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Abstract: The temperature evolution within a deep geological repository (DGR) is a key design
consideration for the safe and permanent storage of the high-level radioactive waste contained inside
used nuclear fuel containers (UFCs). Due to the material limitations of engineered components
with respect to high temperature tolerance, the Nuclear Waste Management Organization of Canada
requires the maximum temperature within a future Canadian DGR to be less than 100 ◦C. Densely
placing UFCs within a DGR is economically ideal, but greater UFC placement density will increase
the maximum temperature reached in the repository. This paper was aimed to optimize (i) the
separation between UFCs, (ii) the distance between container placement rooms, and (iii) the locations
of the age-dependent UFCs in the placement rooms for a conceptual DGR constructed in crystalline
rock. Surrogate-based optimization reduced the amount of computationally expensive evaluations
of a COMSOL Multiphysics model used to study the temperature evolution within the conceptual
DGR and determined optimal repository design points. Via yield optimization, nominal design
points that considered uncertainties in the design process were observed. As more information
becomes available during the design process for the Canadian DGR, the methods employed in this
paper can be revisited to aid in selecting a UFC placement plan and to mitigate risks that may cause
repository failure.

Keywords: surrogate-based optimization; yield optimization; spatial arrangement; used nuclear fuel;
deep geological repository

1. Introduction

In accordance with international scientific consensus, the best solution for the final
disposal of Canadian high-level radioactive waste, which is predominantly produced by
the country’s operation of nuclear power plants running CANDU reactors, is to isolate it
within a deep geological repository (DGR) that will prevent radionuclide release into the
biosphere for at least one million years. Designing and implementing such a repository are
the responsibilities of the Nuclear Waste Management Organization (NWMO), and they
have devised a plan for a DGR that will utilize a multiple-barrier system. It will employ
five engineered and natural barriers for the isolation of the used nuclear fuel, as shown in
Figure 1. The used CANDU fuel bundles (durable ceramic UO2 fuel pellets and the Zircaloy
cladding that house them) provides the initial two barriers. The remaining three layers of
the multiple-barrier system will be copper-coated carbon steel used fuel containers (UFCs)
that consolidate 48 used fuel bundles per UFC, highly compacted bentonite buffer boxes for
encasing the UFCs, and the host rock environment of the future repository approximately
500–800 m below ground surface.

As a critical component for the containment of used nuclear fuel, the integrity of the
UFCs is the focus of many research programs at NWMO. The copper coating of the UFCs
has been designed to be 3 mm thick, more than double the expected corrosion allowances
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for uniform corrosion, under-deposit corrosion, and microbially induced corrosion over
one million years [1–3]. These phenomena are partially influenced by the presence of
groundwater and the dissolved chemical species it would contain at the final DGR site.
Although the copper coating on the UFCs should outperform its design life, it is still best
to limit the transport of corrosive species towards the containers. Bentonite is an excellent
material to help achieve this because it swells when exposed to water, meaning it will resist
flow and can act as a sealing material. However, these desired properties of bentonite are
lost if it is subjected to elevated temperatures—it converts to illite, a non-swelling clay,
at around 140 ◦C [4]. Furthermore, at around 125 ◦C, the electrochemical properties of
copper change such that corrosion kinetics become more rapid [4]. Furthermore, elevated
temperatures will increase diffusive transport through the engineered barriers [5]. In
consideration of these drawbacks, NWMO has chosen the maximum temperature within
Canada’s DGR to be below 100 ◦C.
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Figure 1. A schematic of a conceptual deep geological repository currently being designed to isolate
and contain Canada’s used nuclear fuel [6]. Additionally, depicted are the components of the
multiple-barrier system (UO2 fuel pellets housed inside a Zircalloy fuel bundle, used fuel container,
two forms of bentonite clay, and the host rock).

The conceptual DGR designed by NWMO thus far has UFCs stacked into two stag-
gered layers, organized in a series of parallel placement rooms [4]. The temperature
evolution within the DGR will be caused by the heat generated during the radioactive
decay of the used nuclear fuel. As such, the maximum evolved temperature will be directly
affected by the emplacement density of the UFCs inside the repository. Previous computer
modelling studies on DGRs, including the one proposed by NWMO, have determined the
thermal evolution within an infinite DGR through modeling a unit cell within a placement
room [7–9]. Others have further studied the minimum combinations of UFC spacing and
placement room spacings to meet maximum temperature requirements [10,11]. However,
these studies were highly conservative, as the heat output of all UFCs was assumed to be
identical at a maximum value. Should a UFC inventory of various ages (i.e., the time since
the fuel they contain was discharged from a nuclear power reactor) be considered instead,
the placement density of UFCs may be increased. This would be economically beneficial
because for a given number of UFCs because a higher placement density would decrease
the DGR footprint, thus requiring less material, land space, construction time, etc.

In this paper, the arrangement of UFCs into a conceptual DGR in a crystalline rock
environment, detailed by NWMO in [4], is studied. Arrangement refers to spacing and
UFC age, specifically: (i) the separation between containers within a placement room,
(ii) the distance between placement rooms, and (iii) the locations of the age-dependent



Appl. Sci. 2021, 11, 11874 3 of 19

UFCs in the placement room. Here, these design variables are, respectively, denoted as
UFC spacing, room spacing, and UFC age. For UFC inventories assumed to be stored in
the DGR, optimal combinations of the design variables describing various arrangements
were determined through surrogate-based optimization. Additionally, yield optimization
was performed under assumptions of arbitrary design variable distributions as a means
for incorporating risk into the design process.

2. Finite Element Modeling of the Deep Geological Repository

The finite element analysis software COMSOL Multiphysics (COMSOL) was used to
determine the maximum temperature that would occur for various DGR designs specified
by the three design variables. The model built was based on the description of NWMO’s
conceptual DGR in crystalline rock in [4], and it is a modification of the model developed
in [7]. To consider UFC age, a unit cell that represents one repeating section inside a
placement room could not be modeled, as was done in prior studies. Instead, half the
length of a placement room (140.75 m) was modeled as a unit cell (Figure 2a); thus, UFC
age was assumed to be symmetric from the room center. Further dimensional details of the
conceptual DGR in crystalline rock by NWMO are illustrated in [12].
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Figure 2. Model components, geometry, and boundary conditions. (a) Overall unit cell, (b) Middle of placement room,
(c) Start/end of placement room.

The model components were UFCs, buffer boxes, spacer blocks, gap-fill, and the host
rock. Buffer boxes encased UFCs, spacer blocks distanced the boxes, and gap-fill lined
the placement room walls (Figure 2b). Like buffer boxes, the spacer blocks and gap-fill
material were bentonite-based components. Since the number of UFCs that could be placed
in a placement room depends on the UFC spacing, the model placed an enlarged spacer
block and highly compacted bentonite block at the end of the room to fill any voids due to
unused space (Figure 2c). In this way, the model only considered conductive heat transfer.
The depth of the modeled host rock was 5000 m based on the observation in [7] in which
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the temperature rise at this depth was negligible. The main dimensions of the model are
shown in Figure 2, with the room spacing and UFC spacing design variables identified in
Figure 2a,b, respectively.

An infinite repository was modeled through the application of adiabatic boundary con-
ditions on the unit cell’s boundaries perpendicular to the horizontal dimensions, which act
as symmetry axes. The top and bottom boundaries of the model were based on assumptions
for a constant ground surface temperature of 5 ◦C and a geothermal gradient of 12 ◦C/km,
respectively [13]. These adiabatic and isothermal boundaries are marked in Figure 2a. The
initial temperature of the model was specified using the geothermal gradient.

The thermal properties of the model components were those specified in [7,12], which
are summarized in Table 1. All modeled UFCs were assumed to be discharged from a
CANDU reactor for a minimum of 30 years by the time of repository placement, as per
NWMO’s specifications [12]. Additionally, every UFC was assumed to contain used fuel
that had been irradiated at a burnup of 220 MWh/kg. The heat output of one container
under this assumption was estimated in [14] and is shown in Table 2.

Table 1. Thermal properties of model components.

Component Bulk Density
[kg/m3]

Thermal Conductivity
[W/m/K]

Specific Heat Capacity
[J/kg/K]

UFC 7800 60.5 434
Buffer Box 1955 1.0 1280

Spacer
Block 2276 2.0 1060

Gap-Fill 1439 0.4 870
Host Rock 2700 3.0 845

Table 2. Heat output of a UFC with 220 MWh/kg of fuel burnup.

Time Out-of-Reactor
[a]

Heat Output
[W]

Time Out-of-Reactor
[a]

Heat Output
[W]

30 169.092 150 46.108
35 155.232 160 44.075
40 142.296 200 38.716
45 131.208 300 32.802
50 121.968 500 26.888
55 112.728 1000 18.665
60 105.336 2000 12.751
70 91.568 5000 9.240
75 85.932 10,000 6.644
80 80.850 20,000 3.844
90 72.257 35,000 2.097

100 65.327 50,000 1.321
110 59.783 100,000 0.380
135 49.988 1,000,000 0.137

Using the described infinite repository model, a simulation for one million years
using COMSOL would result in a maximum temperature profile that exhibits two peaks.
The profile would represent the maximum temperature within the DGR at each specific
time. The first peak in the maximum temperature would occur within 100 years after
UFC placement into the DGR, while the second peak would occur at approximately
1550 years [7]. The occurrence of a second peak would be due to the use of adiabatic
boundary conditions, and for a finite repository, it would be an overestimation of the
DGR’s temperature. A method was developed in [7] to correct a temperature profile
resulting from the use of an infinite repository to model a finite repository. The results of
the method indicated that the first peak in the temperature profile for an infinite repository
is representative of the peak in the temperature profile for the finite repository it represents.
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Thus, the maximum temperatures here were found by determining the value of the first
peak occurring within the first few hundred years of simulation. An example of a maximum
temperature profile that has a peak temperature of 84 ◦C is shown in Figure 3 for a model
with a UFC spacing of 1.5 m, a room spacing of 25 m, and all UFC ages being 30 years.
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3. Maximum Temperatures of UFC Arrangements in the Repository

To densely place UFCs into the DGR, the maximization problem that needs to be
solved is:

max
x

Tmax(x)

subject to Tmax(x) ≤ 100
xL

i ≤ xi ≤ xU
i , i = 1, 2, 3

(1)

where Tmax(x) is the maximum temperature reached inside the DGR in [◦C]; x = [x1, x2, x3]
is the design variable vector with indices ordered as UFC spacing in [m], room spacing
in [m], and UFC age in [a]; and superscripts L and U denote lower and upper bounds,
respectively. The discrete values of the considered spacing design variables followed those
in [10]. Specifically, they were x1 = {1.0, 1.1, . . . , 2.0} and x2 = {10, 11, . . . , 40}. The value
x1 = 1.0 reflected the absence of spacer blocks (Figure 2b) in the DGR, and it was the
minimum UFC spacing possible because the buffer boxes were one meter wide. Regarding
the UFC age design variable, two UFC inventory cases were studied. The first case was an
inventory with identical UFC ages of 30 years (x3 = 30), which is comparable to previous
studies and is a worst-case scenario as per the minimum UFC age specification by NWMO.
The second case considered inventories with assorted UFC ages ranging from 30 to 60 years.
This assumed that initially placed UFCs were of 30 years of age and were 60 years of age
by the end of a 30-year repository operation. This length of operation was reduced from an
estimated repository operation time of about 38 years in [15] to obtain more conservative
designs, as younger UFCs would have higher heat output.

3.1. Feasible UFC Arrangements

Excluding design variable bounds, the maximum temperature constraint in Equation (1)
was the only criterion that had to be satisfied. Approximating the constraint at equality
would determine a boundary that separates feasible and infeasible DGR design points, and
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design points resulting in maximum temperatures at or just below the 100 ◦C threshold
could then be quickly identified. These would identify the solutions to Equation (1). Thus,
the following minimization problem was solved instead:

min
x
|Tmax(x)− 100|

subject to xL
i ≤ xi ≤ xU

i , i = 1, 2, 3
(2)

3.2. Parameterization of UFC Age Arrangement

The study of the second case of assorted UFC ages was limited to a selection of
age arrangements through the application of single parameter shape functions. Shape
functions designated an age value for each container location within a placement room
under the assumption that there would be sufficient inventory to do so. This method was
opposed to specifying various UFC inventories and finding the optimal permutation of the
UFC age at each placement room location, which might lead to excessively strict design
specifications. Two shape functions were considered; they were based on a cosine function
and a Kumaraswamy probability density function (PDF).

3.2.1. Cosine-Based Shape Function

Using a cosine-based shape function would organize UFC ages in arrangements that
alternate between the youngest and oldest (30–60 years), with frequency being dependent
on one parameter, ω. The shape function that designated the UFC ages to locations from
the center of the placement room (u = 0) to the start/end of the room (u = 140.75) in this
way was:

x3,cos(u; ω) = 15 cos
(

ω
u

140.75

)
+ 45, u ∈ [0, 140.75] (3)

The considered values of the shape parameter in Equation (3) were w = {0.5, 1.0, . . . , 10},
representing UFC arrangements that alternate 1–20 times over the span of an entire place-
ment room. A few values of ω are shown in Figure 4.

3.2.2. Kumaraswamy PDF-Based Shape Function

The definition of a Kumaraswamy PDF is [16]:

f (x; a, b) = abxa−1(1− xa)b−1, x ∈ (0, 1) (4)

Depending on the values of a and b in Equation (4), the Kumaraswamy PDF takes on
various shapes [16]. A Kumaraswamy PDF-based shape function allows for the considera-
tion of a variety of UFC age arrangements. To limit possibilities and keep the scope of the
age arrangements relatively small, shape parameter values a = {0.25, 0.50, . . . , 4.00} were
considered, while the other parameter was kept constant at b = 1.5 . The corresponding
shape function was:

x3,KPDF(u; a) =
30(1.5)

maxx′3,KPDF(u; a)

(
0.99u
140.75

+ 0.01
)a−1(

1−
(

0.99u
140.75

+ 0.01
)a)b−1

, u ∈ [0, 140.75] (5)

where x′3,KPDF(u; a) = 30(1.5)
( 0.99u

140.75 + 0.01
)a−1

(
1−

( 0.99u
140.75 + 0.01

)a
)b−1

. The constants
0.99 and 0.01 in the equation were due to the mapping of x ∈ [0.01, 1] from Equation (4) to
u ∈ [0, 140.75] in Equation (5). This was required because the Kumaraswamy PDF tends to
infinity for values 0 < a < 1 when b = 1.5. The shape function in Equation (5) for several
values of a is illustrated in Figure 5.
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The parameterization of the UFC age arrangement using the shape functions in
Equations (3) and (5) implied that the UFC age design variable would be expressed as:

x3(u; α) =

{
x3,cos(u; ω) if cos ine-based
x3,KPDF(u; a) if Kumaraswamy PDF-based

(6)

Thus, the general shape parameter α became the third design variable to be optimized
for the assorted UFC age case.

4. Surrogate-Based Optimization
4.1. Method

The COMSOL model described in Section 2 used to compute the maximum temper-
ature inside the DGR, Tmax(x), was regarded as a high-fidelity model and a black-box
function since the maximum temperature cannot be easily predicted given a particular
UFC arrangement. The direct optimization of the objective function in Equation (2) to
determine optimal repository designs would be computationally expensive due to many
high-fidelity model evaluations being required. Hence, we employed surrogate-based
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optimization, which approximated the objective function with surrogate models that used
computationally cheaper functions. Two types of surrogate functions were used, namely
polynomial and radial basis function (RBF) surrogate functions. An RBF is a function that
calculates the distance of a point from the origin or a specified center.

The steps of the used surrogate-based optimization are summarized below [17]:

1. Initially (k := 0), a set of ten design points, S0, were chosen through Latin hypercube
sampling [18]. These were then evaluated using the high-fidelity model to determine
their corresponding maximum temperatures.

2. A surrogate model, sk, was fitted to the available data, {(x, Tmax(x))|x ∈ Sk}.
3. A maximin point from evaluated points, Sk, was identified through surface-minimum

point sampling (using random selection to break ties) and evaluated using the high-
fidelity model.

4. The predicted maximum temperature from sk was compared to the true value from
the high-fidelity model. If the difference exceeded 0.5 ◦C, the process was repeated
from Step 2 after updating Sk; otherwise, the optimization converged.

The toolbox MATSuMoTo provided MATLAB functions for constructing surrogate
models using polynomial functions and RBFs [19].

4.2. Optimal Arrangements for an Inventory with Identical UFC Age

For the case of an inventory with identical UFC age (x3 = 30), the maximum tem-
perature within the DGR was found to be a function of the spacing design variables,
i.e., Tmax = Tmax(x1, x2). The surrogate-based optimization of Equation (2) when a cubic
polynomial surrogate function was used resulted in the determination of the black bound-
ary in Figure 6a, which approximated the combinations of UFC and room spacings that
would result in maximum temperatures of 100 ◦C. Including the design variable bounds,
the feasible region in Figure 6a is the region above the black boundary.
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Figure 6. (a) Surrogate-based optimization of Equation (2) for UFCs, all of 30 years of age, using a cubic polynomial
surrogate function resulted in the black boundary representing the maximum temperature constraint. (b) Optimal design
points as per Equation (1) are those closest to and above the black boundary.

Recalling Equation (1), the optimal design points are those closest to and above the
black boundary. For a UFC inventory assumed to be identical in age, the discrete optimal
combinations of UFC and room spacings are indicated in Figure 6b. The results reveal
that if spacer blocks are not used in the DGR (i.e., x1 = 1.0), the minimum room spacing
required to keep the maximum temperature below 100 ◦C is 27 m. If spacer blocks are at
their widest considered width of 2 m (i.e., x1 = 2.0), the room spacing can be reduced to
12 m.
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The use of surrogate-based optimization lessened the burden of evaluating many
design points using the high-fidelity model. A total of 16 high-fidelity model evaluations
can be seen in Figure 6a, which is a fraction of the total number of possible discrete design
points (341 for the considered values of x1 and x2). Surrogate-based optimization reduced
the computation time by a factor of about 21 based on a convergence criterion of 0.5 ◦C if it
was assumed that model simulations at all the remaining design points would converge in
comparable times. Considering that the 16 high-fidelity model evaluations were completed
in 32 h on a machine with an Intel Core i5-3230M CPU at 2.60 GHz using two cores in
one socket with 8 GB of RAM, up to 650 h or 95% of computation time were saved. This
highlights the benefits of surrogate-based optimization, with the applicability reducing
computational requirements of even more complex objective functions such as those within
Section 4.3 that consider UFC age distributions via shape functions.

Looking at functions that can adequately approximate given objective, black-box func-
tions would be ideal surrogate candidates to employ with surrogate-based optimization
as the most reductions in model evaluations, and computation time would be attained
due to accelerated convergence. The performance of the cubic polynomial surrogate
function in Figure 6a can be compared against other polynomial and RBF surrogate func-
tions in Figure A1 of Appendix A. Of the investigated surrogate functions, the fewest
iterations were required when using the cubic polynomial surrogate function when start-
ing from the same initial design points. For the given design case of an inventory with
identical UFC age, the thin-plate spline RBF surrogate function would have been a poor
choice because it required a total of 28 high-fidelity model evaluations—nearly double the
16 evaluations, i.e., double the computation time, required when using the cubic polyno-
mial surrogate function.

4.3. Optimal Arrangements for Inventories with Assorted UFC Ages

Although studies of UFC arrangements for inventories with assorted ages could have
been conducted with all three design variables (UFC spacing, room spacing, and shape
parameter) using surrogate-based optimization, optimization performed at fixed values of
room spacing (i.e., Tmax = Tmax(x1, α)) was used here for simplicity of interpretation. It can
be seen in Figure 6b that designs with room spacings above 27 m did not have maximum
temperatures that exceeded 100 ◦C, so we limited the values of room spacing for which the
optimization was performed to x2 = {10, 15, 20, 25}.

Unlike in the previous case, cubic RBF surrogate functions were employed during
optimization instead of cubic polynomial surrogate functions. While it may be apparent
that a decrease in UFC spacing would require an increase in room spacing to remain on the
maximum temperature contour (and thus a simple polynomial surrogate was adequate
in Figure 6 where Tmax = Tmax(x1, x2)), here it was expected that Tmax = Tmax(x1, α)
would have nonlinearity characteristics that would be better captured by cubic RBFs. A
polynomial surrogate is limited to a set of monomials; however, an RBF surrogate linearly
combines many RBFs using evaluated data points as their origins.

4.3.1. Cosine-Based Shape Function

The surrogate-based optimization results of Equation (2) for UFC ages arranged using
a cosine-based shape function at room spacings x2 = {10, 15, 20, 25} and the optimal design
points as per Equation (1) are given in Figure 7. It can be seen that when UFC ages are
arranged sinusoidally in a placement room within the studied values of ω, the frequency
of alternating between the minimum age of 30 years and the maximum age of 60 years
does not affect the required UFC spacing. For this age arrangement, the minimum UFC
spacings required at room spacings of 10, 15, and 20 m were found to be 1.9, 1.4, and 1.1 m,
respectively. Figure 7d shows that no spacer blocks (x1 = 1.0) would be required at a room
spacing of 25 m to achieve maximum temperatures below 100 ◦C. Recall that x1 = 1.0
was the minimum UFC spacing possible as even if spacer blocks were entirely removed,
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the size of the buffer boxes were still separated the UFCs by one meter center-to-center
(Figure 7b).
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arranged using a cosine-based shape function, as determined from the surrogate-based optimization of Equation (2) using a
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4.3.2. Kumaraswamy PDF-Based Shape Function

In contrast to those shown in Figure 7, the results of the surrogate-based optimization
in Figure 8 varied with different values of the shape parameter a when UFC ages were
arranged using a Kumaraswamy PDF-based shape function. Thus, for a given room
spacing, the UFC spacing necessary can be quite different depending on how one wishes
to arrange UFCs by age. By using a shape function and parameterizing the UFC age
arrangement, the UFC spacings required for many arrangements (within one family of
functions) were able to be studied. To our knowledge, this method has not yet been used
in the design process of the DGR.
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Based on the nature of the 100 ◦C contour in Figure 8b, the choice of cubic RBF
surrogate functions was justified because polynomial surrogates would not have been
able to produce such a curve. This can be seen if Figure 8b is compared to Figure A2 of
Appendix A, which shows the results from using a cubic polynomial surrogate function.

The results in Figure 8 demonstrate that the largest UFC spacings are required for
shape parameter values of a→ 0.25 and a→ 4.00 , while smaller UFC spacings are allowed
for shape parameter values in between those values. These results agree with the age
distribution examples depicted in Figure 5. Shape parameter values a→ 0.25 and a→ 4.00
would place the greatest number of young, high heat-generating UFCs together (at the
start/end and middle of the placement rooms, respectively); thus, more distance between
the containers would be required to keep the temperature around them manageable.

For this age arrangement at a room spacing of 10 m, only shape parameter values
0.75 ≤ a ≤ 2.50 can lead to maximum temperatures below 100 ◦C (Figure 8a). From
another perspective, Figure 8 shows that the largest required UFC spacings should have age
arrangements that follow a Kumaraswamy PDF-based shape function. At room spacings of
15, 20, and 25 m, the largest required UFC spacings are 1.6, 1.3, and 1.1 m, respectively. This
can be concluded as shape parameter values of a→ 0.25 and a→ 4.00 most unfavorably
place UFCs by age. Should there be deviations from the age arrangements specified by
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these values, the young and high heat-generating UFCs can only be further dispersed from
their alike peers.

5. Yield Optimization

The optimal repository designs determined in Sections 4.2 and 4.3 via surrogate-based
optimization were deterministic, as they assumed that the construction of the DGR could
be done precisely to the UFC arrangement specifications. In practice, slight variations in
the intended dimensions may exist (e.g., DGR walls will be textured due to drill and blast
excavation techniques), and it is important to understand the effect of such variations on
the maximum achieved temperature. Performing yield optimization is a way to analyze the
effect of certain design deviations (given uncertainty information) on the maximum DGR
temperature to ensure that temperatures will not exceed 100 ◦C. This section is intended
to illustrate the practicality of determining yield and subjecting it to optimization using
assumptive calculations, as applied to the conceptual DGR by NWMO.

5.1. Method

Yield optimization is a method for reducing the risk/probability of system failure
by aiming to center a tolerance box in the design space such that the probability mass
of the random variables inside the feasible region is at a maximum [20]. When used, it
adds a stochastic consideration to a design process. Here, system failure is defined as the
maximum DGR temperature exceeding 100 ◦C.

Yield optimization comprises three steps: feasible region approximation, joint cumula-
tive distribution approximation, and yield maximization [21]. Their details are as follows,
provided here for readers’ better understanding.

1. For a feasible/acceptability region of m design variables defined by k constraints:

RA = {x ∈ Rm|hi ≥ 0, i = 1, . . . , k} (7)

a polyhedral approximation is performed to obtain the constraints in the form [21]:

hi(x) ≈ hi(x∗) + gi(x
∗)T(x− x∗) (8)

where gi(x
∗) is the gradient vector of constraint hi(x∗) and x∗ is an expansion point

that lies on the surface of hi(x∗) = 0 and is closest to the center of the design’s
tolerance box. This leads to a polytope that approximates the feasible region [21]:

RP = {x|Ax ≥ c, xL ≤ x ≤ xU} (9)

where vector
(
g∗i
)T

=
[

∂hi
∂x1

, . . . , ∂hi
∂xm

]
x∗i

and scalar
(
g∗i
)Tx∗i make up the ith row of A

and c, respectively. Superscripts L and U denote lower and upper bounds on the
design variables, respectively.

2. If unknown, the true distributions of the random variables (design variables) are
approximated by arbitrary distributions. A closed-form cumulative distribution
function (CDF) is ideal for the next step. Thus, for algebraic simplicity, the authors
of [21] used the Kumaraswamy distribution, which has the following CDF [16]:

F(x; a, b) = 1−
(
1− xâ)b̂, x ∈ (0, 1) (10)

where parameters â and b̂ are those in the Kumaraswamy PDF described earlier in
Equation (4). Additionally, recall that the Kumaraswamy PDF is useful in that it
can represent many distributions (Figure 5) depending on its two shape parameters.
Here, we use â and b̂ to denote the shape parameters for the distribution of random
variables, while the previous a and b continue to denote the shape parameters that
define the UFC age arrangement.
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3. Yield maximization proceeds by determining the location of a maximum yield box
that is strictly located within the approximated feasible region, RP. This containment
requirement is [21]:

A+xu −A−xl ≤ c (11)

where A+
ij = max

{
0, Aij

}
and A−ij = max

{
0,−Aij

}
. Superscripts l and u denote lower

and upper bounds on the optimum maximum yield box, respectively. The maxi-
mum yield box is contained inside the design’s tolerance box, which has dimensions
specified by t. The yield maximization problem that must be solved is therefore [21]:

max
xr ,xl ,xu

Yield(xr, xl , xu)

subject to A+xu −A−xl ≤ c
xu ≤ xr + t
xr ≤ xl ≤ xu

(12)

where xr is a reference point corresponding to the lower bounds of the tolerance box.
Using the Kumaraswamy CDF in Equation (10) and assuming variable independence,
yield is simply calculated [21]:

Yield(xr, xl , xu) =
m

∏
j=1

[
F

(
xu

j − xr
j

tj

)
− F

(
xl

j − xr
j

tj

)]
(13)

The solution to the maximization problem in Equation (12) determines the optimal
design point as X0 = xr + 0.5t.

The steps above assume that the feasible region is convex. If it is nonconvex, the
nominal design point, X0, can be used as the expansion point, x∗, in Equation (8) in a
subsequent iteration [21].

5.2. Designs with Failure Allowance

In this section, yield optimization for determining a nominal DGR design point is
exemplified by assuming that the UFC spacing (x1) and room spacing (x2) of the repository
are random variables with arbitrary tolerances and distributions. Due to a single variable
representing the UFC spacing between all containers and the COMSOL model portraying
an infinite repository, the interpretation of the results should consider that the realized
values of the random variables represent that of the entire repository.

Because the bounds considered on UFC and room spacings would result in a large
feasible region (e.g., see Figure 6), yield optimization would always give 100% yield designs
for any reasonably sized tolerance box on the two random variables, regardless of their
distributions. However, should some failure probability be allowed such that a portion of
the design’s tolerance box can extend across the feasible boundary, the distributions of the
random variables would then be significant. Thus, for demonstration, we studied failure
probabilities of 1% and 5% for the specific case of an assorted UFC age inventory arranged
using a Kumaraswamy PDF-based shape function with shape parameter values of a = 0.25
and b = 1.5. Note that earlier in Section 4.3.2 and Figure 8, it was shown that the largest
UFC spacings are required for shape parameter values of a→ 0.25 because this would
mean like-aged UFCs being densely placed. Therefore, the subsequent calculations can be
considered as designing for unfavorable or high-risk cases.

To obtain the feasible region required to start yield optimization, RA in Equation (7),
surrogate-based optimization was first performed for Tmax = Tmax(x1, x2) with a = 0.25.

The objective function in Equation (12) was modified to incorporate failure probability.
Additionally, a penalty term that discouraged large UFC spacings and room spacings was
included for reducing the DGR construction cost; otherwise, optimization would place the
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tolerance box in the center of the large feasible region, thus leading to no failures but a
huge cost to construct the DGR. The yield optimization problem became:

max
xr ,xl ,xu

Yield(xr, xl , xu)− 1
100

(
θ(X0,1−xL

1 )
xU

1 −xL
1

+
(1−θ)(X0,2−xL

2 )
xU

2 −xL
2

)
subject to Yield(xr, xl , xu) ≤ 1− FT

A+xu −A−xL ≤ c
xu ≤ xr + t
xr ≤ xl ≤ xu

(14)

where θ is an arbitrary weighting parameter, X0 is the nominal design point, and FT is
a target failure probability. The constant 1/100 scales the penalty term down so that
maximizing yield is of higher priority. The arbitrary weighting parameter determines
whether tighter UFC spacing or room spacing is more important. Since larger UFC spacing
increases the DGR footprint and the amount of host rock excavated for more placement
rooms while larger room spacing only increases the DGR footprint, preference was given
to smaller UFC spacings by assigning the parameter a value of 0.8 so that designs that
reduce the overall cost of the repository would be identified (compare the excavation cost
in [22] and land cost in [23]). The modification of including the target failure probability
could lead to inaccurate results because the predicted yield only approximates the actual
portion of the tolerance box within/beyond the feasible region. However, for small failure
probabilities, the approximation should be reasonable.

Tolerances and Distributions

The tolerances on UFC and room spacings were, respectively, assumed to be 0.2 and
3 m (i.e., x1 ± 0.1 and x2 ± 1.5). Two arbitrary distributions were considered for both of
the random variables using the Kumaraswamy distribution, namely a tail distribution
towards smaller UFC spacings and room spacings (â = [1, 1], b̂ = [5, 5]) and a kurtotic
distribution towards larger UFC spacings and room spacings (â = [8, 8], b̂ = [8, 8]). Under
the assumption of variable independence, the two corresponding joint PDFs are visualized
in Figure 9.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 18 
 

towards smaller UFC spacings and room spacings (𝑎ො = [1, 1], 𝑏෠ = [5, 5]) and a kurtotic 
distribution towards larger UFC spacings and room spacings (𝑎ො = [8, 8] , 𝑏෠ = [8, 8] ). 
Under the assumption of variable independence, the two corresponding joint PDFs are 
visualized in Figure 9. 

 
(a)  

 
(b)  

Figure 9. Joint Kumaraswamy PDFs (denoted by Pr) for UFC and room spacings at a nominal point 
of (𝑥ଵ, 𝑥ଶ) = (1.5, 20)  and tolerances of 𝑥ଵ ± 0.1  and 𝑥ଶ ± 1.5 , assuming independence. (a) 
Parameters 𝑎ො = [1, 1] and 𝑏෠ = [5, 5], (b) Parameters 𝑎ො = [8, 8] and 𝑏෠ = [8, 8]. 
5.3. Failure Allowance of 1% 

The nominal design points for when 1% failure probability was allowed under tail 
and kurtotic distributions are illustrated in Figure 10. Monte Carlo simulation points are 
included to depict the distributions, and these were determined by applying the inverse 
Kumaraswamy CDF transformation with relevant shape parameter values to uniformly 
distributed random numbers generated by the MATLAB rand() function. As is shown, 
depending on the distributions assigned to the random variables, the optimal design point 
for the DGR changes. If the distributions of the UFC and room spacings are such that 
smaller values are more likely to be realized, then larger nominal values need to be 
specified for the DGR design to ensure the maximum temperature does not exceed 100 
°C, e.g., see Figure 10a. If the opposite is true, then smaller nominal values that are closer 
to the boundary of the feasible region can be chosen without an unfavorable increase in 
system failure, e.g., see Figure 10b. The tail and kurtotic distributions are quite extreme 
cases, and they were considered to demonstrate the need for either larger or smaller 
nominal UFC and room spacings within the DGR. Regardless of what the actual 
distributions for UFC and room spacings may be, yield optimization can provide insight 
for specifying an appropriate DGR design—with accuracy dependent on available 
information in Figure 9. 

(a)  (b)  

Figure 9. Joint Kumaraswamy PDFs (denoted by Pr) for UFC and room spacings at a nominal point
of (x1, x2) = (1.5, 20) and tolerances of x1± 0.1 and x2± 1.5, assuming independence. (a) Parameters
â = [1, 1] and b̂ = [5, 5], (b) Parameters â = [8, 8] and b̂ = [8, 8].

5.3. Failure Allowance of 1%

The nominal design points for when 1% failure probability was allowed under tail
and kurtotic distributions are illustrated in Figure 10. Monte Carlo simulation points are
included to depict the distributions, and these were determined by applying the inverse
Kumaraswamy CDF transformation with relevant shape parameter values to uniformly
distributed random numbers generated by the MATLAB rand() function. As is shown,
depending on the distributions assigned to the random variables, the optimal design
point for the DGR changes. If the distributions of the UFC and room spacings are such
that smaller values are more likely to be realized, then larger nominal values need to be
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specified for the DGR design to ensure the maximum temperature does not exceed 100 ◦C,
e.g., see Figure 10a. If the opposite is true, then smaller nominal values that are closer to the
boundary of the feasible region can be chosen without an unfavorable increase in system
failure, e.g., see Figure 10b. The tail and kurtotic distributions are quite extreme cases,
and they were considered to demonstrate the need for either larger or smaller nominal
UFC and room spacings within the DGR. Regardless of what the actual distributions for
UFC and room spacings may be, yield optimization can provide insight for specifying an
appropriate DGR design—with accuracy dependent on available information in Figure 9.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 18 
 

towards smaller UFC spacings and room spacings (𝑎ො = [1, 1], 𝑏෠ = [5, 5]) and a kurtotic 
distribution towards larger UFC spacings and room spacings (𝑎ො = [8, 8] , 𝑏෠ = [8, 8] ). 
Under the assumption of variable independence, the two corresponding joint PDFs are 
visualized in Figure 9. 

 
(a)  

 
(b)  

Figure 9. Joint Kumaraswamy PDFs (denoted by Pr) for UFC and room spacings at a nominal point 
of (𝑥ଵ, 𝑥ଶ) = (1.5, 20)  and tolerances of 𝑥ଵ ± 0.1  and 𝑥ଶ ± 1.5 , assuming independence. (a) 
Parameters 𝑎ො = [1, 1] and 𝑏෠ = [5, 5], (b) Parameters 𝑎ො = [8, 8] and 𝑏෠ = [8, 8]. 
5.3. Failure Allowance of 1% 

The nominal design points for when 1% failure probability was allowed under tail 
and kurtotic distributions are illustrated in Figure 10. Monte Carlo simulation points are 
included to depict the distributions, and these were determined by applying the inverse 
Kumaraswamy CDF transformation with relevant shape parameter values to uniformly 
distributed random numbers generated by the MATLAB rand() function. As is shown, 
depending on the distributions assigned to the random variables, the optimal design point 
for the DGR changes. If the distributions of the UFC and room spacings are such that 
smaller values are more likely to be realized, then larger nominal values need to be 
specified for the DGR design to ensure the maximum temperature does not exceed 100 
°C, e.g., see Figure 10a. If the opposite is true, then smaller nominal values that are closer 
to the boundary of the feasible region can be chosen without an unfavorable increase in 
system failure, e.g., see Figure 10b. The tail and kurtotic distributions are quite extreme 
cases, and they were considered to demonstrate the need for either larger or smaller 
nominal UFC and room spacings within the DGR. Regardless of what the actual 
distributions for UFC and room spacings may be, yield optimization can provide insight 
for specifying an appropriate DGR design—with accuracy dependent on available 
information in Figure 9. 

(a)  (b)  

Figure 10. Designs with 1% failure allowances for a UFC age arrangement of a = 0.25 when UFC
and room spacings are assumed to have tolerances of x1 ± 0.1 and x2 ± 1.5 and are independent.
Points in green indicate the design centers. (a) Tail distribution (â = [1, 1], b̂ = [5, 5]), (b) Kurtotic
distribution (â = [8, 8], b̂ = [8, 8]).

5.4. Failure Allowance of 5%

In contrast to a 1% failure probability, Figure 11 shows that a 5% failure probabil-
ity allows for nominal design points to shift closer to their feasible region boundary.
The increased failure probability incorporated higher risk into the repository design.
However, if the assigned random variable distributions were appropriate, the nominal
points determined through yield optimization would be more robust than the points
in Sections 4.2 and 4.3 because those deterministic results did not take uncertainty into
account for the design variables. In Figure 11b, it can be seen that depending on the distri-
bution, an optimal design point found through yield optimization might even lie outside
the feasible region but, at the same time, still have a small probability for system failure.
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6. Summary and Conclusions

In this paper, UFC arrangements for a Canadian DGR in a crystalline rock environment
conceptualized by NWMO were studied. UFC spacing, room spacing, and UFC age were
considered as the design variables that affected the maximum temperature inside the
repository, which could not exceed 100 ◦C.

Surrogate-based optimization was used to optimize a high-fidelity COMSOL model of
the DGR, reducing the number of computationally expensive evaluations required to reach
optimal results. By using shape functions to specify the UFC age arrangement within the
repository’s placement room, many arrangements were considered. Their results could be
useful for the actual placement of UFCs in the future DGR as used nuclear fuel inventory
information becomes available and finalized. Cosine-based and Kumaraswamy PDF-based
shape functions were used, but more arrangements using other functions can be studied
via the presented approach.

Yield optimization was exemplified as a means to incorporate risk into the design
process. Considering UFC and room spacings as random variables, optimal DGR design
points with an allowed failure probability (i.e., a target yield) were determined through the
application of arbitrary tolerances and distributions. Should more information regarding
DGR processes that inherently vary become known, such as manufacturing or construction
limitations, the demonstrated method can be refined or even applied to other design
variables to determine robust nominal design points that serve to prevent repository
system failure.
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Appendix A

For the case of a UFC inventory with identical age, surrogate-based optimization
was also performed using reduced quadratic, quadratic, and reduced cubic polynomial
surrogate functions, as well as cubic RBF and thin-plate surrogate functions. These results
are shown in Figure A1. Surrogate-based optimization using a cubic polynomial surrogate
function was also conducted for the case of UFC inventories with assorted ages at a room
spacing of 15 m. The found optimal points are given in Figure A2.
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