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Abstract: Light entrains human circadian rhythms, but increased time spent indoors and decreased
daylight exposure may disrupt human circadian regulation and cause health problems. Much
research is focused on improving indoor lighting conditions to minimize the adverse circadian impact
of electric lights, and few studies investigate the circadian impact of daylight during the incidental
time that people spend outdoors. For instance, when people commute from home to work, they are
exposed to daylight. The purpose of this study is to investigate daylight’s impact on commuters’
circadian rhythms. Measurements of the illuminance and the spectral irradiance distribution (SID)
of daylight were taken for three modes of commuting: driving, riding on trains, and walking; and
under different weather conditions, on different days, and at different locations throughout the
summer and autumn in the Sydney metropolitan region in Australia. With the SID data, three metrics
were calculated to estimate the circadian impacts: α-opic irradiance, circadian stimulus (CS), and
equivalent melanopic lux (EML). The results suggest that driving or walking on sunny or cloudy
days and riding trains on sunny days are beneficial for the commuters’ circadian synchronization.

Keywords: circadian impact; daytime light exposure; commuters

1. Introduction

Light entrains human circadian rhythms [1–3], with studies showing that both light
exposure history and timing can influence circadian rhythms. The master clock tends
to phase early when exposed to light in the morning, and the clock phases late when
exposed to light at night [4]. Research has shown that at least four hours of daylight
exposure (or electric light exposure of equivalent intensity) during daytime for seven days
decreased the subjects’ sensitivity to subsequent light exposure, compared with dim light
exposure during the day [5]. Despite using a variety of methodologies, several studies
have consistently found that bright light exposure dampens the impact of subsequent light
exposure on the circadian systems [6–8].

Disruption of circadian regulation has been associated with many health issues [9].
As many people spend a substantial portion of their time indoors [10], concerns have been
raised that limited daylight exposure may disrupt the human circadian cycles [11], and
some suggest that indoor lighting conditions should be changed to compensate for this
reduced exposure to daylight [12].

A recent study showed that nighttime exterior lighting can have a circadian effect
on people [13]. However, a human’s light exposure is not limited to the electric lighting
in indoor spaces or outdoor lighting at night—many people travel between their home
and workplace on a regular basis. In Australia, the primary commuting modes are driving
(79%), taking public transportation (14%), and walking or cycling (5.2%) [14], during
which they are incidentally exposed to daylight. In 2017, the average commuting time
of employed Australians was one hour [14]. A survey conducted in the United States
shows that people spend about an average of 6% of their time in vehicles [15], which is
approximately consistent with the Australian commuting time. There have been no studies
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on the effect of this light exposure on the circadian systems of commuters. This research
aims to evaluate the circadian effect of daylight from commuting.

In this study, the illuminance and the spectral irradiance distribution (SID) of daylight
were measured for three different commuting modes: driving, riding on trains, and walking,
in two types of weather conditions (sunny and cloudy). The measurements were repeated
during different times and days at various locations in the Sydney metropolitan area. The
SID data were used to calculate three metrics: α-opic irradiance [16], circadian stimulus
(CS) [17,18], and equivalent melanopic lux (EML) [19], in order to estimate the circadian
effects of the different commuting modes. The average α-opic irradiance for each mode of
commuting in both sunny and cloudy weather conditions is reported in this study. The
average CS and EML values are compared to their recommended minimum values.

2. Materials and Methods
2.1. Light Exposure Measurements

A calibrated Everfine SPIC-300 spectral irradiance meter was used to measure the
illuminance and SID. The sensor of the spectral irradiance meter can be separated from the
rest of the instrument, which it communicates with via Bluetooth. In order to estimate the
corneal illuminance and SID while traveling safely, the sensor was mounted on a modified
helmet. When the operator wore the helmet to conduct the measurements, the sensor was,
therefore, in the center of the operator’s forehead, just above the eyes (Figure 1). After
initiating the instrument, the equipment recorded the first measurement and automatically
measured the subsequent light. The time taken for each measurement varied. The average
measurement frequency during the trips was 1.4 recordings per minute. The measurements
ceased when the operator manually stopped the equipment. A series of measurements
were automatically and continuously recorded while the operator traveled.
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Figure 1. Photo of the operator wearing the modified helmet with the sensor attached on it.

The mounting position of the sensor on a helmet was used to ensure the safety of
the operator. However, comparisons were made between the measurements of the light
striking the sensor when mounted on the helmet and when placed in front of the cornea,
and very little difference was found. The same instrument was used for this comparison,
with the same operator (Figure 1). The operator stood outdoors, measured the light once
when the sensor was on the helmet, and then immediately moved the sensor onto her
right eye and recorded another measurement. This process was repeated three times. The
percentage difference of the measured irradiance was calculated as the difference between
the irradiance at the helmet position and the irradiance at the eye position divided by the
irradiance at the eye. The three percentages were 1.2%, −0.5% and 1.3%, which are all less
than the measurement uncertainty of the instrument.

Measurements were obtained for a total of 21 trips, representative of those undertaken
by the commuters. All trips were taken in the summer and autumn (from December 2019
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to March 2020) in the Sydney metropolitan region in Australia. Seven trips were taken for
each commuting mode: driving, riding trains, and walking. Additionally, all trips were
taken during the morning peak hours (within the time range of 07:30 to 10:00). For driving,
the average starting time was 08:54 a.m. and the average ending time was 09:22 a.m. For
riding trains, the average starting time was 08:38 a.m. and the average ending time was
08:59 a.m. For walking, the average starting time was 08:28 a.m. and the average ending
time was 09:00 a.m. The duration of the trips varied from 12 min to 41 min. The average
duration of all trips was 27 min. For driving and walking, the direction of travel included all
four directions (north, south, west, and east, approximately) for each mode of commuting.
For train rides, the trips include one railway line which is a loop, as well as three other
railway lines, for which measurements were collected in both directions of travel. All the
measurements were conducted by the same operator (Figure 1).

When driving, the operator wore the modified helmet with the attached sensor and
initiated the spectral irradiance meter before she started to drive. The equipment automati-
cally recorded the measurements as she drove. The primary light source was the daylight
coming through the front windshield and the windows of the vehicle. The operator was
free to perform any necessary movements for safe driving, such as checking the GPS, ad-
justing the side-view mirrors, monitoring traffic conditions, etc. The seven trips that were
taken for the driving mode started at different locations and ended at different destinations.
The measurements were conducted inside of the same vehicle (model: 2018 Toyota, CH-R)
with tinted side windows.

When riding on the commuter trains, the operator wore the modified helmet with the
attached sensor and initiated the spectral irradiance meter just before she boarded the train.
The operator sat near the windows in a seat either facing forward or backward, relative
to the direction of travel, and on either the upper or lower level of the train. The operator
was exposed to the daylight coming through the windows of the train and the electric
lights in the train. The measurements captured the contributions of both light sources. The
operator was free to perform any typical movements associated with riding trains, such as
looking at the views outside the windows, reading a book, navigating through the train
car, etc. The seven trips that were taken for the mode of riding trains started and ended at
different stations. Between some stations, the train travelled underground, during which
times daylight was blocked and the electric lights were the only light source. During this
period, the measurements were continued, and the data for these sections were included in
the calculation to reflect real-life commuting situations.

When walking, the measurement procedure was similar to the other two commuting
modes. The operator wore the modified helmet with the attached sensor and initiated the
spectral irradiance meter when she started to walk. The seven trips that were taken for
the mode of walking started at different locations and ended at various destinations. The
operator walked through a variety of areas, including places where tall buildings or trees
partially blocked the daylight. The walking routes also included areas with more open
space, where the operator was fully exposed to daylight. The operator was free to perform
any necessary movements for safe walking, such as monitoring the environment, checking
traffic conditions, waiting for traffic lights, etc.

A weather application on a smartphone was used to monitor and record the weather
conditions. The weather was recorded twice for each trip—once when the trip started and
again when the trip ended. The light measurements were taken when the weather was
relatively steady throughout the trips. They were not just taken on sunny days, when the
daylight was intense, but also on cloudy days, when the daylight was weaker. Table 1 gives
detailed information about examples of the trip itineraries for each commuting mode. The
majority of the areas where the measurements were conducted have high-rise buildings, in
which 36–82% of the dwellings are high density [20,21]. The GPS route was captured for
driving and walking by a smartphone GPS application. Figure 2 shows examples of the
GPS route for driving and walking.
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Table 1. Examples of trip itineraries for three commuting modes.

Mode Date
Weather GPS Coordinates/

Train Stations Time Note

Start End Start End Start End

Driving 12 Dec.
2019

Mostly
cloudy

Mostly
cloudy

(−33.882898,
151.121124)

(−33.879560,
151.198464) 8:40 9:11

Heavy traffic, medium to
high-density housing

areas

Train 18 Dec.
2019 Sunny Sunny

Ashfield
railway
station

Parramatta
railway
station

7:39 8:10 facing direction of travel,
lower level, no tunnel

Walking 19 Mar.
2020 Sunny Sunny (−33.922654,

151.190095)
(−33.922073,
151.190443) 8:08 8:34 High-density housing

areas
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2.2. Calculations of the Circadian Effects of Lights

The three metrics, α-opic irradiance, CS, and EML, were used to estimate the circadian
effects of the light exposure experienced during a typical commute. The calculations were
based on the following methods.

2.2.1. α-Opic Irradiance

The first method is recommended by the International Commission on Illumination
(CIE) in CIE S 026/E:2018 [16]. This international standard provides the spectral sensitivity
functions (action spectra), which describe the extent to which radiation stimulates each of
the five photoreceptor types that contribute to the non-visual effects of light in humans [16].
The sensitivity function for the intrinsically-photosensitive retinal ganglion cells (ipRGCs)
is based on the work of Lucas et al. [22]. The cone sensitivity function and rod sensitivity
function recommended in CIE S 026/E:2018 are based on a previous CIE publication [16].
With the SID and spectral sensitivity functions, the weighted irradiance (α-opic irradiance)
for each human photoreceptor type can be calculated with Equation (1):

Ee, α =
∫

Ee, λ(λ)Sα(λ)dλ (1)

where Ee, α is the α-opic irradiance, Ee, λ(λ) is the spectral irradiance, and Sα(λ) is the
α-opic action spectrum [16]. A toolbox to support the use of this metric has been developed
and is available on the CIE website [23].
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2.2.2. Circadian Stimulus

Another method for quantifying the circadian impact of light is through the circadian
stimulus (CS) [17,18]. CS represents the percentage of melatonin suppression evoked by
light [24]. The non-linear model was initially developed based on spectral sensitivity
data published by several researchers [25,26], and the model has been modified multiple
times since it was initially proposed [18]. Instead of modeling the five different spectral
sensitivity functions—one for each photoreceptor type—CS quantifies the total circadian
effect from light. Given the SID, CS can be calculated with Equations (2) and (3):

CS = 0.7− 0.7

1+
(

CLA
355.7

)1.1026 (2)

CLA =


1548

[∫
MCλEλdλ+

(
ab−y

(∫ Sλ
mpλ

Eλdλ− k
∫ Vλ

mpλ
Eλdλ

)
− arod

(
1− e

−
∫

V′λEλdλ
RodSat

))]
,

i f
∫ Sλ

mpλ
Eλdλ− k

∫ Vλ
mpλ

Eλdλ ≥ 0

1548
∫

MCλEλdλ , i f
∫ Sλ

mpλ
Eλdλ− k

∫ Vλ
mpλ

Eλdλ < 0

(3)

where CLA is circadian light, CS is circadian stimulus, Eλ is the SID of the incident light, MCλ

is melanopsin (corrected for crystalline lens transmittance) sensitivity [27], Sλ is the S-cone
fundamental [28], mpλ is macular pigment transmittance [29], Vλ is the photopic luminous
efficiency function [30], V′λ is the scotopic luminous efficiency function [30], RodSat is the
half-saturation constant for bleaching rods, equal to 6.5 W/m2 [31], k equals 0.2616 [32], ab−y
equals 0.7 [32], and arod equals 3.3 [32]. Due to the non-linear structure of the model, there
are slight differences in the intensity of the narrowband light of ~507 nm [18], which can
lead to massive differences in the output of the CS. This discontinuity can cause inaccuracies
when predicting circadian effects with this model. More details about the CS metric and its
limitations are reported in the publications by Rea et al. [18,32,33].

2.2.3. Equivalent Melanopic Lux

The third method used here is the equivalent melanopic lux (EML), which characterizes
the light’s impact on the circadian system in the unit of melanopic lux [19]. It does not
reflect modifications of the ipRGCs by the rods or cones [22,31]. With the retinal illuminance
and SID, EML can be simply calculated by Equations (4) and (5):

EML = R × L (4)

R =
Melanopic irradiance
Photopic irradiance

× 1.218 (5)

where EML is equivalent melanopic lux and L is illuminance. The 1.218 constant is also
called the equal energy constant. R is the ratio of the irradiance weighted by the circadian
spectral sensitivity function and the irradiance weighted by the photopic spectral sensitivity
function, multiplied by a constant. The constant ensures that the melanopic illuminance
is equivalent to the photopic illuminance for a theoretical equal energy radiator [19].
The circadian spectral sensitivity function used in this equation is also from the work of
Lucas et al. [22].

3. Results

In total, 21 commuting trips were taken to measure the illuminance and SIDs, with
seven trips taken for each mode of commuting. The seven trips were then categorized into
two groups based on their weather conditions, sunny or cloudy. The sunny group includes
trips that were taken when the weather conditions were sunny, mostly sunny, or partly
cloudy—i.e., when the daylight was intense. The cloudy group includes trips that were
taken when the weather conditions were cloudy or mostly cloudy—i.e., when the daylight
was relatively weak. Table 2 shows the number of trips categorized in the sunny group, the
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cloudy group, and the total for each commuting mode. In total, 732 SID measurements
were collected during these 21 trips. Table 3 shows the number of SID measurements that
were taken for each commuting mode in the different weather conditions, reflecting the
uneven sample size of each group. Figure 3 shows the representative relative spectral
power distributions measured for each of the three commuting modes for the two weather
conditions. It is clear that the interior lighting in the trains dominates daylight, as the
spectral power distributions for the train trips predominately correspond to those of white
light-emitting diodes (LEDs).

Table 2. The number of trips for each commuting mode in different weather conditions.

Driving Train Walking

Sunny 5 4 5
Cloudy 2 3 2

Total 7 7 7

Table 3. The number of SID measurements for each commuting mode in different weather conditions.

Driving Train Walking

Sunny 222 69 116
Cloudy 97 195 33

Total 319 264 149

The average values and standard deviations for the illuminance, the five α-opic
irradiances (S-cone, M-cone, L-cone, rhodopic, and melanopic), CS, and EML for each of
the three commuting modes are shown in Table 4. The table also distinguishes the results for
the sunny and cloudy weather conditions. Box plots of the measured corneal illuminances
and the five calculated α-opic irradiance values are shown in Figure 4. One-way analysis of
variance (ANOVA) tests (p < 0.05) of the illuminance and the five α-opic irradiances were
performed in MATLAB to determine whether there are statistically significant differences
between the different modes of commuting in different weather conditions. Any significant
differences (p < 0.05) are denoted with asterisks in Figure 4. The average illuminances and
the average α-opic irradiances are higher for the sunny weather conditions than the cloudy
conditions for each mode of commuting. The average illuminances and average α-opic
irradiances are highest for the walking mode of commuting, while driving resulted in the
lowest light exposure.
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Table 4. The average values and standard deviations (SD) of illuminance, S-cone-opic irradiance, M-cone-opic irradiance,
L-cone-opic irradiance, rhodopic irradiance, melanopic irradiance, circadian stimulus (CS), and equivalent melanopic lux
(EML) for the three commuting modes, for the two weather conditions (sunny and cloudy).

Illuminance
(Lux) α-Opic Irradiance (W/m2)

Circadian
Stimulus
(Unitless)

Equivalent
Melanopic Lux

(Melanopic
Lux)

S-Cone M-Cone L-Cone Rhodopic Melanopic
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Driving
Sunny 819 711 0.52 0.44 1.17 1.01 1.33 1.15 1.07 0.92 0.97 0.83 0.40 0.25 817 702
Cloudy 733 382 0.47 0.25 1.04 0.55 1.19 0.62 0.96 0.50 0.87 0.46 0.50 0.06 734 388

Total 793 630 0.51 0.40 1.13 0.90 1.28 1.02 1.03 0.82 0.94 0.74 0.43 0.21 792 624
Train
Sunny 2639 2344 1.93 1.66 3.77 3.33 4.29 3.82 3.52 3.08 3.23 2.83 0.59 0.09 2722 2380
Cloudy 336 272 0.19 0.21 0.45 0.39 0.54 0.44 0.36 0.35 0.31 0.32 0.25 0.16 260 270

Total 938 1582 0.64 1.15 1.32 2.26 1.52 2.58 1.19 2.12 1.07 1.95 0.34 0.21 903 1641
Walking
Sunny 3339 4427 2.51 3.03 4.80 6.25 5.44 7.22 4.55 5.77 4.21 5.28 0.60 0.09 3542 4449
Cloudy 1313 894 1.11 0.76 1.93 1.31 2.14 1.46 1.90 1.28 1.78 1.20 0.56 0.12 1496 1014

Total 2891 4014 2.20 2.76 4.16 5.67 4.71 6.55 3.96 5.24 3.67 4.80 0.59 0.10 3089 4041
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above it. The suggested value of the EML depends on the space. For example, 200 mela-
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Figure 4. Box plots of the measured corneal illuminance and the five calculated α-opic irradiance values for the three
modes of commuting under the two weather conditions (sunny and cloudy): (a) illuminance; (b) S-cone-opic irradiance;
(c) M-cone-opic irradiance; (d) L-cone-opic irradiance; (e) rhodopic irradiance; (f) melanopic irradiance. The horizontal
lines that divide the boxes into two parts denote the median (middle quartile). The boxes represent the inter-quartile range
(the middle 50%), and the upper and lower whiskers show the highest and the lowest non-outliers. The individual points
outside the boxes show the outliers. The cross in each box represents the mean. Asterisks indicate statistically significant
differences between groups with a p-value < 0.05.

Box plots of the calculated CS and EML values for the three modes of commuting
under the two weather conditions are shown in Figure 5. One-way ANOVA tests (p < 0.05)
of CS and EML were performed in MATLAB to determine whether there are statistically
significant differences between the different modes of commuting in different weather
conditions. Any significant differences (p < 0.05) are denoted with asterisks in Figure 5.
The average CS and EML values are shown in Table 4. The suggested desired criterion of



Appl. Sci. 2021, 11, 11846 9 of 14

CS is 0.3, with the condition that the light exposure is one hour in duration [12,32,34,35].
When the CS value is over 0.3, people who are exposed to such lighting conditions will
have better daytime alertness and sleep quality [12,32,34,35]. As the average commuting
time of employed Australians was one hour (66 min in mainland capital cities, and 48
min in others) [14], 0.3 is used here. As shown in Table 4, the average CS value for riding
trains in cloudy conditions (0.25) is slightly below the desired criterion (0.3), but others
are all above it. The suggested value of the EML depends on the space. For example, 200
melanopic lux is the recommended minimum level for a work area [19]. Although there
is no recommended criterion for commuting, 200 melanopic lux is applied here, since the
purpose of this study is to analyze daylight’s impact on people while they are commuting,
before they spend the rest of the day at their workplaces. As shown in Table 4, all average
EML values exceed the EML recommended value (200 melanopic lux), including riding
trains in cloudy conditions (260 melanopic lux).
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the upper and lower whiskers show the highest and the lowest non-outliers. The individual points
outside the boxes show the outliers. The cross in each box represents the mean. Asterisks indicate
statistically significant differences between groups with a p-value < 0.05.

As shown in Table 4, the calculation results for α-opic irradiance and EML show a
consistent trend—the average values for sunny conditions are all higher than the average
values for cloudy conditions, which suggests that commuting on sunny days results in
greater circadian impacts than traveling on cloudy days. For walking and traveling by
train, these differences were statistically significant, but the differences between driving in
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sunny conditions and cloudy conditions were not significant. Interestingly, the average
CS is smaller for driving in sunny conditions (0.40) than in cloudy conditions (0.50), and
this difference was statistically significant. Similarly, CS predicts that driving results in
greater circadian stimulation than riding a train, which is contrary to the predictions of
the other metrics. Driving has the lowest average α-opic irradiance and EML values, but
the CS (0.43) for driving is not lower than riding trains. Riding trains has the lowest
average CS value (0.34), but α-opic irradiance and EML are higher for riding trains than
driving. The illuminance measurements are consistent with the α-opic irradiance and
EML calculation results. The average illuminance when driving in sunny conditions
are higher than in cloudy conditions, and the average illuminance when riding trains is
higher than when driving. However, one cannot conclude that the α-opic irradiance and
EML are more accurate than the CS based on the illuminance measurements, as a higher
photopic intensity of light doesn’t necessarily result in greater circadian effects. Several
characteristics of light influence the circadian rhythms interactively: spectrum [2,36–38],
intensity [39], duration [40], timing [5,6], and spatial distribution [41–44]. It is also unclear
the extent to which the contribution of the electrical lighting in trains (i.e., the fact that
the spectral power distributions largely correspond to LEDs) influences these findings.
Further studies should be conducted to investigate the inconsistent predictions between
these metrics.

4. Discussion

In this study, a total of 732 SID measurements were recorded during 21 trips for the
three modes of commuting: driving, taking trains, and walking. The measurements were
then categorized into two groups based on the weather conditions, sunny or cloudy. Three
metrics (α-opic irradiance, CS, and EML) were used to quantify the circadian impact of
light on commuters. The results of the CS and EML were compared to their recommended
minimum values. The light exposure measured when riding trains in cloudy conditions
was below the CS desired criterion, but above the EML recommended value. However, the
CS and EML results for driving and walking in both sunny and cloudy conditions, as well
as riding trains in sunny conditions, exceed the recommended values for both metrics. This
suggests that riding trains on sunny days and driving or walking in all weather conditions
can be beneficial for commuters’ circadian synchronization to the local day–night cycle and
is likely to improve commuters’ daytime alertness and sleep quality [12,19,32,34,35,45].

Limitations

Although the results suggest a positive circadian impact of daylight on commuters, it
should be noted that the measurements were conducted in a metropolitan environment in
Sydney, Australia and this conclusion may not apply to all circumstances or age groups.
For example, travelling in suburban areas may result in a higher circadian impact than
travelling in a central business district, as suburban areas have fewer tall buildings that can
block the light [10]. Travelling toward the light source (sun) will result in more circadian
effects than travelling away from the light source. Older individuals may be impacted
differently than younger people traveling on the same commute, as lens transmittances
varies with age [46]. While people are commuting, many factors affect how much daylight
people are exposed to, and not all these factors were reflected in these measurements.
For example, wearing sunglasses will reduce the amount of light entering the eyes and,
consequently, reduce the circadian impacts. Wearing a pair of prescription glasses with
blue light filters may also reduce the circadian impacts compared with wearing glasses
without filters, as the human circadian systems are most sensitive to blue light [2,36–38].
These measurements were taken in the summer and autumn and the effects of commuting
on circadian entrainment may differ in the winter and spring. The Sydney peak morning
commuting hours occur after the sun has risen [47] year-round and the sun angle is lower
in winter [48], so it’s possible that commuters’ corneas would receive more light in winter
than in summer, which would lead to a greater circadian impact.
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In this research, no physiological measurements were made. The conclusions are
based on the calculated results of the three metrics. When the CS value is over 0.3 and
EML value is over 200 melanopic lux, the lighting conditions can be beneficial to people’s
circadian synchronization to the local day–night cycle, and are likely to improve one’s
daytime alertness and sleep quality [12,19,32,34,35,45]. However, the improvement of
daytime alertness and sleep quality from daytime light exposure can be varied between
different individuals. A recent literature review conducted by Lok et al. shows that the
non-visual effects of light on subjective alertness and sleepiness are inconclusive [49].
Several studies also show inconclusive results [50–52]. There are also some inconsistencies
between the results of the three metrics reported in this paper. The results of this study
cannot conclude which metric is more accurate. Future research could investigate this
inconsistency by measuring a circadian rhythm marker, such as melatonin suppression [7],
pupil constriction [53], phase shifting [41], and/or changes in core body temperature [54],
to identify the actual circadian effects of commuting on people.

Several studies have used the melanopic equivalent daylight (D65) illuminance
(melanopic EDI) to quantify light’s circadian impact [55–57]. In addition to the five α-
opic irradiances, the melanopic EDI is defined as one of the five α-opic equivalent daylight
(D65) illuminances (α-opic EDIs) by the CIE in CIE S 026/E:2018 [16]. It can be simply
calculated as the melanopic irradiance divided by the melanopic efficacy of the luminous
radiation for daylight (D65), which is 1.3262 (mW/lm) [16]. Compared with other types of
cells, the melanopsin-based ipRGCs predominantly contribute to the non-visual effects,
including circadian impacts [25,57–59]. However, the actual non-visual effects from light
exposure rely on the combined responses of all photoreceptors [16,22]. It is necessary to
report the response of each photoreceptor type [16]. As the five α-opic irradiances and
five α-opic EDIs can be easily converted between each other, to avoid repetition, only
irradiances are reported here. Readers who are interested in melanopic EDI values can
calculate them from the α-opic irradiances.

A new version of the CS was published in 2021 [33] during the preparation of this
paper. Two factors were introduced into the CS equation: a duration factor, which indicates
the duration of light exposure (ranging from 0.5 h to 3.0 h), and a distribution factor,
which is a variable equal to 2, 1, or 0.5 corresponding to three visual field conditions (full
visual field, central visual field, and superior visual field) [33]. The older version of the
CS requires the light duration to be one hour or more, and it doesn’t take the distribution
of light exposure across the retina into consideration. However, the new CS equation
can be used to predict melatonin suppression for different light exposure durations and
different distributions. Instead of applying the new version of the CS, this paper used the
older version [17,18,32] to calculate the CS value, which has been validated [60–63] and
used [12,13,45,60,64] in several papers. More details about the new version of the CS metric
and its limitations are reported in Rea et al.’s publication [33].
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