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Abstract: Transpirational cooling is an effective thermal protection method in hypersonic vehicles. In
order to properly manage the high heat load, an understanding of the convective flow regimes as
well as the thermophysical properties of the working fluid are required. Often, the vehicle’s fuel is
re-purposed as the coolant or working fluid that is passed through the porous media. If the geometry
is such that the coolant is heated from below, buoyancy-induced instability can ensue resulting in a
mixed convection phenomena. Transpirational cooling applications require a unique analysis which
combines a Darcy–Forchheimer relationship for the momentum relation, a flowing base state which
introduces non-negligible convective terms for the energy equation, and a novel consideration of a
cubic density dependence on temperature. This latter feature is justified by fitting thermodynamic
data for typical transpirational cooling conditions. A base state solution is provided and the onset of
instability is investigated using linear stability analysis. The governing equations are solved utilizing
multiple methods, comparing results from a combination of analytical solutions, finite difference,
power series, and Chebyshev methods. Results demonstrate excellent consistency in predictions
across these methods and indicate that including non-linear density effects promote a stabilizing
effect. Finally, the effect of varying the net through-flow in the porous media is investigated.

Keywords: transpirational cooling; non-linear Boussinesq approximation; supercritical fluid; linear
stability analysis

1. Introduction

Transpirational cooling is an effective thermal protection method in hypersonic vehi-
cles. The transpirational cooling concept was first applied to the throat of rocket engines
in the 1940s. Since then it has been applied to other parts of the aircraft that experience
high heat loads such as the leading edge and fuel injection strut. Often, the vehicle’s fuel is
re-purposed as the coolant or working fluid that is passed through a porous media section
to form a continuous thin film over the protected wall. Thus, a proper understanding of
the underlying mechanisms in transpirational cooling applications leads to more robust
design capable of handling higher heat loads.

Early investigation of transiprational cooling phenomena was carried out by Rannie [1]
who analytically modeled the porous wall temperature to investigate the laminar transpired
sublayer. His model aligned with experimental data at low thermal conductivity for the
porous substrates. Other analytical approaches for transpirational cooling have also been
detailed by Eckert [2,3] including how to model coolant injection and hot gas heat transfer
from an exterior hot boundary layer. Recently, a closed form analytical solution was
developed for 2D pressure and velocity field for transpirational cooling applications [4].
Several experimental works have been put forth detailing the effects of the transpirant, mass
flow rate, inlet temperature, flow coking, etc. on cooling efficacy and performance [5–8].
Dahmen et al. [9] analyzed the experimental transpirational cooling setup in Ref. [6], using
numerical simulation to provide full flow field details that were difficult to acquire through
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experiments. Other computational studies have been performed that quantify cooling
efficacy versus inlet conditions, thermal properties, and boundary conditions [10,11].

All previous studies have either analytically, experimentally, or numerically, inves-
tigated transiprational cooling in geometric configurations where the hot surface is on
the top or side and the cold surface is on the bottom or side. However, if the geometry is
such that the hot surface and cold surface are on the bottom and top, respectively, then
Bénard-type convection can ensue resulting in a mixed convection phenomena. This type
of arrangement occurs on the bottom wall of the aircraft or the top wall of the combustion
chamber. In these cases, an understanding of the buoyancy-induced instability mecha-
nisms need to be described and understood. The tools of linear stability analysis provide a
pathway for this understanding.

A similar geometric and flow configuration to that occurring in transpirational cooling
applications, albeit with no base flow, is the Horton–Rogers–Lapwood (HRL) problem.
The HRL problem consists of a buoyancy-induced instability in porous media due to
heating from below [12,13]. The HRL problem is extensively described and characterized
in Nield and Bejan [14]. A pioneering variation of the HRL problem where base flow is
perpendicular to the base temperature gradient was studied by Prats [15]. Several varia-
tions of the HRL and Prats problems have been investigated by Barletta and Celli [16–18].
The variation of the HRL problem most relevant to the transpirational cooling problem at
hand is with a base flow parallel in the direction of the base temperature gradient, i.e., ver-
tical base flow. This problem was first studied by Wooding [19] on a semi-infinite (vertical)
porous domain. Sutton then characterized stability in a finite domain–of both width and
height–against through-flow velocities of a small magnitude [20]. Initially, a small negative
through-flow has a slight destabilizing effect which transitions to a stabilizing effect as
velocity is increased. This effect is exaggerated as the domain width becomes smaller. Next,
Homsy and Sherwood investigated the stability theory on a finite domain for both strong
and weak through-flows [21]. They found that mass discharge in the positive vertical
direction destabilizes while the opposite was true for negative through-flow.

The previous works provide much insight to buoyancy-induced instabilities occurring
in porous media applications such as transpirational cooling. However, transpirational
cooling has additional complexities which are not accounted for by the hydrodynamic
stability analysis in these works. These include the highly non-linear density variation with
temperature, i.e., a nonlinear Boussinesq approximation [22,23]. Due to the often extreme
temperature difference between the inlet and exit of the porous media, extremely large
density gradients can occur. These density gradients arise from heating cryogenic fuels
like methane or hydrogen to a supercritical state. Real-gas compressibility effects can be
significant at these extreme temperatures and pressures. Thus, the objective of this work is
to include the effects of a non-linear cubic density dependence on temperature in a base
state configuration with a vertical through-flow to quantify and understand the instability
mechanisms occurring in the porous medium. Three cases are considered in this work,
each with an additional layer of complexity: (1) A traditional HRL configuration, (2) a HRL
configuration with a non-linear density variation in temperature, and (3) adding a base
vertical through-flow to Case 2. The third case is most representative of transpirational
cooling. The non-dimensionalization introduced in this study to account for the drag term
results in a Grashof-type scaling rather than the typical Rayleigh-type scaling encounter in
HRL (or Wooding) style problems. The resulting equations are solved using a power series
method, Chebyshev method, and finite difference method. The three cases of increasing
complexity elucidate how the various effects of a non-linear density and a varying vertical
through-flow affect the stability in transpirational cooling systems.

This work is divided into five sections. First, the mathematical framework used to
study transpirational cooling is described. Second, linear stability analysis is performed
and detailed. Next, an overview of the various solution techniques are outlined. Finally,
results are given followed by a discussion and conclusions.
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2. Mathematical Model
2.1. Governing Equations

A simplified model for transpirational cooling is presented in Figure 1. Here, a fluid-
saturated isotropic porous medium of infinite horizontal extent is confined between two
permeable boundaries a distance d apart. The hot gas flowing over bottom layer is modeled
as a constant temperature boundary condition as in Ref. [6]. Coolant continuously flows
over the top permeable boundary (z = d in Figure 1), and creates an isothermal condition.
Wall suction provides a constant coolant injection aligned with the gravitation vector [3].
This following problem configuration is similar to the Wooding problem [19], where
a constant through-flow is heated which gives rise to an additional thermally-induced
natural convection of the Beńard type. These assumptions, along with the Boussinesq
approximation, lead to Dirichlet conditions for velocity and temperature at the top and
bottom boundary.

Figure 1. Simplified model of the transpirational cooling process.

Analysis of this problem requires conservation of the mass, momentum, and energy
equations subject to the aforementioned boundary conditions. In regards to the momentum
equation, several experimental [6,7] and numerical studies [8,9] have determined that tran-
sipirational cooling applications are accurately approximated by the Darcy–Forchheimer
equation. The curl of the Darcy–Forchheimer equation is presented here to drop the
pressure term. The energy equations for the porous material and the fluid phase can be sim-
plified to one equation if local thermal equilibrium exists between the solid and fluid phases,
and there is no net conduction between the phases [14]. The resulting single equation uses
an overall heat capacity and thermal conductivity per unit volume of the porous material
and fluid denoted by the subscript ‘m’. For example, (ρcp)m = (1− ψ)(ρcp)s + ψ(ρcp) f ,
where ψ is the porosity and the subscripts ‘s’ and ‘f’ refer to the solid and fluid phase,
respectively. Langener and Wolfersdorf [6] investigated these assumptions along with
negligible work due to pressure, negligible viscous heating, and constant density in the
energy equation to study transpirational cooling in scramjet engines and found good
agreement with experimental results. Thus, the resulting energy equation is implemented
in Equation (1).
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The governing equations and boundary conditions are shown in Equation (1).

∇ · u∗ = 0

µ

K

(
∇× u∗ +

cF
√

K
ν
∇× (u∗|u∗|)

)
= ∇× ρgez

(ρcp)m
∂T∗

∂t∗
+ (ρcp) f u∗ · ∇T∗ = km∇2T∗

z∗ = 0 : u∗ =< 0, 0,−λ
Kgβ∆T

ν2 >, T∗ = Tw

z∗ = d : u∗ =< 0, 0,−λ
Kgβ∆T

ν2 >, T∗ = T0

(1)

The filtration velocity vector is represented by the three orthogonal velocity components,
u∗ =< u∗, v∗, w∗ >, corresponding to the Cartesian position vector, x∗ =< x∗, y∗, z∗ >.
The asterisk here refers to the dimensional quantities. The terms ν, K, cF, ρ, |u∗|, and ‘g’
in the Darcy–Forchheimer equation are the kinematic fluid viscosity, permeability of the
porous material, dimensionless Darcy-Forchheimer form drag coefficient, fluid density,
velocity magnitude, and gravity, respectively. The term ez is the unit vector in the z direc-
tion. T∗, cp, k, β, and λ are the respective temperature, specific heat, thermal conductivity,
coefficient of thermal expansion, and a velocity scaling constant. The subscript ‘0’ and ‘w’
refer to the constant quantity at the top and bottom boundary, respectively. Here, all the
properties are assumed constant except the density associated with buoyant forces.

In many transpiration cooling applications, the fuel is often repurposed as the coolant.
These fuels, e.g., hydrogen, methane, and other heavier alkanes, are delivered as liquids at
high pressures at or above the thermodynamic critical point of the fluid. As the fluid is
transpired through the porous material, heating occurs which often causes the fluid to be-
come supercritical (if it is not supercritical to begin with) and causes a reduction in the fluid
density. Density gradients are highly nonlinear near the thermodynamic critical point and
in the supercritical regions. Accordingly, the stability behavior can be significantly different
from systems with linear dependencies. In order to capture these nonlinear effects, density
is modeled as a third order polynomial, which qualitatively captures the real-fluid behavior
of the coolant as illustrated in Figure 2. This is often considered as the nonlinear Boussinesq
approximation [22,23]. Figure 2 shows non-dimensional reduced density, ρr =

ρ
ρc

, versus

non-dimensional reduced temperature, Tr = T∗
Tc

, of methane and hydrogen generated
using real-fluid equations of state implemented through REFPROP [24]. The subscript ‘c’
represents the property at the critical point. Figure 2 shows methane and hydrogen for
sweep of reduced pressures from Pr = 1 to Pr =5 – a typical pressure range for coolant
delivery [25]. A least squares fit using a third order polynomial is shown in Figure 2 as the
solid black line. Figure 3 shows typical conditions cooling the throat of a rocket engine
using methane with an at in inlet temperature of 105 K and a wall temperature of 755 K
with the density (red-dashed line), the polynomial curve fit (black solid line), and the linear
fit (blue small-dashed line) [25]. The values are also used for the fluid properties in Table 1.
Equation (2) shows the third order polynomial:

ρ = ρ0(1− β∆T
(
T + c1T2 + c2T3) (2)

where the non-linear portion can be separated as the function f (T) = c1T2 + c2T3. In
Equation (2), T is the non-dimensional scaling of temperature where T = T∗−T0

∆T , β is an
average coefficient of thermal expansion, and ∆T = Tw − T0. It is worth noting that
β is different for the linear case compared to the non-linear case. As a result, it varies
from the linear case, where β = 0.00145 to the non-linear curve fit where β2 = 0.0057.
To appropriately compare to linear and non-linear cases, a scale factor, β/β2 = 3.97, must
be accounted for in the results and will be discussed in the later sections.
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Figure 2. Reduced density ( ρ
ρc

) versus reduced temperature ( T∗
Tc

) for hydrogen (blue circle) and
methane (red square) for a sweep of reduced pressures range from 1 to 5. The black solid line is a
third order approximation of the thermodynamic data.

Figure 3. Dimensionless density versus dimensionless temperature is shown (red-dashed line) for
methane at typical conditions of T0 = 105 K and Tw = 755 K [25]. A third order polynomial is used
to fit the data (black solid line). The linear fit is shown as the blue small-dashed line.
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Table 1. Value of properties used in this work.

Property wb * K β ∆ T ν L cF

Units m
s µm2 1

mK K cm2

s mm -
Value 0.05–0.15 500–1000 1–5 650 0.003 5–10 5–20

Reference [6] [6] current work [25] [24] [6] [6]

The system of equations in Equation (1) are non-dimensionalized by introducing the
following scaling variables:

x = x∗/d , u = u∗
ν2

Kgβ∆T
, T =

T∗ − T0

∆T
, t = t∗

Kgβ∆T
νL

. (3)

The system of equations in Equation (1) are rewritten as:

∇ · u = 0

∇× u + ξ∇× (u|u|) = ∇× Tez +∇× f ez

∂T
∂t

+
1
σ

u · ∇T = γ∇2T

z = 0 : u =< 0, 0,−λ >, T = 1

z = 1 : u =< 0, 0,−λ >, T = 0

(4)

where σ =
(ρcp)m
(ρcp) f

, ξ = cFDa3/2Gr, γ =
km/(ρcp)m

DaGr , Da = K
L2 is the Darcy number, and

Gr = gβ∆TL3

ν2 is the Grashof number.

2.2. Base State

The basic steady state energy equation subjected to the aforementioned boundary
conditions with a constant through-flow given by wb = −λ is given by Equation (5),

C
dTb
dz

=
dT2

b
dz2 (5)

where C = −λ
σγ and the subscript ‘b’ denotes the base state. The basic solution promotes a

thermal boundary layer of the exponential form given in Equation (6):

Tb(z) =
1− eC(1−z)

1− eC . (6)

This solution is very similar to the one dimensional solution used to model transpira-
tional cooling experimental data given in Ref. [6], which used constant temperatures for
both the top and bottom boundary to match experimental conditions. It is worth noting that
the non-linearity in the temperature boundary layer is driven by the velocity magnitude, λ.
In the limit of the velocity magnitude approaching zero, the temperature boundary layer
becomes linear and approaches the same basic solution described in Ref. [17], where a
porous material with a horizontal rather than vertical through-flow undergoes heating at
the bottom boundary with a fixed top boundary temperature.

The basic density profile can be solved for by inserting Equation (6) into Equation (2)
(shown later in Section 5). Accordingly, non-linearity in the density is caused from two
independent sources: (1) The through-flow velocity and its effect on the temperature profile
and (2) inherent non-linearity in the equation of state. Together, these effects manifest large
density gradients at the top of the domain and small gradients at the bottom. The stability
of this configuration is analyzed in the next section.
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3. Linear Stability Analysis

The disturbance of Equation (4) is analyzed via linear stability analysis by redefining
the velocity and temperature with a base state superimposed with a perturbation, namely:

u =ub + u′ε

T =Tb + T′ε,
(7)

where ε is an arbitrary small parameter. Next, Equation (7) is substituted into Equation (4)
and linearized. The system of equations is further simplified by utilizing the incompress-
ible relation in conjunction with the vertical component of the double curl of the Darcy–
Forchheimer equation. The following system reduces to Equation (8):

∇2w′ − λξ(∇2w′ +∇2
hw′) = ∇2

hT′ +∇2
h(g(Tb)T′)

∂T′

∂t
+

1
σ

(
w′

dTb
dz
− λ

∂T′

∂z
)
= γ∇2T′

z = 0 : w′ = 0, T′ = 0

z = 1 : w′ = 0, T′ = 0.

(8)

The product of the function g(Tb) and T′ is a result of linearizing f where
g(Tb) = 2c1Tb + 3c2T2

b .
Next, the method of normal modes is introduced where the disturbances take the form

< w′, T′ >=< W(z), Θ(z) > ei(αx x+αyy)+Ωt. The system of equations is finally transformed
into the following ODE:

[D2 − α2]W + λξ[D2 − 2α2]W = −α2(1 + g
)
Θ

ΩΘ +
1
σ

(
W

dTb
dz
− λDΘ

)
= γ[D2 − α2]Θ

z = 0 : W = 0, Θ = 0

z = 1 : W = 0, Θ = 0.

(9)

The ODE can be further simplified if λξ is small. Considering the transpirational
flow rates, permeability, and inlet conditions in Refs. [6,25], λ is around 0.01–0.05. While
typically ξ << 1. The values for calculating λ and ξ are given in Table 1. Note that
eliminating the terms associated with λξ resembles a typical Darcy law, albeit with a non-
linear density. However, the non-dimensional scaling includes viscosity effects which give
a Grashof-type number instead of a Rayleigh-type number. Further assuming the principle
of exchange of stabilities is valid, the system reduces to Equation (10). For convenience, let
Γ = (σγ)−1: 

[D2 − α2]W = −α2(1 + g
)
Θ

[D2 − α2]Θ = Γ(W
dTb
dz
− λDΘ).

(10)

4. Solution Techniques
4.1. Power Series

The system in Equation (10) will be solved in three steps. First, by considering the
case of λ = 0 and g = 0. Second, λ = 0 and g 6= 0. Lastly, a non-zero λ and g. For the
first two cases where λ = 0, the solution can be obtained using a power series expansion.
In order to do this, the system is simplified to one equation in terms of Θ.

[D2 − α2]2Θ = Γα2(1 + g)Θ

z = 0 : Θ = D2Θ = 0

z = 1 : Θ = D2Θ = 0.

(11)
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Since g is a polynomial, the power series method is well-suited where Θ is in the
following form:

Θ =
n

∑
i=1

anzn.

The coefficients can be obtained using the resultant boundary conditions at z = 0 and
plugging the power series into Equation (11), collecting like powers of z, and re-normalize
everything by with respect to a1. This process yields the following coefficients:

a0 = a2 = a4 = 0, a5 =
α2

120
(
12a3 − α2 + Γ(1 + 2c1 + 3c2)

)
an+4 =

α2

(n + 4)(n + 3)(n + 2)(n + 1)
[
2(n + 2)(n + 1)an+2 − α2an+

Γ
(
an(1 + 2c1 + 3c2)− an−1(2c1 + 6c2) + 3c2an−2

)]
.

Note that the recursive formula for an+4 is a function of a3. In order to determine a3,
the boundary condition D2Θ = 0 at z = 1 is used to solve for a3. The truncated power
series for D2Θ will take on the form:

D2Θ = φ1 + a3φ2 = 0 −→ a3 = −φ1

φ2

where a3 can be factored out of φ2 and explicitly solved. The boundary condition for Θ = 0
at z = 1 is then used to numerically solve for Γ as a function of α. Due to expanding the
power series at z = 0, high accuracy requires more terms. Truncating the power series to
30 terms results in a maximum percent error of 1.92× 10−13 as compared to the analytical
solution for Case 1 for wavenumbers from 1 to 6.

4.2. Chebyshev Method

Next, a spectral expansion in Chebyshev polynomials is used to solve the system of
ODEs given in Equation (10). A detailed description of the method is provided in Ref. [26],
and thus, a brief overview is provide here. Employing the Chebyshev technique requires
shifting the domain to the Chebyshev domain (−1, 1) and expressing the variables as a
finite expansion of Chebyshev polynomials:

W =
N+2

∑
k=0

WkTk(z) and Θ =
N+2

∑
k=0

ΘkTk(z).

A weighted inner product with Tk is applied to each equation and converted to a
generalized eigenvalue problem.

D2 − α2 I α2(1 + g)I
BC1 0...0
BC2 0...0

0 D2 − α2 I
0...0 BC3
0...0 BC4


(

W
Θ

)
= Γ



0 0
0...0 0...0
0...0 0...0
dTb
dz −λ D

0...0 0...0
0...0 0...0


(

W
Θ

)

where D2 are I are the Chebyshev matrix representation of D2 and identity matrix, respec-
tively. The final eigenvalue system can be solve by passing the matrices through a standard
eigenvalue solver, e.g., Matlab’s “eig” subroutine.

Determining the onset of instability requires the smallest eigenvalue. Thus, the
wavenumber is swept and a Γ determined for every wavenumber. One complexity is
added when λ 6= 0, that is, Γ cannot be separated explicitly as an eigenvalue. In order to
overcome this, a ‘test’ Γ is supplied to the terms containing Γ in the matrix and a ‘new’ Γ is
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solved. This iterative process is done until the ‘test’ Γ and the ‘new’ Γ converge within a
designated value (absolute error <0.001).

4.3. Finite Difference Method

Similarly, finite difference method solves Equation (11) as an eigenvalue problem.
Since the case of marginal stability is a steady-state problem, the governing equation is
classified as an elliptical differential equation. As such, it must be solved by utilizing an
implicit method. A system of differential equations is posed, with the governing eigenvalue
equation solved at each grid location. For example, Case 1 yields the following:

[D2 − α2]2


W1
W2

...
Wn

 = −α2Γ


W1
W2

...
Wn

 (12)

where [D2 − α2]2 is the finite difference operator which uses central difference schemes
for the various derivatives (D, D2, D3, D4) before summing them together (D4 − 4D3α +
6D2α2 − 4Dα3 + α4) over the mesh stencil for each equation. The algorithm proceeds as
follows: (1) Prescribe the wavenumber, α. (2) Fill out operator matrix [D2 − α2]2 including
boundary conditions listed above. (3) Utilize Matlab’s existing “eig” feature to determine
possible eigenvalues for a given operator. (4) Find the lowest positive eigenvalue for Γ. For
Case 3, the presence of Γ in the operator requires an iterative guess-and-average procedure
similar to that described above for the Chebyshev method.

5. Results
5.1. Case 1: g = 0 and λ = 0

The first case to consider regarding the system given in Equation (10) is the simplest
case of λ = 0 and g = 0. Note as λ −→ 0 the base state temperature gradient, dTb

dz −→ −1 ,i.e.,
the conductive limit. For large λ, the base state approaches that given by Wooding [19]. It
is easily demonstrated that the system reduces to Equation (13):{

[D2 − α2]W = −α2Θ

[D2 − α2]Θ = −ΓW.
(13)

It is worth noting that this system is the system given for the Horton–Rogers–Lapwood
problem in [14], albeit a Grashof-type number is used (Γ) instead of a Rayleigh-type number.

The analytical solution is simple: W = Θ = sin (jπz) and j = 1, 2, 3, . . ., if Γ = ((jπ)2+α2)2

α2 .
It is clear that Γ has a minimum when j = 1, leading to critical parameters of Γc = 4π2

and αc = π. Note that Γ includes the effects of σ, which dictates how the porous medium
properties ((ρcp)s) differ from the fluid properties.

This result can be compared to the three techniques used in in this work and is shown
in Figure 4. The signature marginal stability curve is reproduced with all three methods.
Table 2 shows the relative error for the three methods compared to the analytical solution
between wavenumbers 1 and 6. Thirty terms are used for both the power series method
and the Chebyshev method. The power series is the most accurate but has the longest run
time. The finite difference method can be improved by using finer mesh instead of the
relatively coarse mesh of 100 points, however, the 100 grid points gave comparable run
times to the Chebyshev method and thus was selected as a baseline.
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Table 2. Relative error of the three different methods compared to the analytical solution.

Power Series Chebyshev Finite Difference

Maximum Error [%] 1.92 × 10−13 6.9× 10−7 0.74
RMS Error [%] 8.6× 10−14 3.3× 10−7 0.44

Figure 4. The stability curves are illustrated for Case 1 and 2 for the three different solution techniques.
The right axis plots Γ2 where Γ2 =

β2
β Γ.

5.2. Case 2: g 6= 0 and λ = 0 {
[D2 − α2]W = −α2(1 + g)Θ

[D2 − α2]Θ = −Γ2W
(14)

Next, the effects of non-linear density are added and the resulting system is shown in
Equation (14). As mentioned previously, when a non-linear base density distribution is
used, β is different than in Case 1. Thus, a scaling factor is needed to equate the Γ from
case 1 to the Γ in Case 2. The Γ for Case 2 will be referred to as Γ2 and is related to Case
one by Γ = Γ2

β
β2

.
The above system is solved using the three numerical methods that were validated

for Case 1 above. As shown in Figure 4, these methods again are all in agreement in their
prediction of the marginal stability curve. Due to the additional terms in Equation (14),
the power series method converges slower. The Chebyshev method converges the fastest
out of the three methods and thus is used for comparison. To demonstrate the agreement
between the finite difference and Chebyshev, the mesh is increase by a factor of 10. Table 3
demonstrates the degree of convergence between the three methods for Case 2.
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Table 3. Relative error of the power series and finite difference method compared to the Cheby-
shev method.

Power Series Finite Difference

Maximum Error [%] 0.93 4.6 × 10−3

RMS Error [%] 0.29 3.22× 10−3

Figure 4 shows the marginal stability curve shift to a higher Γ compared to Case 1,
indicating a stabilizing effect. Figure 5 helps provide insight to why the non-linear density
profile results in a stabilizing effect. Accounting for non-linear changes in density yields a
rapid decrease in the initial density near z = 1. Thus, there is a lower amount of heavy fluid
over-top the lighter fluid at the bottom (z = 0). The end results is a higher Grashof number
occurring at a larger wavenumber. The Γc and αc for Case 2 are 47.51 and 3.57, respectively.

Figure 5. Density versus domain depth is plotted for the non-linear density (red-dashed line) and
linear density (blue small-dashed line) profiles.

Next, the normalized velocities for each case are compared in Figure 6. The non-linear
density base profile causes a shift in the sinusoidal shape toward the top of the domain.
The overturning convective velocity currents appears to be biased to where the steepest
density gradient occur (see Figure 5). Thus, most of the convective mixing inside the
porous media will be shifted towards the top of the domain. In addition, the greater
wavenumbers in Case 2 promote tighter convective cell formation. These tighter packed
cells will ultimately enhance mixing near the coolant side of the porous media once
instability ensues.
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Figure 6. The normalized velocity profiles are shown for Case 1 and 2 for the state of marginal stability.

5.3. Case 3: g 6= 0 and λ 6= 0

Lastly, Case 3 is investigated given by the system in Equation (10). The solution
method for Case 3 provided here is the Chebyshev method due to the robustness and
speed of convergence. It is worth noting that two additional complexities are added when
λ 6= 0. (1) The base state temperature becomes an exponential function and (2) the base
state temperature gradient, dTb

dz , is also an exponential function. As mentioned previously,
the iterative approach described in the Solution Techniques section is implemented.

Figure 7 shows the marginal stability curves at various λ’s. Typical transpirational
flow rates result in a λ ≈ 0.05 [6,25]. Thus, λ is varied from 0.005 to 0.05. Interestingly,
increasing λ initially yields a destabilizing effect followed by a stabilizing effect. This is
consistent with what was observed Sutton [20] who solved a similar problem to the one
in this work (variances include a finite horizontal domain, a linear density Boussinesq
approximation, and a different non-dimensionalization). Sutton determined at λ = 0.005
that the onset of instability occurred at 39.42 for a domain with a width twice that of the
depth. Here, the minimum point for marginal stability for λ = 0.005 occurs at Γ2 = 196.49
which corresponds to a Γ = 43.24. Again, as compared to 39.42, the non-linear density
provides a stabilizing effect. Figure 7 also illustrates a shift towards higher wavenumbers,
which occurs for increasing λ. The critical values for the different flow rates are summarized
in Table 4. Table 4 clearly shows the effect of increasing the net through-flow, which causes
a consistent shift and increase in the wavenumber resulting in tighter convective cells.

Lastly, all cases are compared in Figure 8. The effect of each constituent complexity
can be compared to the original HRL solution. First, the non-linear density dependence
increases the stability of the system from a critical value of 4π2 to 47.51. Then the system is
destabilized from 47.51 to 45.73 by adding a base through-flow of λ = 0.05. The system is
however regaining stability by increasing the through-flow velocity as shown in Table 4.
An increase in wavenumber is observed from Case 1, 2, to 3.
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Table 4. Γc and αc are shown for the various λ’s in Case 3.

αc Γc

λ = 0.005 3.81 43.24
λ = 0.010 4.07 40.90
λ = 0.025 4.96 38.89
λ = 0.050 7.31 45.73

Figure 7. Marginal stability curves for Case 3 are shown for different base flows, λ.

Figure 8. The marginal stability curve are plotted for Case 1, 2, and 3 when λ = 0.05.
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6. Conclusions

Linear stability analysis was performed for a simplified system modeling transpira-
tional cooling applications. Analysis was performed utilizing three models of increasing
detail: Case 1, a Horton–Rogers–Lapwood (HRL) type configuration, Case 2, a HRL con-
figuration with non-linear (cubic) density dependence on temperature, and Case 3, both
a cubic density function and a base through-flow velocity. In all cases, linear stability
analysis was performed to yield governing equations for the system. These equations were
then solved utilizing multiple numerical methods, comparing results from a combination
of analytical solutions, finite difference, power series, and Chebyshev methods. Results
demonstrated excellent consistency in predictions across these methods.

The addition of a cubic density dependence on temperature had several effects as
compared to Case 1 (HRL problem). First, accounting for the non-linear density variation
during the transpirational heating process shifts the marginal stability curve to a higher
Grashof-type number resulting in increased stability. This is due to sharp density gradients
near the top wall decreasing the density such that an overlaying fluid is not heavy as
compared to the linear density case. In addition, a shift to higher wavenumbers is observed.
The cubic density profile also shifted velocity peak toward the top of the porous media.
Finally, Case 3 studied the effects of the addition of a base through-flow velocity—the
base flow is in the same direction as the gravity vector. A base through-flow velocity
sweep revealed that initially increasing the base through-flow destabilizes followed by a
re-stabilizing effect. However, it is worth noting that all base flows for Case 3 considered in
this work were more unstable as compared to Case 2, i.e., the highest base velocity resulted
in a lower critical Grashof-type number as compared to Case 2. In both Cases 2 and 3,
accounting for the non-linear variation in density increases the stability of the system.

The implications of an additional mode of convection (buoyancy-induced convection)
is increased mixing, i.e., increased heat transfer inside the porous medium. Accounting for
this additional mode of convection in cases where instability ensues is important when
it comes to thermal management of the system. Thus, an awareness that sharp density
gradients at the top of the domain from non-linear density variation in the system, as well
as increased through-flow have a stabilizing effect on the system are pertinent to design
and modeling considerations.
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