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Abstract: Multimode hybrid powertrains have captured the attention of automotive OEMs for their
flexible nature and ability to provide better and optimized efficiency levels. However, the presence
of multiple actuators, with different efficiency and dynamic characteristics, increases the problem
complexity for minimizing the overall power losses in each powertrain operating condition. The
paper aims at providing a methodology to select the powertrain mode and set the reference torques
and angular speeds for each actuator, based on the power-weighted efficiency concept. The power-
weighted efficiency is formulated to normalize the efficiency contribution from each power source
and to include the inertial properties of the powertrain components as well as the vehicle motion
resistance forces. The approach, valid for a wide category of multimode powertrain architectures,
is then applied to the specific case of a two-mode hybrid system where the engagement of one of
the two clutches enables an Input Split or Compound Split operative mode. The simulation results
obtained with the procedure prove to be promising in avoiding excessive accelerations, drift of
powertrain components, and in managing the power flow for uphill and downhill vehicle conditions.

Keywords: multimode powertrains; hybrid vehicles; planetary gears; EVT 2-Mode; power-weighted
efficiency

1. Introduction

Regarding the increasingly serious issues of energy shortage and environmental
pollution, attention from governments, research institutions and automobile companies
is shifting from traditional fuel vehicles to new innovative solutions [1–3]. To reduce air
pollution and emissions of greenhouse gases, many governments incentivize the production
of zero emissions vehicles (ZEVs), such as battery electric vehicles (BEVs) and fuel cell
electric vehicles (FCEVs). The German Parliament has recently decided to ban internal
combustion engine vehicles (ICEVs) by 2030 [4]. Many other countries have announced
that they will proceed with a similar policy between 2025 and 2050 [5]. However, most
of these bans do not include hybrid electric vehicles (HEVs) and plug-in hybrid electric
vehicles (PHEVs), which include ICEs as a power source. While the shift from ICEVs
to ZEVs has already started, it may take decades for customers to select ZEVs as a cost
effective and convenient choice. Moreover, batteries still require decisive improvements
to be considered as unique energy sources, vehicle cost should reduce and infrastructure
should be globally adapted to the new changes. In the meantime, thermal efficiency of ICEs
is expected to further improve and HEVs and PHEVs are expected to play a significant role.
Hybrid electric vehicles represent the best tradeoff between traditional fuel vehicles and
pure electric vehicles (EVs), thus becoming the perfect transitional stage. The fuel efficiency
of HEV has traditionally improved through new developments in aerodynamics, engine
technology, light-weight materials, and innovative concepts for powertrain component
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design [2,6]. HEV uses two power sources: an internal combustion engine and an electric
battery; thus, the fuel economy varies substantially depending on the power source used to
meet the vehicle request. The introduction of hybrid powertrain has allowed a substantial
step forward in the direction of energy saving. Indeed, the presence of one or more electric
motors does not only provides a significant benefit in terms of efficiency performance
by optimizing the engine operating point, but it also introduces the idea of regenerating
part of the energy dissipated during braking [7,8]. Hybrid powertrains are generally
divided into three categories: series, parallel, and series–parallel (power-split), as defined
by Chan [9]. In series architecture, the engine output power is first converted into electric
power which can be used to either charges the battery or to propel the wheels through
the same electric motor [10]. The parallel configuration allows both the engine and the
electric motor to deliver power in parallel to drive the wheels [11]. The series–parallel
incorporates the characteristics of both the series and parallel configurations, but including
an additional mechanical link compared with the series architecture and an additional
generator compared with the parallel architecture. The power-split category represents
the most attractive solution due to its multimode and flexible nature which guarantees
an adaptive solution to every vehicle working condition and fully realizes the powertrain
potential to achieve both better fuel economy and improved drivability [12,13].

The major issue of series–parallel powertrain is represented by the multiple energy
sources that require a complex power flow management and an optimized control strategy.
Usually, the procedure to assess this problem consists of (1) an identification step to search
for the whole set of powertrain modes, through the activation of dedicated clutches and
brakes, and (2) the optimization of the working condition for each powertrain actuator.
An automated methodology to categorize and identify all the possible configurations of a
power-split powertrain with more than two Planetary Gear Systems (PGSs) is proposed
by Zhang et al. [14,15]. Zhuang et al. [16] prove that three or more PGS do not lead
to a significant fuel economy improvement with respect to the two PGSs configuration,
thus justifying the low number of hybrid powertrains with three PGSs introduced in the
automotive market. The second point is the most crucial, since the strategy to control
the energy flow among these multiple sources, generally named “Energy Management
Systems” (EMS), should try to minimize fuel consumption without compromising the
smoothness and responsiveness of the vehicle, usually referred to as drivability, as shown
by Galvagno et al. [13]. According to the literature review, the most accredited EMS can be
classified into two categories [17,18]: rule-based and optimization-based strategies. The
rule-based strategies decide the power flow among the powertrain actuators based on a
set of predefined rules, usually obtained from experience and/or empirical models [19,20].
Optimization-based algorithms elaborate the best power distribution that minimizes a
desired cost function or performance index; they are generally more reliable with respect
to rule-based strategies. The optimization process can be solved in real time, such as the
Equivalent Consumption Minimization Strategy (ECMS) [21,22], the Model Predictive
Control (MPC) [23–25] and the intelligent programming [26], or offline by producing maps
or algorithms that require a lower computational effort, such as the Pontryagin’s Minimum
Principle (PMP) [27,28], the Dynamic Programming (DP) [29–31], and Genetic Algorithm
(GA) [32]. An alternative method, which produces results similar to DP but with lower
computational burden, is represented by the so-called Power-weighted Efficiency concept
as defined for the first time by Zhang et al. [33]. For a given driving cycle, Zhang et al.
consider all the possible vehicle speeds and load torques combinations into an operative
map. Each powertrain actuators’ torque and speed is then looped through the map,
and the best power-weighted efficiency for hybrid, electric vehicle, and regenerative
braking modes is calculated. The powertrain actuators working conditions with the lowest
predicted fuel consumption are then selected, according to the battery size and the driving
cycle distribution. The results are compared against the DP algorithm applied to the
same driving cycle, thus proving the effectiveness of the power-weighted efficiency-based
design which is also over 10,000 times faster than DP. This technique is introduced as
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potential fast sizing method for multimode powertrains and determines each actuator
operating point map to achieve the best power-weighted efficiency; the later is defined as a
normalized efficiency that considers the high discrepancy between the engine and electric
motors efficiency. The paper aims at providing a straightforward and clear procedure
to model and select the suitable powertrain mode and the working condition for each
actuator, based on the power-weighted efficiency concept which is resumed and adapted
to consider undesirable working conditions where part of the input power is used to
accelerate or decelerate one or more powertrain components. Aiming at minimizing the
powertrain inertial power, a penalty factor is introduced into the definition of the power-
weighted efficiency. The methodology is then applied to the two-mode hybrid powertrain
presented and analyzed [34–36], and the influence of mode selection, inertial powertrain
parameters, and road inclination on the actuator’s operating map is carried out though
simulation results.

The paper is organized as follows: Section 2 presents the mathematical model used
to describe the powertrain dynamics and the equations adopted to calculate the power-
weighted efficiency; the novel procedure to introduce the penalty factor and elaborate the
working map for each powertrain actuator as well as the simulation results are shown in
Section 3. Finally, the conclusions are drawn in Section 4.

2. Multimode Hybrid Powertrain Model

The multimode hybrid powertrains considered within this paper are characterized
by a number n of PGSs whose components (called nodes), i.e., the carrier, the ring, and
the sun, can be linked together through q rigid connections and/or clutches. The number
of the degrees of freedom (dofs) of the powertrain depends on the number of clutches
engaged to activate a desired powertrain mode and it is equal to 2n− q. Each powertrain
node can be driven by an actuator, i.e., the Internal Combustion Engine (ICE) and the
electric Motors/Generators (MGs), as long as their number is equal or greater than the
powertrain dofs.

The powertrain architecture selected for this paper is characterized by n = 2 PGSs,
one rigid connection between their carriers and two clutches, as depicted in Figure 1.
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Figure 1. Scheme of the powertrain architecture in the two-mode hybrid system.

The ICE and the first electric motor MG1 are considered always installed on the ring
and the sun of the first PGS, respectively. The second electric motor MG2 and the transmis-
sion output shaft are connected to the sun and the carrier of the last PGS, respectively. A
rigid connection constrains the carriers of the two PGS and the presence of two clutches
enables the activation of the Input Split (clutch 2 engaged) or the Compound Split (clutch 1
engaged) hybrid modes (see Figure 2). In the Input Split mode, the secondary PGS behaves
as an ordinary gear system, while primary PGS operates as a power split device. In the
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compound split mode, the power split occurs on both PGSs. In both cases, the number of
powertrain dofs is always two (n = 2 and q = 2).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 19 
 

The ICE and the first electric motor MG1 are considered always installed on the ring 
and the sun of the first PGS, respectively. The second electric motor MG2 and the trans-
mission output shaft are connected to the sun and the carrier of the last PGS, respectively. 
A rigid connection constrains the carriers of the two PGS and the presence of two clutches 
enables the activation of the Input Split (clutch 2 engaged) or the Compound Split (clutch 
1 engaged) hybrid modes (see Figure 2). In the Input Split mode, the secondary PGS be-
haves as an ordinary gear system, while primary PGS operates as a power split device. In 
the compound split mode, the power split occurs on both PGSs. In both cases, the number 
of powertrain dofs is always two (𝑛 = 2 and 𝑞 = 2). 

 
Figure 2. Scheme of the two powertrain modes: Input Split (left) and Compound Split (right). 

2.1. Mathematical Model 
The mathematical approach adopted to model the two-mode hybrid system is the 

same described by Tota et al. [36], where an automated routine is described to evaluate 
the dynamic equilibrium equations for a generic multimode powertrain architecture. The 
dynamic equilibrium of the two-mode hybrid system shown in Figure 1, with no clutches 
engaged, is expressed by (see also [36]): 𝑨𝟎𝒙𝟎 = 𝒖𝟎 (1) 

where the vector 𝒙𝟎 = ሾ𝜔ሶ ௖,ଶ 𝜔ሶ ௥,ଵ 𝜔ሶ ௦,ଵ 𝜔ሶ ௦,ଶ 𝜔ሶ ௖,ଵ 𝜔ሶ ௥,ଶ 𝐹ଵ 𝐹ଶሿ் includes the angu-
lar acceleration of the two PGS carriers (𝜔ሶ ௖,ଵ, 𝜔ሶ ௖,ଶ), suns (𝜔ሶ ௦,ଵ, 𝜔ሶ ௦,ଶ), and rings (𝜔ሶ ௥,ଵ, 𝜔ሶ ௥,ଶ) 
and the internal forces, 𝐹ଵ and 𝐹ଶ, exchanged between the ring and the pinions gears 
teeth of the first and the second PGS, respectively; 𝒖𝟎 = ሾ𝑇௟௢௔ௗ 𝑇ூ஼ா 𝑇ெீଵ 𝑇ெீଶ 0 0 0 0ሿ் is the generalized torque vector, where 𝑇௟௢௔ௗ 
represents the equivalent vehicle motion resistance torque (see Equation (9)), 𝑇ூ஼ா is the 
torque applied by the Internal Combustion Engine (ICE) and 𝑇ெீଵ and 𝑇ெீଶ are the tor-
ques applied on the output shaft of the two Motors/Generators (MGs), respectively. The 8 ×  8 matrix 𝑨𝟎 includes geometric and inertial parameters of the powertrain compo-
nents (see also [36]): 

Figure 2. Scheme of the two powertrain modes: Input Split (left) and Compound Split (right).

2.1. Mathematical Model

The mathematical approach adopted to model the two-mode hybrid system is the
same described by Tota et al. [36], where an automated routine is described to evaluate
the dynamic equilibrium equations for a generic multimode powertrain architecture. The
dynamic equilibrium of the two-mode hybrid system shown in Figure 1, with no clutches
engaged, is expressed by (see also [36]):

A0x0 = u0 (1)

where the vector x0 =
[ .

ωc,2
.

ωr,1
.

ωs,1
.

ωs,2
.

ωc,1
.

ωr,2 F1 F2
]T includes the an-

gular acceleration of the two PGS carriers (
.

ωc,1,
.

ωc,2), suns (
.

ωs,1,
.

ωs,2), and rings (
.

ωr,1,
.

ωr,2)
and the internal forces, F1 and F2, exchanged between the ring and the pinions gears teeth of the
first and the second PGS, respectively; u0 =

[
Tload TICE TMG1 TMG2 0 0 0 0

]T

is the generalized torque vector, where Tload represents the equivalent vehicle motion
resistance torque (see Equation (9)), TICE is the torque applied by the Internal Combus-
tion Engine (ICE) and TMG1 and TMG2 are the torques applied on the output shaft of the
two Motors/Generators (MGs), respectively. The 8× 8 matrix A0 includes geometric and
inertial parameters of the powertrain components (see also [36]):

A0 =



Jout + Jc,2 0 0 0 0 0 0 rr,2 + rs,2
0 JICE + Jr,1 0 0 0 0 −rr,1 0
0 0 JMG1 + Js,1 0 0 0 −rs,1 0
0 0 0 JMG2 + Js,2 0 0 0 −rs,2
0 0 0 0 Jc,1 0 rr,1 + rs,1 0
0 0 0 0 0 Jr,2 0 −rr,2
0 −rr,1 −rs,1 0 rr,1 + rs,1 0 0 0

rr,2 + rs,2 0 0 −rs,2 0 −rr,2 0 0


(2)

where rr,1 and rr,2 are the ring gears radii and rs,1 and rs,2 the solar gears radii of the two
PGSs, respectively; Jr,1, Jc,1, and Js,1 are the torsional moments of inertia of the ring, the
carrier and the solar gears of the first PGS, meanwhile Jr,2, Jc,2, and Js,2 are the correspond-
ing torsional moments of inertia of the second PGS; JICE, JMG1, and JMG2 represent the

torsional moments of inertia of the ICE, the MG1 and MG2, respectively; Jout = M R2
W

τ2
f

is
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the equivalent vehicle torsional moment of inertia where M is the vehicle mass, τF is the
transmission final drive ratio and RW the tire rolling radius.

The presence of rigid connections or clutch engagements between the component i
and j of the two PGSs, modifies Equation (2) by summing up the jth row to the ith row and
removing the jth row, thus reducing the number of system equation. Due to the presence of
a grounding clutch that links the kth component of the two PGSs to the chassis, i.e., clutch 2
in Figure 1, the number of system equations in Equation (2) is further reduced by removing
the kth row. For both Input Split and Compound Split modes, the system in Equation (2) is
reduced to (see also [36]):

Ax = u (3)

where x =
[ .

ωc,2 =
.

ωc,1 =
.

ωout
.

ωr,1 =
.

ω ICE
.

ωs,1 =
.

ωMG1
.

ωs,2 =
.

ωMG1 F1 F2
]T ,

u =
[

Tload TICE TMG1 TMG2 0 0
]T and A is reduced to a 6 × 6 matrix.

.
ω ICE,

.
ωMG1, and

.
ωMG2 are the angular accelerations of the ICE, MG1 and MG2, respectively,

meanwhile
.

ωout is the transmission output angular acceleration. It is important to remark
that this mathematical model does not include the transmission nonlinearities such as the
gear backlashes, whose presence may affect the powertrain torsional dynamics in specific
conditions [37,38].

Finally, by numerically inverting Equation (3) and considering the useful part of vector
x, named in the following x∗ =

[ .
ωout

.
ω ICE

.
ωMG1

.
ωMG2

]T, the inverse dynamic
equation is obtained (see also [36]):

x∗ = A∗T (4)

where T =
[

Tload TICE TMG1 TMG2
]T represents the torque distribution vector and

A∗ is a 4× 4 matrix.

2.2. Power-Weighted Efficiency

The main task for the design of a hybrid powertrain is to search for the optimal torque
distribution that satisfies a desired target. The approach adopted within this paper is to
solve an energy loss minimization problem through the criterion of the power-weighted
efficiency proposed by Zhang et al. [15]. The power-weighted efficiency ηPW is evaluated
as (see also [36]):

ηPW =


Pe1ηGηbatt

ηe,maxηG,max
+

Pe2ηGηM
ηe,maxηG,maxηM,max

+
Pe3

ηe,max +
PbattηbattηM

ηM,max
Pf uel +Pbatt

f or Pout,tr > 0
Pe1ηGηbatt

ηe,maxηG,max
Pf uel +Pbatt−Pe2ηGηM−Pe3−PbattηbattηM

f or Pout,tr < 0
(5)

where Pout,tr = Tout,trωout represents the output power of the transmission with a trans-
mission output torque Tout,tr = Tload + (Iout + Ic1 + Ic2)

.
ωout. In the definition of ηPW , two

energy sources are considered for satisfying the demanded power at the transmission
output shaft: the battery and the fuel tank. The transmission efficiency is considered
constant and equal to 1 within the paper, but its influence can be introduced to enhance the
model as described by Galvagno [39].

In the generic scheme of Figure 3, Pload = Tloadωout is the loading power (positive or
negative) meanwhile the engine output power Pe = Teωe can be split into three contribu-
tions: the engine power Pe1 that flows to the battery through the electric generators, the
engine power Pe2 that flows to the electric motors through the generators and the engine
power Pe3 that directly flows to the transmission output shaft (Pe3 = Pe − Pe1 − Pe2). A
correct elaboration of engine power flow among Pe1, Pe2, and Pe3 requires the calculation of
the electric power produced by the generators PG, and the electric power absorbed by the
motors PM, as described in Figure 4.
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𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1 −
𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2

𝑉𝑉𝑜𝑜𝑜𝑜𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
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If PG > PM, the additional generated electric power is used to charge the battery:
Pe3 = Pe − PG

ηG
, Pe2ηG = PM, Pe1ηG = PG − Pe2ηG, and Pbatt = −Pe1ηGηbatt. Otherwise, if

PG < PM, the battery energy is consumed: Pbatt = (PM − PG)/ηbatt, Pe2ηG = PG, Pe1ηG =

0, and Pe3 = Pe − PG
ηG

. Pbatt and Pf uel represent the absorbed battery and fuel power,
respectively. The battery efficiency ηbatt is evaluated by considering a simple circuit model
(see the model described by Serrao et al. [17]):

ηbatt = 1−
Rbatt I2

batt
Voc Ibatt

(6)

where Ibatt is the current through the battery circuit:

Ibatt =
Voc −

√
V2

OC − 4Rbatt|PM − PG|
2Rbatt

(7)

The resistance of the battery circuit Rbatt and the battery open circuit voltage Voc
are considered constant quantities with the hypothesis of a constant State of Charge
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(SOC = 70%) thus mostly relying on the electric energy stored in the battery (charge
depleting).

The power-weighted efficiency allows to normalize the efficiencies from different
type of power sources, without penalizing the engine operation even if the maximum ICE
efficiency ηe,max is much lower than ηG,max, and ηM,max.

3. Simulation Results

The definition of the power-weighted efficiency-based methodology is then evaluated
by considering a set of vehicle and powertrain parameters, as reported in Table 1.

Table 1. List of vehicle parameters used for the ηPW calculation.

M 1600 kg

RW 0.34 m

f0 0.01 -

Cx 0.26 -

SF 2 m2

ρ 1.2 kg/m3

τF 3.02 -

rr,1, rs,1, rr,2, rs,2 0.32, 0.2, 0.32, 0.2 m

Jout, JICE, JMG1, JMG2 20.28, 0.2, 0.05, 0.05 kg m2

Jr,1, Jc,1, Js,1, Jr,2, Jc,2, Js,2 0.08, 0.06, 0.05, 0.08, 0.06, 0.05 kg m2

The ICE and the two MGs torque and efficiency characteristics are shown in Figure 5
and obtained from a commercial software usually adopted for modelling and simulating
the behavior of hybrid vehicles. The MGs considered within the paper have the typical
architecture adopted for hybrid vehicle powertrains, i.e., AC electric motors for the two-
mode hybrid system from General Motors, whose steady-state power characteristics is
a linear function of output shaft angular speed up to a specific speed limit above which
the power saturates. The powertrain model presented in this paper does not include
the effect of environment/external influences on powertrain components characteristics,
but the methodology can be also extended to powertrain characteristics that are variable
with external parameters, such as the temperature. An interesting experimental study is
reported by Zhang et al. [40], where a complete energy flow test platform is designed and
built to understand the influence of the environmental temperature on steady-state and
transient plug-in hybrid electric vehicle energy transmissions at different states of charge.
The powertrain architecture, shown in Figure 1, allows the activation of two modes: the
Input Split mode, where the ring of the second PGS is connected to the chassis through the
ground clutch 2, and the Compound Split mode, where the solar of the first PGS is linked
to the ring of the second PGS through clutch 1.

To evaluate the efficacy of the methodology based on the power-weighted efficiency, a
simulation setup is implemented in Matlab® environment, by considering the following
procedure:

• Selection of a longitudinal road slope α (first boundary condition);
• Definition of an operating map among the whole set of admissible vehicle speed V

and acceleration av (second and third boundary conditions);
• Calculation of transmission output angular speed ωout = τF

RW
V and acceleration

.
ωout =

τF
RW

av;
• For 2 dofs powertrain configurations, such as the Input Split and the Compound

Split modes, the angular speed of one actuator, i.e., the ICE speed ωICE, is also varied
within its admissible range;
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• The angular velocities of the remaining actuators, i.e., the two MGs angular speeds
ωMG1 and ωMG2, are calculated from the two PGS kinematic relations:{

ωs,1rs,1 + ωr,1rr,1 = ωc,1(rs,1 + rr,1)
ωs,2rs,2 + ωr,2rr,2 = ωc,2(rs,2 + rr,2)

(8)

• Evaluation of the transmission output resistance torque Tload:

Tload =
RW
τF

(
Mg f0 cos α + Mg sin α +

1
2

ρCxSFV2
)

(9)

where f0 is the constant tire rolling resistance coefficient, g is the gravitational ac-
celeration, ρ is the air density, Cx is the aerodynamic drag coefficient, SF the vehicle
frontal area; It is important to remark that the vehicle braking is only entrusted to
the electric generators, thus not considering the presence of a conventional hydraulic
braking system (see the results presented by Galvagno et al. [41] for further details
about hydraulic braking system modelling).

• For each set of boundary conditions (α, V, av), there exist infinite solutions for the
distribution torque vector T, which satisfy Equation (4) (number of actuators larger
than the number of dofs). By ranging the two MGs torques, TMG1 and TMG2, between
their minimum and maximum values at ωMG1 and ωMG2, respectively, the system of
equations in Equation (4) can be numerically discretized and solved to elaborate the
resulting ICE torque TICE and angular acceleration

.
ω ICE. The angular accelerations of

the two MGs,
.

ωMG1 and
.

ωMG2, are then calculated from
.

ωout and
.

ω ICE through the
PGS kinematic relations in Equation (8). Finally, the procedure computes a discrete
number of solutions, identified by a combination of ωICE, TMG1, and TMG2, that satisfy
the boundary conditions of road slope, vehicle speed, and acceleration. An admissible
solution is accepted, to calculate the output power and efficiency of each actuator,
only if the following constraints are satisfied:

ωICE,min ≤ ωICE ≤ ωICE,max
ωMG1,min ≤ ωMG1 ≤ ωMG1,max
ωMG2,min ≤ ωMG2 ≤ ωMG2,max

0 ≤ TICE ≤ TICE,max(ωICE)
|TMG1| ≤ TMG1,max(ωMG1)
|TMG2| ≤ TMG2,max(ωMG2)


0 ≤ PICE ≤ PICE,max(ωICE)
|PMG1| ≤ PMG1,max(ωMG1)
|PMG2| ≤ PMG2,max(ωMG2)
Pbatt,min ≤ Pbatt ≤ Pbatt,max

(10)

The classic definition of the power-weighted efficiency in Equation (5) is only valid for
steady-state working conditions of the powertrain components (negligible influence of iner-
tial parameters) and cannot be directly adopted as discriminant factor to select the optimal
combination of ωICE, TMG1, and TMG2, for a given road slope, vehicle speed, and accelera-
tion. Consequently, a modified version of power-weighted efficiency, η

p
PW , is defined to pe-

nalize the admissible solutions with a high inertial power PI of the powertrain components:

ηPW =


Pe1ηGηbatt

ηe,maxηG,max
+

Pe2ηGηM
ηe,maxηG,maxηM,max

+
Pe3

ηe,max +
PbattηbattηM

ηM,max
Pf uel +Pbatt+|PI | f or Pout,tr > 0

Pe1ηGηbatt
ηe,maxηG,max

Pf uel +Pbatt−Pe2ηGηM−Pe3−PbattηbattηM+|PI | f or Pout,tr < 0
(11)

where the inertial power is defined as:

PI = ∑2
i=1
(

Jc,i
.

ωc,iωc,i + Js,i
.

ωs,iωs,i + Jr,i
.

ωr,iωr,i
)
+ JICE

.
ω ICEωICE

+JMG1
.

ωMG1ωMG1 + JMG2
.

ωMG2ωMG2
(12)
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The inertial power enters as a penalty factor in the definition of the power-weighted
efficiency but it physically represents the variation of kinetic energy accumulated or
released to equilibrate the power distribution of the transmission in Figure 3: PI =
Pe2ηGηM + Pe3 + µPbattηbattηM − Pload. The admissible solution with a combination of
ωICE, TMG1 and TMG2 that guarantees the lowest value of η

p
PW is then selected as the opti-

mal choice, in terms of actuators power distribution, for that boundary conditions of road
slope, vehicle speed, and acceleration. The optimal solution is then represented through
2D maps reporting the value of speed, torque and power for each powertrain component
as function of vehicle speed and acceleration, calculated for a fixed road slope, as shown in
Figure 6 for the Input Split mode and α = 0.
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Figure 6. Angular speed (left), output shaft torque (center), and output shaft power (right) maps
of the ICE (top), MG1 (middle) and MG2 (bottom) to achieve the lower penalized power-weighted
efficiency for the Input Split mode and road slope α = 0.

If there is not even one combination of ωICE, TMG1, and TMG2 that satisfies the whole
set of physical constraints described by Equation (10), then there is no solution for that
boundary conditions of road slope, vehicle speed and acceleration and the corresponding
point on the 2D map is not displayed.

3.1. Powertrain Mode Selection

The concept of power-weighted efficiency represents an important discriminant factor
to evaluate and select the most suitable powertrain mode and satisfy the minimum energy
consumption criterion, for each vehicle operating condition (vehicle speed and acceleration,
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road slope). In particular, the hybrid system analyzed within this paper, whose architecture
is depicted in Figure 1, can work with the Input Split or the Compound Split modes whose
resulting maps, for a fixed road slope α = 0, are reported in Figures 6 and 7, respectively.
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Figure 7. Angular speed (left), output shaft torque (center), and output shaft power (right) maps of
the ICE (top), MG1 (middle), and MG2 (bottom) to achieve the lower penalized power-weighted
efficiency for the Compound Split mode and road slope α = 0.

The first main difference between the two modes is that the Input Split mode can
manage higher vehicle accelerations while the Compound Split mode is able to run up
the vehicle at higher speeds. All maps are obtained by limiting the maximum speed to
150 km/h. The output power requested to the three actuators at the maximum speed with
the Compound Split mode is lower than the corresponding value for the Input Split mode,
since the vehicle can reach higher velocities with the Compound Split mode. For high
request of output power, in terms of vehicle speed and accelerations, the MG1 tends to
work mainly as an electric motor during both Input Split and Compound Split modes. The
MG2 operating range is fully exploited during the Input Split mode, meanwhile its output
power is nearly for the Compound Split mode. The ICE mainly provides high torque at
lower engine speeds, thus working within its most efficient condition. The torque and
angular speed maps of each actuator are overlapped on their corresponding efficiency
characteristics, as shown in Figure 8, thus proving that the power-weighted efficiency
methodology tends to bind the working conditions within a high efficiency range.

The procedure here proposed relies on the minimum energy consumption criterion,
which leads to a charge depleting of the battery. Indeed, a large contribution of battery
power, shown in Figure 9 together with ICE fuel consumption map, is requested during
high speed acceleration.
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Figure 9. Pbatt maps for the Input Split (left) and Compound Split (right) modes and road slope
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Finally, the selection between Input Split and Compound Split modes is carried out
by considering the one that guarantees the highest value of power-weighted efficiency in
the whole range of the vehicle operating condition, as shown in Figure 10.

3.2. Effect of the Inertial Penalty Factor

The main original contribution of this paper is the introduction of the inertial penalty
factor PI into the definition of the dynamic power-weighted efficiency to discriminate the
most suitable torque distribution. This contribution allows to penalize all the admissible
solutions where a considerable amount of input power would be exploited to accelerate
one or more powertrain components instead of accelerating the vehicle and/or overcome
its motion resistances. To proof the efficacy of this effect, the resulting maps of ICE, MG1
and MG2 angular accelerations are compared against the case where the actuators torque
distribution is chosen based on the lower power-weighted efficiency ηPW instead of η

p
PW .

The simulation results, obtained for a null road slope, are shown in Figure 11.



Appl. Sci. 2021, 11, 11752 12 of 17
Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 18 
 

 
Figure 10. Resulting powertrain mode map for the two-mode hybrid system with road slope 𝛼𝛼 = 0. 

3.2. Effect of the Inertial Penalty Factor 
The main original contribution of this paper is the introduction of the inertial penalty 

factor 𝑃𝑃𝐼𝐼  into the definition of the dynamic power-weighted efficiency to discriminate the 
most suitable torque distribution. This contribution allows to penalize all the admissible 
solutions where a considerable amount of input power would be exploited to accelerate 
one or more powertrain components instead of accelerating the vehicle and/or overcome 
its motion resistances. To proof the efficacy of this effect, the resulting maps of ICE, MG1 
and MG2 angular accelerations are compared against the case where the actuators torque 
distribution is chosen based on the lower power-weighted efficiency 𝜂𝜂𝑃𝑃𝑃𝑃 instead of 𝜂𝜂𝑃𝑃𝑃𝑃

𝑝𝑝 . 
The simulation results, obtained for a null road slope, are shown in Figure 11. 

 
Figure 11. ICE (left), MG1 (center) and MG2 (right) angular accelerations to achieve the lower power-weighted efficiency 
with (top) and without (bottom) the activation of the penalty factor 𝑃𝑃𝐼𝐼 for the Input Split mode and road slope 𝛼𝛼 = 0. 

Figure 10. Resulting powertrain mode map for the two-mode hybrid system with road slope α = 0.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 18 
 

 
Figure 10. Resulting powertrain mode map for the two-mode hybrid system with road slope 𝛼𝛼 = 0. 

3.2. Effect of the Inertial Penalty Factor 
The main original contribution of this paper is the introduction of the inertial penalty 

factor 𝑃𝑃𝐼𝐼  into the definition of the dynamic power-weighted efficiency to discriminate the 
most suitable torque distribution. This contribution allows to penalize all the admissible 
solutions where a considerable amount of input power would be exploited to accelerate 
one or more powertrain components instead of accelerating the vehicle and/or overcome 
its motion resistances. To proof the efficacy of this effect, the resulting maps of ICE, MG1 
and MG2 angular accelerations are compared against the case where the actuators torque 
distribution is chosen based on the lower power-weighted efficiency 𝜂𝜂𝑃𝑃𝑃𝑃 instead of 𝜂𝜂𝑃𝑃𝑃𝑃

𝑝𝑝 . 
The simulation results, obtained for a null road slope, are shown in Figure 11. 

 
Figure 11. ICE (left), MG1 (center) and MG2 (right) angular accelerations to achieve the lower power-weighted efficiency 
with (top) and without (bottom) the activation of the penalty factor 𝑃𝑃𝐼𝐼 for the Input Split mode and road slope 𝛼𝛼 = 0. 

Figure 11. ICE (left), MG1 (center) and MG2 (right) angular accelerations to achieve the lower
power-weighted efficiency with (top) and without (bottom) the activation of the penalty factor PI for
the Input Split mode and road slope α = 0.

The color bar scale has been adapted for each map, in order to center the null angular
acceleration within a green zone between the maximum (red zone) and the minimum (blue
zone) angular accelerations for each powertrain actuator. Both red and blue zones are
considered as undesirable since part of the input power would be wasted to increase the
kinetic energy of one of the three actuators inertia. The presence of the penalty factor PI
automatically discards the admissible but undesirable solutions by reducing their corre-
sponding η

p
PW , as it is evident by the larger green zone for the top maps compared to the

bottom ones, especially for ICE and MG1. Instead, MG2 angular acceleration is not affected
by the introduction of the penalty factor since it is kinematically correlated to the vehicle
acceleration av for the Input Split mode (clutch 2 engaged).

A drawback correlated to the penalty factor is that the resulting map of the power-
weighted efficiency ηPW assumes a different shape, as shown in Figure 12: when the penalty
factor is activated there are some regions where the power-weighted efficiency is smaller.
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The penalty factor discharges some admissible solutions with higher power-weighted
efficiency values since it does not fully exploit the kinetic energy stored within the pow-
ertrain components. However, this drawback does not affect in a significant way the
power-weighted efficiency, as proved by Figure 12. A similar consideration can be drawn
with the Compound Split mode as reported by Figures 13 and 14.
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3.3. Road Slope Influence

The last analysis presented to validate and emphasize the potential of the power-
weighted efficiency toolbox, is represented by the influence of the road slope on the map
generation as well as on the powertrain mode selection. The map obtained on a flat
road is compared against the uphill (α = 10%) and downhill (α = −10%) scenarios; the
correspondent power flow distribution among the three actuators is reported in Figure 15.
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Figure 15. Output shaft power maps of the ICE (left), MG1 (center) and MG2 (right) with a α = −10%
(top), α = 0% (middle) and α = 10% (bottom) road slope to achieve the lower penalized power-
weighted efficiency for the Input Split mode.

Passing from downhill to uphill conditions, all maps tend to shift toward lower accel-
erations due to the presence of the road inclination. The MG1 mostly works as an electric
generator, while MG2 provides extra power during extreme accelerations maneuvers. The
presence of a road inclination (positive or negative) also contributes to modify the accelera-
tion threshold for switching between Input Split and Compound Split modes, as shown in
Figure 16, with the speed threshold kept fixed at 50 km/h.
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Figure 16. Resulting powertrain mode map for the two-mode hybrid system for a α = −10% (left),
α = 0% (center) and α = 10% (right) road slope.

4. Conclusions

The paper aims at providing a straightforward and clear procedure to model and
select the suitable powertrain mode and the operating condition for each actuator, based
on the power-weighted efficiency concept. The main conclusions can be summarized in
the following points:

• Hybrid powertrains can be controlled by actuators whose nature is extremely different
in terms of efficiency and dynamic characteristics. An energy management strategy
relying only on the individual efficiency map of each actuator does not provide a
satisfying power distribution, since it limits or completely excludes the actuators with
lower maximum efficiency, i.e., the ICE. The power-weighted efficiency provides a
unique parameter that normalize the overall efficiency contribution of each actuator
based on the power flow requested during a specific vehicle working condition which
is not correlated to a specific driving cycle.

• There are multiple solutions, in terms of actuator torque distribution, for a given
set of boundary conditions in terms of road slope, vehicle speed, and acceleration.
The power-weighted efficiency could represent a valid parameter to discriminate
and select the best working map for each actuator that satisfies the minimum energy
loss principle. However, this solution would not prevent from undesirable working
conditions where part of the power is addressed to accelerate or decelerate one or
more powertrain components. Aiming at minimizing the variation of the powertrain
kinetic energy, a penalty factor is introduced into the definition of the power-weighted
efficiency that always guarantees high efficiency, though slightly lower than the
maximum possible value, with a more targeted power flow towards the vehicle
and/or the battery.

• This methodology also considers the effect of the road inclination, which modifies the
admissible vehicle acceleration range. This approach is able to regulate the operative
condition of each actuator and to switch the two electric machine modes between
generator and motor, thus taking advantage or compensating the road inclination
influence.

This paper represents an initial step towards the validation of the effectiveness of the
presented methodology which would require a further investigation in terms of comparison
against other conventional strategies as well as a fair experimental campaign to assess the
efficiency and dynamic performance of the new formulation, based on the power-weighted
efficiency.
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