dryden theoretical model
can be obtained:

Cohw(k1, ∆y) = θχK1(θχ)−
θχ

2

BD
K0(θχ) (17)

In the above formula, the expression of the modified parameter is as follows:

θχ =
∆y

a2Lx
u
·
√

1 + (2πk1a2Lx
u)

b2 BD = 1 + 3 · (2πk1a2Lx
u)

b2 (18)

When fitting the experimental data, the nonlinear least square method can be used to
obtain the undetermined parameters. The fitting parameters of the improved model are
shown in Table 4, and the fitting results are shown in Figure 10, after fitting 189 distance
combinations under three types of turbulent wind fields
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Table 4. Fitting parameters of different coherence models.

Wind Field Type
Von Kármán Model Dryden Model

z (m) a1 b1 a2 b2

BL1
0.6 0.489 1.535 0.512 1.978
0.9 0.493 1.52 0.568 2.013
1.2 0.527 1.587 0.582 2.075

BL2
0.6 0.491 1.591 0.547 1.993
0.9 0.513 1.632 0.528 2.043
1.2 0.524 1.643 0.574 2.123

BL3
0.6 0.466 1.665 0.533 1.96
0.9 0.507 1.653 0.577 2.01
1.2 0.52 1.727 0.583 2.085
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Table 4. Fitting parameters of different coherence models. 

Wind Field 
Type 

 Von Kármán Model Dryden Model 
 (m)z  1a  1b  2a  2b  

BL1 
0.6 0.489 1.535 0.512 1.978 
0.9 0.493 1.52 0.568 2.013 
1.2 0.527 1.587 0.582 2.075 

BL2 
0.6 0.491 1.591 0.547 1.993 
0.9 0.513 1.632 0.528 2.043 

Figure 10. Fitting results of modified coherence models: (a) ∆y/Lx
u = 0.08; (b) ∆y/Lx

u = 0.2; (c) ∆y/Lx
u = 0.33;

(d) ∆y/Lx
u = 0.54.

According to the fitting results of the vertical component coherence function in the
BL3 turbulent wind field at z = 0.9 m, it can be found that the modified models are in good
agreement with the measured results. The improved von Kármán and Dryden theoretical
models can describe the vertical component coherence function distribution at any interval
and correct the problem of overestimating the value of the low-frequency region at large
intervals. Table 4’s coefficients take into account all influencing factors and average the
fitting results for each measurement height and spacing combination. Each parameter
varies with the wind field and measurement height, but the distribution law is obvious and
can be approximated as a constant. In the modified von Kármán model (Equation (15)), the
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coefficients are recommended to be a1 = 0.5 and b1 = 1.62; the correction coefficients in
the Dryden correction model (Equation (17)) are recommended to be a2 = 0.56 and b2 = 2.

4.3. Vertical Spatial Structure

Due to the complex vertical spatial structure of the natural shear flow, isotropic
turbulence theory is no longer applicable in the vertical direction. However, an in-depth
study of the vertical spatial structure of atmospheric turbulence is an important direction
for the refined analysis of high-rise buildings’ wind resistance performance. Because
the vertical spatial structure of atmospheric turbulence is so complicated, the theoretical
derivation is still difficult to solve. The primary research method is still to collect a large
amount of data via field measurements of natural atmospheres or wind tunnel tests,
followed by fitting to obtain an approximate empirical model. This study obtained the
spatial correlation of 55 vertical spacing combinations in each wind field by real-time
measurement of fluctuating wind time history data at different heights. According to
the definition of Equation (1), the cross-correlation coefficients under different spacing
combinations were obtained, and the variation trend of the correlation coefficient with the
dimensionless spacing ∆z/H is shown in Figure 11, where H is the height of the highest
collection point.
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Figure 11. The correlation coefficients of different turbulent fluctuation components: (a) BL1 flow; (b) BL3 flow. 
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The relationship between the vertical correlations of each velocity component is
Ru > Rv > Rw, which is quite different from the horizontal lateral correlation. The vertical
correlation coefficients of the three types of simulated turbulent wind fields are the same
with the change in the distance, and the values are relatively close. This demonstrates that
the type of ground roughness has little effect on the vertical correlation of the turbulence
field, which is a key feature of simulating atmospheric turbulence. The partial spacing
combinations were used as examples in the frequency domain to demonstrate the influence
of vertical distance on the coherence of each turbulence component, as shown in Figure 12.

The results show that the vertical coherence function is not only related to wind field
factors such as the turbulence intensity, length scale, and wave number but also the average
height of the measurement point combination, which is mainly reflected by the average
wind speed at two heights, namely, U = (Uz1 + Uz2)/2. The overall distribution trend of
the vertical coherence function with the wave number is similar to the lateral coherence.
As the distance and wave number increase, the coherence function gradually decreases,
and the attenuation rate increases continuously.
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Following extensive comparative analysis, it was discovered that there is a special
relationship between the vertical coherence function and parameter ∆z/U. In Figure 12,
two coherence curves with approximate coefficients ∆z/U can be found, in which the
distribution characteristics are almost the same. Therefore, it may be concluded that if
the values of ∆z/U are close, the two coherences can be regarded as similar. For any
vertical spacing, the vertical coherence is basically inversely proportional to the size ∆z/U.
That is, if the value ∆z/U is smaller, the correlation of the two points will be stronger
and the decay rate of coherences will be relatively small. As a result, despite the fact
that the spatial structure of turbulence in the vertical direction is complex and has many
influencing factors, the coherences of other arbitrary heights can be roughly and quickly
deduced based on the ratio ∆z/U after measuring a few wind velocity data, which is useful
in engineering practice.

Considering that atmospheric turbulence has a complex vertical spatial structure,
which is affected by many factors, it is difficult to use theoretical isotropic turbulence
models to describe it completely. Because the vertical coherence of fluctuating wind is a
fundamental equation necessary for calculating the wind-induced response of high-rise
buildings, the empirical coherence function model is typically obtained by fitting a large
amount of measured data. The modified Krenk model (Equation (11)), the ESDU 86010
simplified model (Equations (12) and (13)), and Davenport’s model (Equation (14)) are
the most commonly used coherence function models. Based on extensive research on the
spatial structure of atmospheric turbulence, it has been discovered that existing models
have some shortcomings in describing the vertical spatial structure of the natural shear flow.
Therefore, this study attempted to make some amendments to those existing coherence
function models.

In structural wind engineering, the vertical coherence function of the along-wind and
lateral components is the focus of attention. In order to conduct a comparative analysis, we
referred to the above correction method to improve the theoretical models of von Kármán
and Dryden and then obtained the undetermined parameters by fitting the experimental
data. The vertical coherence model expression of the along-wind component is

Cohu(k1, ∆y) =
21+ζ/2

Γ(−ζ/2)
·
[

ηχ
−ζ/2Kζ/2(ηχ)−

ηχ
1−ζ/2K1+ζ/2(ηχ)

2

]
(19)

Cohu(k1, ∆y) = θχK1(θχ)−
θχ

2

2
K0(θχ) (20)
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where the correction coefficients ηχ and θχ are as follows:

ηχ = ∆yβ
a1Lx

u
·
√

1 + [(2π/β) · (a1k1Lx
u)]

b1

θχ = ∆y
a2Lx

u
·
√

1 + (2π)2 · [(k1U)χ( a2Lx
u

U )]
2 (21)

The vertical coherence correction model expression of the lateral component is

Cohv(k1, ∆y) =
21+ζ/2

Γ(−ζ/2)
·
[

ηχ
−ζ/2Kζ/2(ηχ) +

υχ
2ηχ

1−ζ/2K1+ζ/2(ηχ)

Bχ

]
(22)

Cohv(k1, ∆y) =
21+ζ/2

Γ(−ζ/2)
·
[

ηχ
−ζ/2Kζ/2(ηχ) +

υχ
2ηχ

1−ζ/2K1+ζ/2(ηχ)

Bχ

]
(23)

where Bχ, BD, and υχ are correction terms:

BK = 1 + 8
3 · (2πk1α1Lx

u/β)b1

BD = 1 + 3 · (2πk1α2Lx
u)

b2

υχ = 2πa1Lx
uk1 or υχ = 2πa2Lx

uk1

(24)

At the same time, the model is verified with reference to an empirical model of the
vertical coherence function proposed by Huang [26], and its expression is as follows:

Cohu(k1, ∆z) = exp(−C1k1∆z ·

√
1 + (

A1

f
)

2
) (25)

Cohv(k1, ∆z) = A2 · (1−
C2

k1∆z ·
√

1 + (A1/ f )2
) exp(−C1k1∆z ·

√
1 + (A1/ f )2) (26)

where A1, A2, C1, and C2 are undetermined parameters. Taking the selected vertical
spacing combinations as an example, Figure 13 shows the coherence function fitting of the
along-wind component in the BL1 wind field.

According to the fitting results, it can be found that several types of coherence function
models can roughly reflect the vertical coherence function of the along-wind component.
However, when the distance is small, the Davenport coherence model is significantly
lower than the measured data, and when the distance is large, there is a deficiency of
overestimating the low-frequency value. The undecided parameters for the modified
vertical coherence model will vary with the vertical spacing, integration scale, average
wind speed, and height above ground, but the fluctuation range is generally small. To
make practical engineering applications easier, the fitting results can be approximated
by an average value. For the vertical coherence function of the along-wind component,
the modified von Kármán model takes a1 = 0.678 and b1 = 1.175, and the modified
Dryden model takes a2 = 0.72 and b2 = 2.293. The reference model has a simple structure
and high fitting accuracy, and its undetermined coefficients can be obtained by fitting
experimental data.
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Using a similar method, Figure 14 shows the fitting result of the vertical coherence
function of the lateral fluctuation component. The fitting results show that both the im-
proved models (Equations (22) and (23)) and the reference model (Equation (26)) can
accurately describe the vertical coherence distribution trend. In comparison, the modified
Dryden model better describes the variation of the lateral component’s vertical coherence
with the frequency and vertical spacing. The fitting parameters can be approximately
averaged at different distances, which can meet the requirements of engineering applica-
tions. Among them, the undetermined parameters of the modified von Kármán model
are a1 = 0.61 and b1 = 1.584, and the undetermined parameters of the modified Dryden
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model are a2 = 0.329 and b2 = 2.205. The reference model has a simple structure and
clear physical meaning; it can sufficiently describe the “turn around” phenomenon of
the vertical coherence function of the lateral fluctuation component in the low-frequency
region, and its undetermined parameter fitting method has been presented in the relevant
literature [37]. The Krenk model and Davenport model can roughly reflect the vertical
coherence distribution under different vertical spacings, but the fitting accuracy has some
flaws and needs to be improved further.
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5. Conclusions 
In this study, based on the analysis of turbulence theory, the lateral and vertical spa-
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viates slightly. The modified theoretical coherence model can better describe the dis-
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(3) The vertical spatial structure that passively simulated atmospheric turbulence was 
discussed. Due to the influence of turbulent friction, isotropic turbulence theory can-
not accurately describe the vertical spatial structure of atmospheric boundary layer 
turbulence simulated by wind tunnels. Through the improvement of the theoretical 
model, a modified vertical coherence model of different turbulence velocity compo-
nents was obtained. 
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5. Conclusions

In this study, based on the analysis of turbulence theory, the lateral and vertical spatial
structures of atmospheric turbulence passively simulated by a wind tunnel were discussed.
The following conclusions can be drawn from this study:

(1) The passively simulated atmospheric turbulence can be approximately regarded as
conforming to the assumption of horizontal average isotropic turbulence, but the
vertical turbulence component is more significantly disturbed by the nonisotropic
component and cannot be ignored.

(2) Isotropic turbulence theory sufficiently describes the horizontal and lateral spatial
structures of the along-wind turbulence component, but the vertical component
deviates slightly. The modified theoretical coherence model can better describe the
distribution of the lateral coherence of the vertical component due to improvements
to the theoretical coherence model.

(3) The vertical spatial structure that passively simulated atmospheric turbulence was
discussed. Due to the influence of turbulent friction, isotropic turbulence theory
cannot accurately describe the vertical spatial structure of atmospheric boundary
layer turbulence simulated by wind tunnels. Through the improvement of the theo-
retical model, a modified vertical coherence model of different turbulence velocity
components was obtained.
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