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Abstract: In multilingual semantic representation, the interaction between humans and computers
faces the challenge of understanding meaning or semantics, which causes ambiguity and incon-
sistency in heterogeneous information. This paper proposes a Machine Natural Language Parser
(MParser) to address the semantic interoperability problem between users and computers. By lever-
aging a semantic input method for sharing common atomic concepts, MParser represents any simple
English sentence as a bag of unique and universal concepts via case grammar of an explainable ma-
chine natural language. In addition, it provides a human and computer-readable and -understandable
interaction concept to resolve the semantic shift problems and guarantees consistent information
understanding among heterogeneous sentence-level contexts. To evaluate the annotator agreement of
MParser outputs that generates a list of English sentences under a common multilingual word sense,
three expert participants manually and semantically annotated 75 sentences (505 words in total) in
English. In addition, 154 non-expert participants evaluated the sentences’ semantic expressiveness.
The evaluation results demonstrate that the proposed MParser shows higher compatibility with
human intuitions.

Keywords: document representation; semantic analysis; natural language processing; conceptual
modeling; universal representation

1. Introduction

Multilingual semantic representation [1] presents words, phrases, texts, or documents
in heterogeneous parties (e.g., English and Chinese) to achieve semantic consistency. It has
been applied in several areas, such as machine translation [2], question answering [3], and
document representation [4,5]. The process of parsing a natural language sentence to its
semantic representation is called semantic parsing [6], which parses the sentences without
representing the syntactic classification of the components of the sentence. Semantic parsing
is an essential process and has attracted great attention in multilingual semantic representa-
tion and NLP research over the last few decades [6]. Typically, a semantic parser labels each
word in the original sentence according to its semantic role or represents each compound
component based on its meaning [7]. Several semantic approaches are proposed for parsing
natural language sentences in semantic representation, such as Groningen Meaning Bank
(GMB) [8] and abstract meaning representation (AMR) [9]. Still, their annotation schemes
are designed for individual languages that have language-dependent features. Because
many applications require multilingual capabilities, several efforts are underway to cre-
ate more cross-lingual natural language resources such as universal conceptual cognitive
annotation (UCCA) [10], universal networking language (UNL) [11], and universal depen-
dencies (UD) [12]. They are the framework for cross-linguistically consistent grammatical
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annotation. Despite these efforts, some remaining interlanguage variations important
for practical usage are not yet captured by the efforts. They create obstacles to a truly
cross-lingual meaning representation that enables downstream applications written in one
language to be applicable for other languages. Using cross-lingual language to perform
cross-lingual semantic parsing for one language to improve the representation of another
language remains a largely under-explored research question. This paper focuses on the
problem of multilingual semantic interoperability in semantic representation.

In semantic analysis and labeling, texts and documents are generally very complex
because of flexible structural and complex morphological grammars. The state-of-art
semantic parser methods and applications have not achieved satisfying results. One
technical challenge is the lack of consistent conversions across domains. The heterogeneous
text may share heterogeneous meaning and cause semantic loss or misunderstanding
between a computer and a user [13]. For example, Figure 1 shows an English inquiry sheet
for illustrating the multilingual semantic interoperability problems. The table consists of
10 cells; cells 1–9 contain a single atomic concept, i.e., “one cell one atomic concept” (e.g., Date
in cell 1). However, one atomic concept may have multiple meanings. For instance, the
word “company” in cell 10 refers to several meanings such as “a commercial business” and
“the fact or condition of being with another or others, especially in a way that provides friendship
and enjoyment”. To achieve accurate atomic concept exchange and guarantee semantic
consistency in cells 1–9, several document representation approaches [5,14] are proposed
to solve the heterogeneous concept or meaning exchange problem. An effective solution is
the collaboration mechanism that connects heterogeneous domains or contexts, allowing
the exchange of heterogeneous semantic documents by a semantic input method (SIM)
approach [15]. However, some sentences also contain sequences of atomic concepts for
a free-text cell (e.g., cell 10), which makes it hard to ensure that the meaning (M1) of an
English sentence Ei: = List (w1, w2, . . . , wn) and the meaning (M2) of a translated Chinese
sentence Cj := List (w1, w2, . . . , wn) will be semantically equivalent. The reasons for causing
M1 6=s M2 (“ 6=s” refers to not semantically equal) include:
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Figure 1. Complex document interaction between computers and users.

(1) Heterogeneous grammatical rules: The language grammars of the components in Ei
and Ci have their own rules to generate a sentence and it is impossible to achieve a
one-to-one mapping.

(2) Synonyms and homonyms: Each term in Ei may have several synonyms or homonyms.
A wrong term in meaning may cause semantic ambiguity.

(3) Peculiar language phenomena: Some phenomena in Ei never appear in Ci, resulting in
asymmetric mapping. For example, the particles of “を,に,で,へ,より” in Japanese
do not have counterparts in Chinese.

Therefore, the same sentence will produce completely different scenarios in a hetero-
geneous text, and the original meaning in mind may be shifted to another meaning. The
above problems are called semantic shift problems that change a sentence’s original mean-
ing in multilingual semantic representation. Moreover, in natural language texts, users
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cannot express their information needs in a computer-understandable way or interpret the
representation correctly due to problems in representing complex semantics. Therefore,
the development of a novel model has been motivated by the following aspects:

(1) Computer-human-understandable representation: providing information under-
standable by both computers and humans, realizing the accurate interpretation
of sentences in the human-computer messaging cycle of humans and computers
without ambiguity.

(2) Accurate semantic representation among computing applications: applying computer-
human-understandable information in computing applications and enabling informa-
tion to be semantically interoperable.

(3) Automated multilingual information processing by software agents: allowing multi-
lingual information to be automatically processed across domains and contexts.

Thus, this research proposes a new multilingual semantic representation parser for
sentence-based text or documents that enhances textual representation and reduces mul-
tilingual ambiguity. Based on our previous conceptual work [16], we propose a novel
Machine Natural Language Parser (Mparser) to realize universal representations between
computers and users unambiguously. The explainable MParser parses a simple English sen-
tence, resolving complex concepts towards a bag of universal concepts sentence-readable
and -understandable for any heterogeneous information, and mediates contextual hu-
man natural languages collaboratively, as shown in Figure 2. The universal concepts
sentence shares a common concept at both the syntactic and semantic levels between users
and computers.
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Figure 2. A general MParser process.

To achieve consistency and universal representation, MParser designs from human
input and sentence generation:

(1) In the human input, each unique concept is collaboratively edited with SIM [15]
based on a common dictionary (CoDic) [17] for eliminating atomic concept ambiguity
and morphological features. Thus, a simple English sentence can be converted to a
sequence of unique concepts across conversational contexts.

(2) To maintain complex semantic concept consistency between computers and users,
an MParser for English sentences parses the semantic roles between English words
and represents them for deriving a unique concept that can be accurately repre-
sented and understood by computers through case grammar [16]. The cases are
used to label words, which are aligned from local language perspectives. The pro-
posed parser utilizes powerful linguistic tools such as Stanford Parser and universal
dependency relations.

(3) Evaluate the proposed MParser through annotator agreement between the expert’s
case labeling and MParser’s outputs. Additionally, 154 non-expert participants inves-
tigated judgments of semantic expressiveness.

The rest of this paper is organized as follows. Section 2 compares the proposed
approach with related work. Section 3 introduces the general process and methodology of
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MParser. Section 4 introduces the activity of human semantic input. Section 5 introduces
the activity of sentence computerization. Section 6 and 7 implement and evaluate MParser.
Finally, a conclusion is given.

2. Related Work

Semantic representation presents the meaning of sentences, and the process should be
reliable and computational [18]. The alternative approaches to semantic representation can
be divided into two categories: document representation [1,19] and meaning representation.

Document Representation: Currently, document information exchange mainly has
three approaches: (1) Standardization approaches define a semantic document by com-
bining a set of standardized document compositions: for example, EDI-based (http://
www.edibasics.com/ediresources/document-standards/), XML-based (ebXML. Available:
http://www.ebxml.org) and Web service-based (http://www.edibasics.com/ediresources/
document-standards/). The problem with this approach is that documents are only
interoperable on representation syntax and templates, and these standards are hetero-
geneous and incompatible with each other. (2) Ontology modeling [20,21] approaches
define a semantic document in a certain domain (e.g., RDF [22], RDFS [23] and OWL
(http://www.edibasics.com/ediresources/document-standards/)). They are usually used
to solve the problem of semantic interoperability and realize collaboration. Generally,
an ontology clearly describes the relationships of entities [18] and can be employed for
knowledge representation. However, if computers in different contexts participate in user-
computer interaction, it will not be easy to achieve a consistent understanding, because an
ontology is domain-dependent, preventing it from being understood between heteroge-
neous document descriptions. (3) Collaborative approaches [17,24] allow participants from
different contexts to construct document terms and solve the cross-domain problem, but
the document is constrained by a template and lacks flexibility. One issue is that the user
still needs a user template to construct the document.

Current subjects of research on document representations are rule format [25,26], on-
tology [20,24], XML+Ontology [21], tree/graph [27], and collaborative approach [15,17,28].
First, it is not easy to embed and extract meanings to/from a document automatically. For
example, it is not easy for a document written in natural languages to be automatically
converted to a machine-processable format (e.g., RuleML [25,26]). Second, constructing
semantic documents needs intensive work. For example, [5] proposes a semantic disam-
biguation solution by using a machine-readable semantic network (e.g., WordNet) as a
common knowledge base. However, it is time-consuming and sometimes unnecessary
because it also disambiguates unambiguous terms. To acquire accurate semantic concept
representation for a document, [20] requires learning a concept border from a particular
document collection based on a particular ontology in the same domain. However, there is
a heavy workload and enormous data redundancy to construct and store concept borders
for different domains. Third, it is not easy to maintain semantic consistency between hetero-
geneous document systems. For example, [24] claims accurate mapping between different
ontologies’ entities, and [20] requires the similarity computation between keywords in a
received document and equivalent terms in a domain-wide ontology. Both approaches
hardly reach a trade-off between low computational demand and semantic interoperability.

In short, these approaches rely on the homogeneity of concept in multilingual text
or domain semantics, and sentence-based documents or complex concepts may cause
semantic loss among different contexts through the above state-of-art approaches.

Semantic Representation: It defines the annotation to construct syntactic structure
such as FrameNet [29] and Semlink [30], but focuses on argument out of other relations. In
this context, there are several available semantic representation approaches. For instance,
universal networking language (UNL) proposes independent language representation so
that sentences inputted in any language can be translated into any other natural language.
Abstract meaning representation (AMR) [9] proposes a relatively more straightforward
sentence-level semantic parser to cover semantic role broad predictions. AMR manually an-

http://www.edibasics.com/ediresources/document-standards/
http://www.edibasics.com/ediresources/document-standards/
http://www.ebxml.org
http://www.edibasics.com/ediresources/document-standards/
http://www.edibasics.com/ediresources/document-standards/
http://www.edibasics.com/ediresources/document-standards/
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notates sentences and utilizes PropBank frames [31] to represent the semantic relationship
between words. However, AMR faces difficulties across translation because the syntactical
similarity is not suitable cross-linguistically [32]. Therefore, new multilayered solutions
such as universal concept cognitive annotation (UCCA) [10] and universal decompositional
semantics (UDS) [33] are applied in cross text for semantic annotation and word senses by
BabelNet [34] and Open Multilingual Wordnet (http://compling.hss.ntu.edu.sg/omw/).
They constructed substantial multilingual semantic nets to achieve universality by con-
necting resources such as WordNet and Wikipedia. The method adapts linguistic theory to
build a manual and multilingual scheme. However, UCCA annotates short sentences (e.g.,
multiword expressions) where the same multiword or entity is annotated in many differ-
ent sentences. Groningen Meaning Bank (GMB) is a new solution to integrate language
phenomena into a single formalism instead of covering single phenomena in an isolated
way. Additionally, universal dependencies (UD) [12] build cross text dependency-based
annotations for multilingual sentences.

Most of the semantic representation methods use simple concepts such as UCCA,
but some other methods adapt concepts such as WordNet synsets for UNL and PropBank
frames for AMR. Furthermore, UNL has its relationships set while AMR uses PropBank rela-
tionships. UNL, UCCA, and AMR are fully manual annotated, but GMB produces meaning
representations automatically and can be corrected by experts. However, such approaches
(e.g., AMR, UCCA, GMB, and UNL) focus on lexical-semantic or multilingual words rather
than on sentence semantics and cannot guarantee sentence-based semantic representa-
tion to be universal and unambiguous across languages. Most of the proposed semantic
representation methods do not consider the morphological and syntactic characteristics
of the language in the construction of sentence-level semantic labeling. Contributions
made in the semantic representation of any language text will utilize the translated English
resources, which may negatively affect the performance of other semantic representation
methods. In our research work, MParser propose a universal semantic representation to
extract semantic relationships from local language text using local language tools and
resources, such as Stanford Parser. In addition, the proposed parser takes into account
the syntactic and morphological features of a given sentence. It is worth noting that the
proposed MParser model uses various tools, resources, and text features to reduce the neg-
ative impact of resource quality on semantic representation. Moreover, MParser achieves a
universal representation and semantic consistency across languages.

3. MParser
3.1. Overview

MParser comprises two processes: (1) human semantic input (HSI) and (2) sentence
computerization (SC), as shown in Figure 3. First, human semantic input is the process of
converting human natural language (HNLi) (here, i indicates English) through an editor
typing from CoDic into a sequence of machine-readable sentences SiSci, which comprises
sequentially converting sets of literals to a list of the symbolic signs. The editor (i.e.,
human user) inputs the HNLi by SIM from CoDic to constrain sentence creation based on
strict rules. Second, sentence computerization (fc) is a process of converting a sentence
SiShi to a sentence SiSm that is universally readable and understandable by a computer in
MParser, denoted by fc : = SiSm ← SiShi. In particular, this involves a sequence of activities:
sentence analysis (i.e., parsing a local language sentence based on the local grammatical
rules through robust Stanford Parser and universal dependency), case generation (i.e.,
appending a case on each sign to represent its grammatical functions and properties),
and machine representation (i.e., representing a sentence that is computer-readable and
-understandable). Thus, sentence SiSm ⊂MParser only readable and understandable by
computers can be converted back to a human-readable and -understandable SiShj (here,
j indicates other languages), such that fr : = SiShj ← SiSm to rebuild human-readable
sentences based on SiSm.

http://compling.hss.ntu.edu.sg/omw/
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3.2. Methodology

The theoretical foundation of MParser comes from the sign description framework
(SDF) [26], as shown in Figure 4. It is a language for representing signs in computing
systems and is particularly intended to represent the interpreted meanings or ideas of all
objects in reality, such as appearing in dictionaries, texts, software, and web pages. A sign:
= (sign, denoter, reifier, denotation, connotation) is modeled by a bi-tree, consisting of three
relationships of a denotation, a connotation and a reification between signs.
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A denotation is an internal relationship between a sign and its denoter, such that the
denoter denotes the properties of a sign. We can understand a denoter as a feature container,
containing all features of a sign. For a natural language, these features consist of the form
(e.g., iid, term, and pronunciation), sense (i.e., meaning), part of speech (e.g., noun), tense
(e.g., past), aspect (e.g., perfective), gender (e.g., male), number (e.g., single), and context
(e.g., English). In essence, denotation provides a way to define a sign in the context of a
sentence by a set of properties provided by a denoter.

A connotation is an external relationship between signs, such that a sign is connoted
by a set of signs, which builds a parse tree of a set of signs. For instance, when a set of
signs constructs a sentence as a sign in language, it can be parsed through connotation in
grammatical cases. For example, we replace the sign of a sentence, and connotation can
then parse the sentence sign into many atomic signs.
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A reification is an instantiation relationship between a reifier (often a particular sign)
and a specific denoter (often an abstract sign). For instance, given a denoter denoting
the sign of “color”, then “white” is a reifier, and between “white” and “color”, there is a
reification relationship. Or the sign is INT datatype, and 1234 is the reifier.

By generalizing these represented concepts of objects into structured signs, SDF
represents all objects in reality, such as objects of abstract and concrete, physical and virtual,
and real and fictitious.

CoDic (CoDic http://www.cis.umac.mo/~jzguo/pages/codic/, accessed on 30 Au-
gust 2021) [17] is a common dictionary and an application of the SDF consisting of 93,546
English words, 20,446 Chinese words, and 190,001 word senses. In CoDic, a concept is a
basic element in a sentence and consists of words and phrases. Each concept has already
been collaboratively edited without semantic ambiguity. Any dictionary term in CoDic
(called a sign) is identified as a unique and internal identifier iid ∈ IID, which is neutral
and independent of any natural language and can refer to any term of a natural language.
PoS plays a very important role and includes 16 kinds of signs, which are: Noun(n):= {Com-
mon (ncm), Pronoun(npr), Proper Organization (nop), Proper Geography(ngp), Pronoun(npr)},
Verb(v):= {Intransitive (vit), Transitive(vtr), Ditransitive(vdi), Copulative(cop)}, Adjective (adj),
Adverb(adv), Preposition (prep), Conjunction(cnj), Interjection (int), Onomatopoeia (ono) and
Particle (par). For the detailed description of PoS in CoDic, please see Appendix A. Given a
simple sign s = (t, iid) = (icebox, 5107df00b635) = (common noun, “An insulated chest or box into
which ice is placed, used for cooling and preserving food.”) as shown in Figure 5. Specifically,
the form of the sign is presented as follows:

• IID: = POS+Y+ID: indicates the universal sign representational form. For instance,
iid = 5107df00b635, in which 1 after 5 refers to common noun, 7df refers to year 2015,
and 00b635 is ID.

• Term indicates literal representational form for a sign, e.g., “icebox” is the literal
representation of the sign 5107df00b635 in English context.

• Meaning is the sense of a sign, e.g., “An insulated chest or box into which ice is placed,
used for cooling and preserving food” is the sense of 5107df00b635.
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Thus, the meaning of iid is: 5107df00b635 = “icebox” = “アイスボックス” = “电冰箱”
though they are in heterogeneous contexts.

4. Human Semantic Input (HSI)

In human semantic input, the user’s initial intention is essential when they try to
translate the transmitted concepts into unique semantic representations. If semantics are
insufficient for a clear and accurate representation, in that case, the same literal words in
users’ minds may be different from different contexts between computers and users; it is
possible to fail the information interaction because of ad hoc user input. Therefore, HSI
tries to solve ad hoc input through a supervised sentence input that cannot casually input
the words and phrases in users’ minds.

http://www.cis.umac.mo/~jzguo/pages/codic/
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In MParser, all written sentences are constrained by HSI, which is a supervised human-
readable sentence via CoDic. We developed an editor to input any term by selecting PoS
and the exact meaning, which has a unique identifier (iid), to point to the same meaning
regardless of contexts. We use a simple English sentence “I enjoy travel in summer.” to
illustrate HSI. First of all, a user types words one by one by selecting terms as shown in
Figure 6: the terms “I” (ncm,0 × 5107df00b5e2), “enjoy” (vtr, 0x5707df00184b), “travel” (ncm,
0x5107df01848b), “in” (prep, 0x5a07df000103), and “summer” (ncm, 0x5107df016d86).
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CoDic resources are all on the level of lemmas, and the “term” can be seen as word
senses in CoDic, which cannot realize different morphological forms for a word. For
instance, in English, the lemma “enjoy” yields morphological features: enjoys, enjoyed,
enjoying. Thus, the morphological feature (mf ) for each lemma of CoDic is designed and
lists the forms needed in each language. The morphologic feature (mf ) has the gender (G)
and number (N) features for nouns and the features of tense (T), aspect (A) and voice (V)
for verbs. The morphological feature (mf ) can be different in each language (for details
of morphological features, please see Appendix B). The morphological features (mf ) are
parsed according to the local grammar rule because different languages have different
morphological phenomena, which are language-dependent for each language. Actually,
populating the morphological feature is an engineering effort of its own. In HSI, users
manually select the correct feature for each term in the CoDic. Thus, when a user inputs
nouns or verbs, he/she needs a second selection for words, including morphologic features
(mf ), as shown in Figure 7.
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Thus, in the example sentence: [(‘I’, ‘ncm’), (‘enjoy’, ‘vtr’), (‘travel’, ‘ncm’), (‘in’, ‘prep’),
(‘summer’, ‘ncm’)], terms “I”, “travel” and “summer” choose singular and neuter (actually,
no gender attribute in English, the default is neuter), and the hex is 0 for the noun. The
term “enjoy” chooses active present imperfective habitual, and the hex is 03 for the verb. The
morphologic feature identification algorithm is presented in Table 1. Table 2 shows the
tenses of a sentence in English and HSI through a basic example (“she go home”). Following
interesting observations from Table 2, it can be observed that helping verbs (Bold font)
have been removed during the human sentence input for all tenses of verbs. MParser uses
only the root form of the verb. These helping verbs, such as “is, am, be, being, has, had”,
are represented by a hex of morphologic feature (mf ). Thus, the human input sentence is
universal for all languages.

Table 1. Morphologic feature identification algorithm.

1. Function (Input words)
2. Input
3. String← Input word
4. if (String.pos= “ncm” or “npp” or “ntp”) then
5. Gender(G): = n | m | f | b /* Select noun’s gender */
6. Number(N): = s | p | u /* Select noun’s number */
7. return← noun morphological feature (mf)
8. if (String.pos= “vtr” or “vid” or “vit”) then
9. Tense(T) = present | past | future | past future /* Select a verb’s tense */
10. Aspect(A) = f | g | w | h | p /* Select verb’s aspect */
11. Voice(V): = active | passive /* Select verb’s voice */
12. return← verb morphological feature (mf)

Table 2. Human semantic input of tenses in English.

Tense of Sentence English Sentence HSI

Past perfect She had gone home.

She.mf go.mf home.
(mf refers to defined Hex)

Future perfect She will have gone home.
Present perfect continuous She has been going home.

Past perfect continuous She had been going home.

Future perfect continuous She will have been going
home.

Simple present She goes home.
Simple past She went home.

Simple future She will go home.
Present continuous She is going home.

Past continuous She was going home.
Future continuous She will be going home.
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HSI converted a sequence of human-readable literals HNLi to a sequence of signs
SiSci that a computer program can understand without semantic ambiguity. Formally, the
concepts are defined below.

Definition 1. (Human Simple Sentence “SiShi”): Given a well-formed sequence of literal words
(w1, . . . , wk, . . . , wm) in HNLi, input by a human user, in i context (i is English user), then:

SiShi := (w0.mf , w1.mf , . . . , wk.mf , . . . , wm.mf ) =
m

∑
k=0

wk (1)

where w0 is an automatically generated leading word signifying the beginning of a sentence,
0 < k ≤ m is the word sequence number of the word wk in SiShi.

Definition 2. (Computer Sentence “SiSci”): Given SiShi: = (w0.mf, w1.mf, . . . , wk.mf, . . . , wm.mf)
=∑m

k=0 wk, then SiShi is generated into iid sentence, called computer sentence “SiSci”, such that:

SiSci := (iid0.mf , iid1.mf , . . . , iidk.mf , . . . , iidm.mf ) =
m

∑
k=0

iidk (2)

where iid0 is an automatically generated leading word signifying the beginning of a sentence,
0 < k ≤ m is the iid sequence number of the iidk in SiSci. For the result of human semantic input,
SiSci is a supervised computer-readable sentence.

5. Sentence Computerization (SC)

Sentence computerization (SC) transforms a human sentence into a computer sentence.
It consists of three main activities: (1) Analyze the constituency structure and universal
dependency relationship from the outputting words in the HSI step. (2) Adapt the Stan-
ford parser tool to extract potential relationships between outputting words. (3) Apply
predefined case grammar rules to label semantic roles outputting words and generate a uni-
versal sentence. The activities involve local sentence analysis described in Section 5.1, case
generation described in Section 5.2, and machine representation described in Section 5.3.

5.1. Local Sentence Analysis

Each word is tagged into the PoS and morphological feature (mf ) in the sentence
from the step of HSI. Local sentence analysis identifies the relationship between different
words that constitute the English sentence. We adapted the Stanford parser tool [35], which
provides full syntactic analysis, minimally a constituency (bracketed sentences) parse of
local English sentences between different PoS. Constituency parse describes what the
constituents are and how the words are put together. For instance, a sentence: “the quick
brown fox jumps over the lazy dog” can transform into:

[(‘ROOT’, [(‘NP’, [(‘NP’, [(‘DT’, [‘the’]), (‘JJ’, [‘quick’]), (‘JJ’, [‘brown’]), (‘NN’, [‘fox’])]), (‘NP’,
[(‘NP’, [(‘NNS’, [‘jumps’])]), (‘PP’, [(‘IN’, [‘over’]), (‘NP’, [(‘DT’, [‘the’]), (‘JJ’, [‘lazy’]), (‘NN’,
[‘dog’])])])])])])]

The bracketed sentence represents grammatical functions, such as NP, VP, and PP
based on English grammar. However, Stanford parser adapts the Penn PoS tagger rather
than the CoDic PoS tagger, such that it is impossible to parse the sentence directly. Thus, we
built a mapping between Penn PoS tagger and our CoDic PoS tagger, and the PoS mapping
algorithm is shown in Table 3. In particular, particle words, which are only for the local
English language, have no common iid to map other languages and will not appear in the
final machine representation.
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Table 3. PoS mapping algorithm.

1. if (isCoDicPos)
2. if (CoDicpos =par and iid= “xxx”) {
3. Stanfordpos = “xxx”;
4. } else if (CoDicpos = noun or verb and mf= “xxx”) {
5. Stanfordpos = “xxx” or insert words and Stanfordpos = “xxx”;
6. } else if (CoDicpos = other PoS) {
7. Stanfordpos = “xxx”;
8. } else
9. print =”error”
10. end if; }

Stanford parser presents and parses a word’s relationship by a pure constituency, but
ignores their semantic role. For example, SVO (subject-verb-object) structure is presented
as S→ NP VP NP by the Stanford parser, and it is impossible to parse subject, object, and
other semantic roles in a sentence. Nivre et al. [12] proposed a universal dependency (UD)
that uses dependency labels and PoS tags to parse sentences for different languages. The
UD annotation defines a classification of around 40 relations as the universal dependency
label sets (https://universaldependencies.org/#language-tagset, accessed on 30 August
2021), such as nsubj: nominal subject, amod: adjectival modifier. Thus, when the UD
appeared, it immediately became interesting to see its relationship with the Stanford parser.
For instance, the sentence “the quick brown fox jumps over the lazy dog” can transform into:

[[((u’jumps’, u’VBZ’), u’nsubj’, (u’fox’, u’NN’)), ((u’fox’, u’NN’), u’det’, (u’The’, u’DT’)), ((u’fox’,
u’NN’), u’amod’, (u’quick’, u’JJ’)), ((u’fox’, u’NN’), u’amod’, (u’brown’, u’JJ’)), ((u’jumps’,
u’VBZ’), u’nmod’, (u’dog’, u’NN’)), ((u’dog’, u’NN’), u’case’, (u’over’, u’IN’)), ((u’dog’, u’NN’),
u’det’, (u’the’, u’DT’)), ((u’dog’, u’NN’), u’amod’, (u’lazy’, u’JJ’))]]

Finally, through Stanford Parser and UD, the local English sentence becomes a seg-
mented sentence with dependency relationships for each word, as shown in Definition 3.

Definition 3. (Segmented Simple Sentence “SiSq
ci”): Given SiSci: = (iid0.mf, iid1.mf, . . . , iidk.mf,

. . . , iidm.mf) = ∑m
k=0 iidk, then SiSci is segmented into q + 1 subsequences, called q-subsequences

SiSq
ci. Each subsequence has p number of iid, such that:

Segment : (iid0.mf , (iid1.mf , . . . , iidp.mf )1, . . . , (iid1.mf , . . . , iidp.mf )i, . . . , (iid1.mf , . . . , iidp.mf )q ←
m

∑
k=0

iidk (3)

SiSq
ci = Segment (iid0.mf, iid1.mf, . . . , iidk.mf, . . . , iidm.mf) = (iid0.mf, (iid1.mf, . . . , iidp.mf)1, . . . ,

(iid1.mf, . . . , iidp.mf)i, . . . , (iid1.mf, . . . , iidp.mf)q)
(4)

SiSq
ci = iid

q

∑
i=1

(
p

∑
j=1

iidj)

i

(5)

where the length of i-th subsequence (iid1.mf, . . . , iidp.mf)i = ∑
p
j=1 iidj.m f is p (1 ≤ p∈N).

5.2. Case Generation

MParser grammar is a set of machine natural language grammars such as universal
grammar (UG) and case grammar (CG), originating from Fillmore’s case study [36,37].
MParser grammar specifies various sequences of signs, forming a general natural language
commonly read and understood both by humans and computer systems. It consists
of morphological features (intrinsic) (discussed in HSI) and case grammar components
(extrinsic). The morphological component varies from one language to another regarding
the sets of morphological features, which are inflection forms themselves, but uses common
naming conventions. Each case label either presents a syntactic, semantic, or computational
function or marks a grammatical function in general and abstracts a particular grammatical

https://universaldependencies.org/#language-tagset
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phenomenon pertaining to a group of words, phrases, sentences, or others that appeared
in natural languages.

In our previous work [16], we proposed a case grammar representing a universal and
deep case (or semantic roles) that reflects in a sentence as the central means of explaining
both the syntactic structure as well as the meaning of sentences. The case grammar compo-
nent displays a common representation of syntactic structures and structural words and
can be used as a resource for language processing tasks, such as translation, multilingual
generation, and machine inference. The novel available cases are defined as follows:

• Nominative Case (NOM): denotes a semantic category of entities that initiate actions,
trigger events, or give states. Nominative case often associates with the agentive
properties of volition, sentience, instigation, and motion.

• Predicative case (PRE): denotes a semantic category of process in terms of action,
event, or state. The process starts from a sign in the semantic category of the nomina-
tive.

• Accusative case (ACC): denotes a semantic class of patients who are the participants
affected by the semantic class of agents marked by agentive case, which is the direct
object of an agentive action.

• Dative case (DAT): denotes a semantic class of indirect participants relevant to an
action or event. The objective participant marked by dative is called recipient or
beneficiary of an action.

• Genitive case (GEN): denotes a semantic category of attributes that belong to things.
It describes an attributive relationship of one thing to another thing.

• Linking case (LIN): denotes the thing that corresponds to the theme of thematic
nominatives, such as attributes, classification, or identification of a theme.

• Adverbial case (ADV): denotes a semantic category of constraints belonging to pred-
icative signs (i.e., a verb). It corresponds to the adverbial syntactic case.

• Complementary case (COM): denotes additional attributes of an entity, an action, an
event, or a state, such as means, location, movement, time, causality, extent, and range.
Under the PRE structure, COM is shown in COMv form. Under the NOM/ACC/DAT
structure, COM is shown in COMn form. For other situations, it just shows COM form.

In this paper, cases are labels or tags that mark signs’ syntactic, semantic, and com-
putational functions in the marked forms such as marked words, phrases, and sentences
within a natural language’s text. For example, in the sentence “earth moves around sun”, the
behavior “move” is performed by the entity “earth” and the behavioral method is “around
the sun”. A case is used to label the functionality of a word or a phrase in the sentence, such
as “NOM.earth PRE.moves COMv.around NOM.sun”. The universal case grammar provides
a common grammar transformable to the grammar of any existing natural language.

Tree Generation

Case generation converts a sequence of single concepts (i.e., atomic signs) into complex
concepts (i.e., a compound sign), that is self-described. MParser builds a sentence-based
case concept associated with an iid defining how an iid grammatically functions and
combines with other iids by the case grammar. It does not need to consider the order of the
sentence, which is a bag of concepts. The key of case generation to a sign lies in two facts:

(1) There is a known PoS already associated with the term (HSI);
(2) The term has a clear grammatical relationship with other terms in a sentence (local

sentence analysis).

A sentence is defined as a sequence of signs, each marked with a functionality label
defined as a case. Each sign in a sentence can describe its case grammar relationship with
other signs; that is the compound sign, called SignX, which is

Sentence :: = SignX1 . . . SignXi . . . SignXn
SignX = IID.C1 . . . IID.Ci . . . IID.Cn
For example:
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[(‘NOM’, [(‘GEN’, [‘the’]), (‘GEN’, [‘quick’]), (‘GEN’, [‘brown’]), (‘NOM’, [‘fox’])]),
(‘PRE’,[(‘PRE’, [‘jump’])]), (‘COMv’, [(‘COMv’, [‘over’]), (‘ACC’, [(‘GEN’, [‘the’]), (‘GEN’,
[‘lazy’]), (‘ACC’, [‘dog’])])])])]

NOM and ACC cases are appending for nouns such as the words “fox” and “dog”, PRE
case is appending for verbs such as the word “jump”. Thus, the case generation (fox_NOM
(jump_PRE)) yielding the English “fox jump” can be turned into Chinese by just changing
the lexical item: (狐狸 _NOM (跳_PRE)) yielding “狐狸跳”. The case is appending NOM
and PRE to form correct sentences in both languages. Meanwhile, the morphology feature
(mf ) builds inflection features for nouns and verbs in both languages.

Based on sign theory [28], every concept (e.g., fox, jump) is a meaning group, which
appends a single case (e.g., NOM, PRE) to modify a larger meaning group in a tree of
concepts. If each concept in a sequence is unique, then the sequence is also unique. The
tree is defined as T = (N, E), where N indicates a group of nodes, and E indicates a group
of edges, where E⊆ N × N. The path in a tree is a sequence of nodes n1, n2, . . . , nk-1, nk,
where each pair (n1, n2) has e(n1, n2)∈E. A cycle is a path n1, n2, . . . , nk-1, nk (k > 2) that
consists of distinct nodes, except n1 = nk. In our tree generation, we present a sentence in a
tree-based SignX representation as TSignX. Nodes N contains two main types: iid node Niid
and case node Nc. Formally, the node-set is:

N = {Niid, Nc | iid ∈ IID, c ∈ C}

where IID is a group of all words’ iids in the sentence, and each iid in the local sentence is
represented as a node in the TSignX. C is a group of predefined case concepts, including
NOM, PRE, and so on. Additionally, edges E link any two nodes in a tree, where:

E ⊆ {nf, nc | f, c ∈ N}

An important principle is designed in sentence construction, which is the father–
child relationship. Each edge e(nf, nc), where nf, nc ∈ N is connected with a father–child
relationship that represents the structure relationship between its two connected nodes nf
and nc —whether a father code (f ) is modified by another child node (c) or not, while the
father node proceeds. A father node is a key sentence constituent. Differently, a child node is
always dependent and belongs to a father node. This correspondence can be illustrated
in Figure 8. Applying this principle, we can always construct a sequence of sentences in
different order of atomic concepts but still ensure structural equivalence.
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Figure 8. MParser SignX Tree TSignX.

The case generation is converted into TSignX using the tree generation algorithm. TSignX
provides a phrase-based structure, such as SVO, OVS sequences, and case labeling, and is
a non-redundant representation. The TSignX Tree algorithm is derived as follows:

1. Linearize input to a term sequence S.
2. Connect each term in S to its smallest subtree in TSignX.
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3. Append one case in each node of TSignX based on case grammar rules.
4. Parse the universal dependency labels at each branching node N of the TSignX.
5. Find the dependency relationship in the node of each word:

a. If exist corresponding dependency label, then replace the current case using dependency
mapping rules;

b. If no dependency relationship, keep the current case.

The proposed TSignX model can represent different sentences with the same tree if they
have the same semantics. Because the order of the words does not affect its representation,
it reduces the influence of language, which has the property of flexible order. A sentence
becomes a case sentence through the case generation, which appends a case concept for
each word, as shown in Definition 4.

Definition 4. (Case Sentence “SiSc”): Given SiSq
ci = (iid0.mf, (iid1.mf, . . . , iidp.mf)1, . . . , (iid1.mf,

. . . , iidp.mf)i, . . . , (iid1.mf, . . . , iidp.mf)q), then SiSq
ci is appended cases for the sentence, called Case

Sentence SiSc. Each word has one case, such that:

SiSc = (iid0.mf.C, (iid1.mf.C, . . . , iidp.mf.C)1, . . . , (iid1.mf.C, . . . , iidp.mf.C)i, . . . , (iid1.mf. .C, . . . , iidp.mf. .C)q) (6)

where the length of i-th subsequence (iid1.mf.C, . . . , iidp.mf.C)i =∑
p
j=1 iidjis p (1≤ p∈N), and C is

appended case.

5.3. Machine Representation

After attaching a case to a word, a machine universal language representation shows
a computer-readable and -understandable sentence without huge extra data to process it.

Definition 5. (Computer-Understandable Simple Sentence “SiSm”): Given a sign-based sentence
SiSc = (iid0.mf.C, (iid1.mf.C, . . . , iidp.mf.C)1, . . . , (iid1.mf.C, . . . , iidp.mf.C)i, . . . , (iid1.mf. C, . . . ,
iidp.mf.C)q), SiSm is a set of extend iid, called eiid, such that:

SiSm = (S, eiid1, . . . , eiidk, . . . , eiidn) (7)

where an extended iid (eiid):
eiid : = Term.iid.mf.Case.F.C

(term and “iid” refers to a sense in CoDic, “PoS” is already defined in iid, mf refers
to morphological feature, F is the index of the higher level father sign in MParser tree,
and index of the lower level child node “C” in MParser tree). Additionally, the machine
representation referring to PoS is defined:

(1) If PoS is noun, eiid = Term.IID.mf.Case.F.C, in which mf refers to the morphological feature
of the noun.

(2) If PoS is verb, eiid = Term.IID.mf.Case.F.C, in which mf refers to the morphological feature of
the verb.

(3) If PoS is adjective | adverb | prep | conjunction | . . . , eiid = Term. IID.Case.F.C;
(4) If PoS is a particle, delete the node. (Unlike a noun or a verb, a particle is localized and

meaningless in a sense for other languages, only confers a local grammatical meaning, and
it is not possible to map it to other languages.)

Finally, through the machine representation activity, a sentence becomes a bag of
semantic concepts without considering the sequence of the sentence through term index
and can be self-described for understanding by computers.

6. Implementation

The MParser is implemented in Python and Java under macOS version 11.0.1 sys-
tem, and runs under python 3.7 and JDK 1.8. CoDic is represented in XML format for



Appl. Sci. 2021, 11, 11699 15 of 29

English and Chinese. In addition, Stanford Parser and universal dependency APIs are
called by MParser. In the implementation, several sentences are processed and analyzed
to describe how to represent a sentence and maintain semantic consistency from En-
glish sentences. In MParser, the user first types words one by one by selecting terms
and additional morphological features such as “I enjoy travel in summer” in the HSI
step. By calling the constructInfo function in MParser, the sentence is generated into:

constructInfo [(‘I’, ‘ncm’, ‘0x5107df00b5e2′, ‘0′), (‘enjoy’, ‘vtr’, ‘0x5707df00184b’, ‘03′), (‘travel’,
‘ncm’, ‘0x5107df032b53′, ‘0′), (‘in’, ‘prep’, ‘0x5a07df000103′, “), (‘summer’, ‘ncm’,
‘0x5107df016d86′, ‘0′)]

The step of constructInfo constructs the information for each typed word in HSI, such
as term, PoS, iid and morphological features for nouns and verbs. Next, the sentence
goes to the Sentence Computerization step, which is an automated analysis without user
participation. ParserList function of MParser calls the Stanford Parser API to construct a
phrase-based structure sentence based on predefined PoS tagger mapping rules between
Stanford Parser and CoDic:

paserList [‘(ROOT’, ‘ (S’, ‘ ((ncm I))’, ‘ ( (vtr enjoy)’, ‘ ((ncm travel))’, ‘ ((prep in)’, ‘ ( (ncm
summer))))’, ‘ (. .)))’]

Meanwhile, a universal dependency is parsed by calling the dependency_parse func-
tion in MParser, and finding each word dependency relationship by the everyWordDep
function in the sentence:

dependency_parse [(‘ROOT’, 0, 2), (‘nsubj’, 2, 1), (‘dobj’, 2, 3), (‘case’, 5, 4), (‘nmod’, 2, 5), (‘punct’,
2, 6)]
everyWordDep {‘I’: ‘nsubj’, ‘travel’: ‘dobj’, ‘in’: ‘case’, ‘summer’: ‘nmod’, ‘.’: ‘punct’}

After the local sentence analysis, the English sentence includes phrase-based structure
and dependency semantic roles. Then, the sentence is analyzed based on case rules:

(1) This sentence begins from an S, which is a declarative sentence.
(2) The noun (ncm) we is case NOM [I-ncm-NOM] if it is before a verb such at ncm-NOM

← vtr-PRE (except GEN, ADV and others).
(3) The verb (v) enjoy is case PRE [enjoy-vtr-P] where transitive verb (vtr) follows only one

noun structure, such that vtr-PRE→ vtr-PRE noun [supplementary: vit-PRE; vdi-PRE→
vdi-PRE noun1 noun2.]

(4) The noun (ncm) travel is case ACC [travel-ncm-ACC] if it is before a vtr verb such at
vtr-PRE← ncm-ACC.

(5) The preposition (prep) in is case COMv [in-prep-COMv] under PRE structure.
(6) The noun (ncm) summer is case NOM [summer-ncm-NOM], such that in-prep-COMv←

summer-ncm-NOM.

We applied our case grammar rules to generate the MParser tree. The tree visual-
izations are presented by NLTK API (NLTK API: http://nltk.org). Figure 9 shows the
structure and tree screenshot from MParser.

Finally, the machine representation generated a universal sentence:
S.0.0(I.0x5107df00b5e2.0.NOM.0.1(enjoy.0x5707df00184b.03.PRE.0.1(travel.0x5107df01848b.0.ACC.
1.2(in.0x5a07df000103.COMv.1.2(summer.0x5107df016d86.0.NOM.2.3)))))

The universal sentence presents a sequence of extracted meaningful concepts related
to each other using cases and syntactical relationships. The sentence also can map into
Chinese words for Chinese CoDic via unique iid. An illustration shows a transformation
from local English HNL (i) to a universal sentence, then Chinese HNL (j) in Table 4.

http://nltk.org
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Table 4. Transformation from English to Chinese in MParser.

I Enjoy Travel In Summer English(HNLi)

0x5107df00b5e2 0x5707df00184b 0x5107df01848b 0x5a07df000103 0x5107df016d86 iid
0x5107df00b5e
2.0.NOM.0.1

0x5707df00184
b.03.PRE.0.1

0x5107df01848
b.0.ACC.1.2

0x5a07df00010
3.COMv.1.2

0x5107df016d
86.0.NOM.2.3 eiid

我 享受 旅程 在 夏天
Chinese
(HNLj)

First, the English sentence is converted to machine-readable iid sequences from English
CoDic. Then, through case generation and machine representation steps, the English
computer-understandable sentence is converted into a universal computer-readable and
-understandable eiid sentence that is a bag of unique concepts. Finally, the eiid sentence can
be translated into another language such as Chinese based on local rules. MParser ensures
that any sentence in an HNLi can be transformed into HNLj without any semantic loss.

We also tested a passive sentence in English to illustrate the difference between NOM
and ACC from the semantic role, which is “dog is hit by man heavily.”, as shown in Figure 10.

From the example, we found that “dog” is ACC, and “man” is NOM in a passive
sentence, and they meet the standard semantic role for a passive sentence. The PoS of the
word “is” is null since it is inserted during local sentence analysis, not from CoDic, and it
does not appear in final machine representation. We illustrate from tenses of three English
sentences, shown in Table 5.

Table 5. Tense test of MParser in English.

HSI English Sentence Analysis Machine Representation

I.0 go.00 home.0
(I have gone home.) I/NN (have/VBP) go/VBN home/NN.

S.0.0(I.0x5107df00b5e2.0.
NOM.0.1(go.0x5707df00203d.

00.PRE.1.2(home.0x5107df00afcc.0.ACC.2.3)))
I.0 go.40 home.0.

(I have been going home.)
I/NN (have/VBP been/VBN) go/VBN

home/NN.
S.0.0(I.0x5107df00b5e2.0.NOM.0.1(go.0x5707df00203

d.40.PRE.1.2(home.0x5107df00afcc.0.ACC.2.3)))

I.0 go.04 home.0
(I am going home.) I/NN (is/VBP) go/VBG home/NN.

S.0.0(I.0x5107df00b5e2.0.
NOM.0.1(go.0x5707df00203

d.04.PRE.1.2(home.0x5107df00afcc.0.ACC.2.3)))



Appl. Sci. 2021, 11, 11699 17 of 29

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 29 
 

Chinese words for Chinese CoDic via unique iid. An illustration shows a transformation 
from local English HNL (i) to a universal sentence, then Chinese HNL (j) in Table 4. 

Table 4. Transformation from English to Chinese in MParser. 

I Enjoy Travel In Summer 
English 
(HNLi) 

0x5107df00b5e2 0x5707df00184b 0x5107df01848b 0x5a07df000103 0x5107df016d86 iid 
0x5107df00b5e2.0.N

OM.0.1 
0x5707df00184b.03.P

RE.0.1 
0x5107df01848b.0.A

CC.1.2 
0x5a07df000103.CO

Mv.1.2 
0x5107df016d86.0.

NOM.2.3 
eiid 

我 享受 旅程 在 夏天 Chinese 
(HNLj) 

First, the English sentence is converted to machine-readable iid sequences from Eng-
lish CoDic. Then, through case generation and machine representation steps, the English 
computer-understandable sentence is converted into a universal computer-readable and 
-understandable eiid sentence that is a bag of unique concepts. Finally, the eiid sentence 
can be translated into another language such as Chinese based on local rules. MParser 
ensures that any sentence in an HNLi can be transformed into HNLj without any semantic 
loss. 

We also tested a passive sentence in English to illustrate the difference between NOM 
and ACC from the semantic role, which is “dog is hit by man heavily.”, as shown in Figure 
10. 

 
Figure 10. MParser for English sentence “dog is hit by man heavily”. Figure 10. MParser for English sentence “dog is hit by man heavily”.

7. Evaluation

Human manual evaluation is the crucial and ultimate criterion for validating semantic
case labeling given our definition of semantics as a meaning as it is understood by a
language speaker [38]. In this research, MParser was evaluated using intrinsic and extrinsic
evaluation. Intrinsic evaluation (reader-focused) aimed to evaluate the properties of
MParser output by asking participants about the degree of semantic expressiveness of the
output in a questionnaire. The extrinsic (expert-focused) evaluation aimed to evaluate the
agreement rate of case labeling between MParser outputs and experts.

7.1. Dataset

In our experiment, we randomly selected 100 sentences from a dataset (https://www.
kaggle.com/c/billion-word-imputation/data, accessed on 30 August 2021)[39],which is a
large corpus of English language sentences, to manually input each word for each sentence
in MParser, and finally output 75 retained sentences (N = 75) (please see Appendix C for
75 automatic sentence outputs from MParser) because we removed some unrecognizable
words from CoDic and unparseable sentences. Taking into account the validity of the
questionnaire, we divided the 75 sentences (N = 75) into 5 groups (each with 15 sentences
(N = 15)), which were Group A, B, C, D, and E. Table 6 shows our test dataset, which were
50 short sentences with less than 8 words and 25 long sentences with more than 8 words.

https://www.kaggle.com/c/billion-word-imputation/data
https://www.kaggle.com/c/billion-word-imputation/data
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Table 6. Number of MParser outputs.

Sentence Type

Number of Words

Group A
(N = 15)

Group B
(N = 15)

Group C
(N = 15)

Group D
(N = 15)

Group E
(N = 15) Total

Short Sentence (length <= 8,
N = 50) 46 (N = 10) 59 (N = 10) 50 (N = 10) 54 (N = 10) 60 (N = 10) 269

Long Sentence
(length > 8, N = 25) 45 (N = 5) 44 (N = 5) 45 (N = 5) 51 (N = 5) 51 (N = 5) 236

Total 91 103 95 105 111 505

7.2. Experiment Settings

Intrinsic: An intrinsic (reader-focused) design usually requires a larger sample of
(non-expert) participants. In order to investigate judgments of the semantic expressive-
ness of MParser outputs, we used 154 valid participants to judge the degree of semantic
expressiveness for 75 generated sentences through a questionnaire [40]. The semantic
expressiveness criterion was: “how clear is it to understand what is being described” or “how
clear it would be to identify the case label from the description”. We adapted the 5-point Likert
scale of semantic expressiveness, as follows:

1. Very unclear 2. Unclear 3. Acceptable 4. Clear 5. Perfectly clear
Readers were from cohorts of undergraduate and graduate students pursuing English-

related degrees. Before completing the questionnaire, they were expected to understand
the attributes of each MNL case label; each group required at least 25 readers to complete.

Extrinsic: In the semantic case labeling evaluation, ideally, by asking the annotator to
make some semantic prediction or annotation based on pre-specified criteria and comparing
it with the case extracted from the proposed method, the degree of agreement between the
proposed method and the expert’s annotation could be determined. Thus, a small number
of expert annotators were recruited to label cases of the MParser [41]. We used three
experts, two Ph.D. students majoring in an English linguistics-related research area, and
one university English lecturer to label the 75 sentences. Before labeling, they were required
to fully understand the description of attributes of each MNL case through learning case
grammars. Additionally, five groups of sentences (each with 15 sentences) required three
experts to be completed. This meant that every expert needed to label 75 sentences. To
facilitate labeling by the experts and compare it to test data of MParser, we split each word
of each sentence, and the experts only needed to select the case for each word. We measured
pairwise agreement of extrinsic evaluation among experts and MParser outputs using the
kappa coefficient (κ), which is widely used in computational linguistics for measuring
agreement in category judgments [42]. It is defined as

K =
P(A)− P(E)

1− P(E)
(8)

where P(A) is the observed agreement rate of case labeling for one annotator such as
expert 1, and P(E) is the expected agreement rate for another expert 2. The simple Kappa
coefficient adapts binary classification. Thus, case labeling was achieved by a binary
classification where each case has Yes (1) or No (0). For example, a NOM case label might
be NOM case (1) or non-NOM case (0) in one word for annotators. We calculated κ from
two aspects: inter-annotator agreement and intra-annotator agreement. Inter-annotator
agreement was calculated for 75 sentences, which were annotated by two experts. Intra-
annotator agreement followed a similar process but was calculated for 75 sentences that
were annotated between expert and MParser outputs. The interpretation standard of Kappa
varied (−1 to 1) according to Landis and Koch [43]: <0 Poor | 0−0.2 Slight | 0.2−0.4 Fair
| 0.4−0.6 Moderate | 0.6−0.8 Substantial | 0.8–1 Perfect.
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7.3. Results

From Table 7 and Figure 11, the judgments of semantic expressiveness indicated that
MParser had better results since Clear and Perfectly clear had the largest percentage overall.
Additionally, the Perfectly clear percentage between short sentences (N = 50) and long
sentences (N = 25), at 44% and 23%, respectively, indicated that performance with short
sentences was more significantly clear in semantic expressiveness.

Table 7. The judgements of semantic expressiveness in intrinsic evaluation.

Perfectly
Clear Clear Acceptable Unclear Very

Unclear Total

Group A 119 152 128 21 15 435
Group B 130 192 98 9 6 435
Group C 143 223 109 4 1 480
Group D 127 166 90 3 4 390
Group E 139 226 101 11 3 480

30% 43% 24% 2% 1% 2220
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Figure 11. The percentage of semantic expressiveness for short and long sentences in intrinsic evaluation.

Table 8 shows the experimental results using MParser and human expert labeling. The
average κ values were 0.693 for inter-annotator agreement and 0.717 for intra-annotator
agreement. As 0.6 < κ < 0.8 indicates substantial agreement, the empirical results showed
good consistency between the predictions generated by our approach and those of experts.
The analysis of the κ values between three experts found that the agreement κ values
for experts 2 and 3 were relatively higher. Experts 1 and 2, 3 had a slight gap, but the
κ values were still within the range 0.6 < κ < 0.8. Table 8 found that experts 2 and 3
had higher average κ values than expert 1 in intra-annotator agreement. In addition,
we calculated average κ values for intra-annotator agreement between short sentences
and long sentences, as shown in Table 9. The average κ value for long sentences was
significantly lower than that for short sentences. This result is consistent with the trend for
our intrinsic evaluation, which showed that the higher complexity of a sentence was more
likely to cause disagreement in case grammar labeling. In summary, comparing expert
and MParser outputs, inter-annotator and intra-annotator agreement presented substantial
results, and there was no major disagreement between our MParser results and those of
the experts.
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Table 8. Kappa agreement between experts and Mparser.

Group Inter-Annotator
(Expert, Expert) κ * κavg.

Intra-Annotator
(Expert, MParser) κ * κavg.

Group A
(N = 15)

(Expert 1, Expert 2) 0.688
0.741

(Expert 1, MParser) 0.637
0.753(Expert 2, Expert 3) 0.831 (Expert 2, MParser) 0.853

(Expert 1, Expert 3) 0.703 (Expert 3, MParser) 0.768

Group B
(N = 15)

(Expert 1, Expert 2) 0.597
0.663

(Expert 1, MParser) 0.537
0.668(Expert 2, Expert 3) 0.766 (Expert 2, MParser) 0.685

(Expert 1, Expert 3) 0.627 (Expert 3, MParser) 0.781

Group C
(N = 15)

(Expert 1, Expert 2) 0.648
0.642

(Expert 1, MParser) 0.603
0.734(Expert 2, Expert 3) 0.673 (Expert 2, MParser) 0.779

(Expert 1, Expert 3) 0.605 (Expert 3, MParser) 0.821

Group D
(N = 15)

(Expert 1, Expert 2) 0.694
0.687

(Expert 1, MParser) 0.613
0.724(Expert 2, Expert 3) 0.775 (Expert 2, MParser) 0.835

(Expert 1, Expert 3) 0.593 (Expert 3, MParser) 0.724

Group E
(N = 15)

(Expert 1, Expert 2) 0.686
0.730

(Expert 1, MParser) 0.616
0.706(Expert 2, Expert 3) 0.837 (Expert 2, MParser) 0.749

(Expert 1, Expert 3) 0.668 (Expert 3, MParser) 0.753

Avg. Substantial 0.693 Substantial 0.717
* p value < 0.001.

Table 9. Kappa intra-annotator agreement between short and long sentences.

Sentence Type Inter-Annotator
(Expert, MParser) κavg.

All Sentences
(N = 75)

(Expert 1, MParser) 0.601
(Expert 2, MParser) 0.780
(Expert 3, MParser) 0.769

Short Sentence (length <= 8)
(N = 50)

(Expert 1, MParser) 0.728
(Expert 2, MParser) 0.834
(Expert 3, MParser) 0.819

Long Sentence (length > 8)
(N = 25)

(Expert 1, MParser) 0.505
(Expert 2, MParser) 0.726
(Expert 3, MParser) 0.719

7.4. Discussion
7.4.1. Case Labeling

From the experimental results in 7.3, we can see that our MParser had better results.
We also calculated each case match rate (MR) for all words (N = 505) between experts and
MParser outputs as the ratio of MatchedCase to TotalCase.

From the results shown in Table 10, we found that PRE and GEN cases had extremely
high MRs, which were 0.986 and 0.959, respectively. ADV, ACC, and LIN cases came
next. The MR of DAT was relatively low because of the differences in the judgment of the
infinitive. To our surprise, the MR of the NOM case was relatively low. Through one-to-one
analysis of sentences, we found that when nouns were under the COM (COMn/COMv)
structure, some experts still labeled the COM case for nouns, and our MParser identified the
nouns as NOM case. For COM, COMn, and COMv cases, the MR was not very high because
the experts had different labels on which COM case to use for prepositions. However, if the
COM case was considered a general COM case, COMall, the average of the MR achieved a
very high score, which was 0.920, indicating a consensus on the COM case.



Appl. Sci. 2021, 11, 11699 21 of 29

Table 10. Case Match Rate (MR) between Experts and MParser outputs.

Intra-Annotator
(Expert, MParser)

MR (N = 505)

NOM PRE ACC DAT GEN LIN ADV COM COMv COMn COMall Avg.

(Expert 1, MParser) 0.684 0.979 0.804 0.647 0.958 0.756 0.840 0.682 0.649 0.690 0.916 0.782
(Expert 2, MParser) 0.706 1 0.847 0.684 0.973 0.807 0.891 0.639 0.711 0.687 0.907 0.805
(Expert 3, MParser) 0.715 0.979 0.828 0.749 0.947 0.784 0.874 0.662 0.684 0.648 0.938 0.801

Avg. 0.702 0.986 0.826 0.693 0.959 0.782 0.868 0.661 0.681 0.675 0.920

7.4.2. Semantic Consistency

Here, we discuss the multilingual semantic consistency of MParser between English
and Chinese. In MParser, a sentence is a concept tree, consisting of simple sentences defined
by a sequential list SiS, where each atomic concept iid is a low-level concept llc∈LLC in the
step of human semantic input (HSI), and compound concept eiid ∈EIID is a high-level concept
hlc∈HLC generated in MParser, acting as a sentence constituent in the step of sentence
computerization (SC). Given two sentences, SiSi, which is an English sentence, and SiSj,
which is a Chinese sentence, if low-level concept equivalence and high-level concept equiv-
alence are equal such that SiSi = m SiSj (=m indicates semantic equivalence), then they are
semantically consistent. As low-level concept equivalence is semantic consistency of terms,
or word-based, high-level concept equivalence is sentence-based semantic consistency.

1. Low-level concept equivalence: SiSi and SiSj are equivalent if and only if:

(1) ∀ LLCi ⊂ IIDi ⊂ CoDic
(2) ∀ LLCj ⊂ IIDj ⊂ CoDic
(3) Mapping relationship: LLCi ↔ LLCj

This guarantees that two heterogeneous single concepts are semantically consistent,
as two sentences share a common iid ∈ CoDic.

2. High-level concept equivalence: SiSi and SiSj are equivalent if and only if:

(1) ∀ HLCi ⊂ EIIDi
(2) ∀ HLCj ⊂ EIIDj

(3) Mapping relationship: HLCi ↔ HLCj

HLC achieves complex concept consistency by converging all heterogeneous structures
onto an isomorphic grammatical structure through MParser.

3. LLC⇔ HLC: LLC and HLC are equivalent if and only if:

(1) Mapping relationship: IID↔ EIID, which is iid in Def. 4 mapped to eiid in Def. 5

Thus, if and only if the following mapping path exists for semantic equivalence:
SiSi (local concept)↔ LLCi (local concept, IIDi,)↔Map (IIDi, Common concept)↔ HLCi

(Common concept, EIIDi)↔ HLCj (EIIDj, Common concept)↔Map (Common concept, IIDj)↔
LLCj (IIDj, local concept)↔ SiSj (local concept)

It is obvious that if all three conditions are met, then SiSi =m SiSj. Figure 12 illustrates
that languages i and j are semantically consistent as they share common tree concepts in
cross languages through the unique iid and eiid in MParser.
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8. Conclusions and Future Work

Creating a common semantic representation for multilingual languages is an essential
goal of the NLP community. To facilitate multilingual sentence representation and semantic
interoperability, this research presented an MParser for parsing local language sentences
and providing a common understanding across the heterogeneous sentence. MParser con-
verts complex concepts into a computer-readable and -understandable universal sentence
for any simple multilingual sentence. This approach has provided a universal grammatical
feature such that any sentence can be processed as a bag of concepts and refer to any
term of a natural language. Additionally, it has laid a theoretical foundation for enabling
humans and computers to understand sentences semantically through unique iid and eiid.

In the future, we plan to apply the approach to more real-world applications. For
example, we will conduct research on how to achieve content persistence during construc-
tion of the Metaverse [44] by proposing a content-level persistence maintenance model
since the ambiguity of the language, the use of synonyms to express a single idea, creates
problems. In the blockchain, we will explore the question of how to achieve semantic
interoperability between IoT devices and users [45]. In the field of smart contracts, we will
study the cross-context issues of smart contracts between unknown business partners such
as developers or anybody who even comes from different backgrounds or languages. Since
language barriers prevent cross-language searches, most users do not have easy access
to most of this [46]. Moreover, it also will be necessary to extend the research, including
semantic inference on extracted meaning. We hope that our novel method will inspire the
community to integrate various functions into our work.
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Appendix A. Parts of Speech (PoS)

Table 1. PoS in CoDic.

PoS Abbr. Definition

Noun
(n)

Common Ncm A term class denoting a common entity.
Proper Person npp A term class denoting a proper person entity.

Proper Organization nop A term class denoting a proper organizational entity.
Proper Geography ngp A term class denoting a proper geographical entity.

Pronoun npr A term class substituting a noun or a noun phrase.

Verb
(v)

Intransitive vit A term class denoting an action, an event, or a state without following
any entity.

Transitive vtr A term class denoting an action, an event, or a state following only
one entity.

Ditransitive vdi A term class denoting an action, an event, or a state without following
only two entities.

Copulative cop
A term class denoting a linkage between an entity and a copulated

component (coc) that expresses a state of being. Adopting “coc” is to
avoid the confusion of current use of “predicative expression”.

Adjective adj A term class describing the attributes of an entity.
Adverb adv A term class describing the attributes of an action, an event, or a state.

Preposition prep A term class denoting a relation to other noun-formed term(s) before,
in the middle, or after.

Conjunction conj A term class connecting terms, phrases and clauses, such as and, or,
and if .

Interjection int A term class expressing a spontaneous feeling or reaction.
Onomatopoeia ono A term class imitating, resembling, or suggesting a sound.

Particle par A term class indicating a case encompassed by it.

B. Grammatical Features

In MParser, the gender and number features are only attributed to nouns. The features
of tense, aspect, and voice are only attributed to verbs. For the grammatical aspects, we
have the following definitions:

- Perfect (prf ): a verb form that indicates that an action or circumstance occurred earlier
than the time under consideration, often focusing attention on the resulting state
rather than on the occurrence itself. E.g., “I have made dinner”.

- Perfect Progressive (pfg): a verb form that indicates that an action was progressive and
finished at a time. E.g., “I had been doing homework until 6 PM yesterday”.

- Perfective (pfv): a grammatical aspect that describes an action viewed as a simple
whole, i.e., a unit without interior composition. Sometimes called the aoristic aspect,
which is a verb form to usually refer to past events. For example, “I came”.

- Imperfective (ipfv): a grammatical aspect used to describe a situation viewed with
interior composition. The imperfective is used to describe ongoing, habitual, repeated,
or similar semantic roles, whether that situation occurs in the past, present, or future.
Although many languages have a general imperfective, others have distinct aspects
for one or more of its various roles, such as progressive, habitual, and iterative aspects.

1. Imperfective habitual (iph): describes habitual and repeated actions. For example, “I
read”. “The rain beat down continuously through the night”.

2. Imperfective progressive (ipp): describes ongoing actions or events. For example, “The
rain was beating down”.

Thus, we now have the feature combinations for noun and verb as shown in Tables 2 and 3.
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Table 2. Grammatical features of noun on morphological change.

Number Gender Binary Postfix Hex Postfix

Countable singular

Neuter 0000 0
Masculine 0001 1
Feminine 0010 2
Bisexual 0011 3

Countable plural

Neuter 0100 4
Masculine 0101 5
Feminine 0110 6
Bisexual 0111 7

Uncountable

Neuter 1000 8
Masculine 1001 9
Feminine 1010 A
Bisexual 1011 B

Table 3. Grammatical features of verb on morphological change.

Voice Tense Aspect Binary Postfix Hex Postfix

active

Present

Perfect 0000 0000 00
Perfect progressive 0000 0001 01

Perfective 0000 0010 02
Imperfective habitual 0000 0011 03

Imperfective progressive 0000 0100 04

Past

Perfect 0001 0000 10
Perfect progressive 0001 0001 11

Perfective 0001 0010 12
Imperfective habitual 0001 0011 13

Imperfective progressive 0001 0100 14

Future

Perfect 0010 0000 20
Perfect progressive 0010 0001 21

Perfective 0010 0010 22
Imperfective habitual 0010 0011 23

Imperfective progressive 0010 0100 24

Past future

Perfect 0011 0000 30
Perfect progressive 0011 0001 31

Perfective 0011 0010 32
Imperfective habitual 0011 0011 33

C. MParser Output—75 Sentences

In MParser, we manually input 75 valid sentences and automatically output parsed
results for each sentence, as shown in Table 4.

Table 4. 75 sentences from Mparser output.

1. I like apples.
(I.NOM like.PRE apple.ACC)

2.
I miss those times and cherish them often.
(I.NOM miss.PRE those.GEN time.ACC cherish.PRE them.ACC
often.ADV)

3. She has been found.
(She.NOM find.PRE)

4. Nobody can understand.
(Nobody.NOM can.PRE understand.PRE)

5. His method was strange but impressive.
(His.GEN method.NOM was.PRE strange.LIN impressive.LIN)

6. She said she is waiting until night.
(she.NOM said.PRE she.NOM. wait.PRE. until.COMv night.NOM)
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7. We need to speed into perspective.
(we.NOM. need.PRE speed.PRE into.COMv perspective.NOM)

8. The size of sample will change user behavior.
(size.NOM of sample.NOM change.PRE user.ACC behavior.ACC)

9. The car was sold with a three warranty.
(Car.ACC sell.PRE with.COMv three.NOM warranty.NOM)

10. The crash occurred in our province.
(Crash.NOM occurr.PRE in.COMv our.GEN province.NOM)

11. Russia remains hostage oil and gas prices.
(Russia.NOM remain.PRE hostage.ACC oil.ACC gas.ACC price.ACC)

12.
Previous appointees stayed the role until their deaths.
(Previous.GEN appointee.NOM stay.PRE role.ACC until.COMv
their.GEN death.NOM)

13. Everyone has been for their particular skill.
(Everyone.NOM is.PRE for.LIN their.GEN particular.GEN skill.NOM)

14. They have their cake and eat it too.
(They.NOM have.PRE their.GEN cake.ACC eat.PRE it.ACC too.ADV)

15. It was experiencing some hard moments.
(It.NOM experience.PRE some.GEN hard.GEN moment.ACC)

16. I ‘m going to join the club.
(I.NOM go.PRE join.PRE club.ACC)

17.
This dispute with the legal is just beginning.
(This.GEN dispute.NOM with.COMn legal.NOM is.LIN just.ADV
beginning.COMn)

18. She said the outage started in the afternoon.
(She.NOM said.PRE outage.NOM started.PRE in.COMv afternoon.NOM)

19. Our teacher’s appearance looks bad and dirty.
(Our.GEN teacher.NOM appearance.NOM look.LIN bad.COM dirty.COM)

20.
The quick brown fox jumped over the lazy dog.
(Quick.GEN brown.GEN fox.NOM jump.PRE over.COMv lazy.GEN
dog.NOM)

21. I wish you are lucky too.
(I.NOM wish.PRE you.NOM are.PRE lucky.LIN too.ADV)

22. I spoke to my mum at last night.
(I.NOM spoke.PRE my.GEN mum.ACC at.COMv last.GEN night.NOM)

23. Everybody wants to their mark.
(Everybody.NOM want.PRE their.GEN mark.ACC)

24. The dog is hit by the man heavily.
(Dog.ACC hit.PRE by.COMv man.NOM heavily.ADV)

25. The day finally dawned.
(Day.NOM finally.ADV dawn.PRE)

26. They are just excited about the honor.
(They.NOM are.PRE just.ADV excited.LIN about.COMv honor.NOM)

27. She detailed the highs and lows.
(She.NOM detail.PRE high.ACC low.ACC)

28. Two of the soldiers were catching ride.
(Two.NOM soldier.NOM catch.PRE ride.ACC)

29. The students also track the men’s progress.
(Student.NOM also.ADV track.PRE man. ACC progress.ACC)

30. He is popular in all of the House.
(He.NOM is.PRE popular.LIN in.COMv all.GEN House.NOM)

31. Fame released in UK cinemas.
(Fame.NOM release.PRE in.COMv UK.NOM cinema.NOM)

32. I enjoy travel in summer.
(I.NOM enjoy.PRE travel.ACC in.COMv summer.NOM)

33. We relied on the integrity of truth.
(We.NOM rely.PRE integrity.ACC truth.ACC)

34. His sense of taste is returning.
(His.GEN sense.NOM taste.NOM return.PRE)
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35.
Home builders also jumped most financials.
(Home.NOM builder.NOM also.ADV jump.PRE most.GEN
financial.ACC)

36. They were taxed income when we earned them.
(They.NOM tax.PRE income.ACC we.NOM earn.PRE them.ACC)

37.
She joined a sport during primary school.
(She.NOM join.PRE sport.ACC during.COMv primary.NOM
school.NOM)

38. Your friends are good men.
(Your.GEN friend.NOM are.LIN good.GEN man.ACC)

39. You will find links to this news.
(You.NOM find.PRE link.ACC to.COMv this.GEN news.NOM)

40. Some radio channels will move new position.
(Some.GEN radio.NOM channel.NOM move.PRE new.GEN position.ACC)

41. She has also worked with battery hens.
(She.NOM also.ADV work.PRE with.COMv battery.NOM hen.NOM)

42.
The group now owns venues across the country.
(Group.NOM now.NOM own.PRE venue.ACC across.COMv
country.NOM)

43.
The student finished their season in one hour.
(Student.NOM finish.PRE their.GEN season.ACC in.COMv one.NOM
hour.NOM)

44. It sets the two on collision courses.
(It.NOM set.PRE two.ACC on.COMv collision.NOM course.NOM)

45. The two people were taking in the class.
(Two.GEN people.NOM talk.PRE in.COMv class.NOM)

46. The financial crisis has many of those bets.
(Financial.GEN crisis.NOM has.PRE many.GEN those.GEN bet.ACC)

47. The party is at a new location.
(Party.NOM is.PRE at.LIN new.GEN location.NOM)

48. This is great place to start the trip.
(This.NOM is.PRE great.COM place.LIN start.PRE trip.ACC)

49. I want to pick something else really.
(I.NOM want.PRE pick.PRE something.ACC else.GEN really.ADV)

50.
You should find a similar thing like sport.
(You.NOM should.ADV find.PRE similar.GEN thing.ACC like.COMv
sport.NOM)

51.
The violence was some of the worst ethnic in China for decades.
(Violence.NOM is.PRE some.GEN worst.GEN ethnic.ACC in.COMn
China.NOM for.COMv decade.NOM)

52.
The market is mired in scandals and has not recovered good.
(Market.NOM mired.PRE in.COMv scandals.NOM not.ADV recover.PRE
good.COM)

53.
The insurgents often attack police and sometimes city officials at night.
(Insurgent.NOM often.ADV attack.PRE police.ACC sometimes.ADV
city.ACC official.ACC at.COMv night.NOM.)

54.
The cake is made by the shop after months slowly.
(Cake.ACC made.PRE by.COMv shop.NOM after.COMv month.NOM
slowly.ADV)

55.

His detention began in this week when he was trying to leave the city on a
false passport.
(His.GEN detention.NOM begin.PRE in.COMv this.GEN week.NOM
he.NOM try.PRE leave.PRE city.ACC on.COMv false.GEN
passport.NOM)

56.
I want to thank every member of congress who stood tonight with courage.
(I.NOM want.PRE thank.PRE every.GEN member.ACC congress.ACC
stand.PRE tonight.ADV with.COMv courage.NOM)

57.
It was his job to fight the war and make an assessment when the time came.
(It.NOM is.PRE his.GEN job.ACC fight.PRE war.ACC make.PRE
assessment.ACC time.NOM come.PRE)
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58.

The Justice Department scheduled a news conference Tuesday afternoon to
announce the indictment.
(Justice.NOM Department.NOM schedule.PRE news.ACC conference.ACC
in.COMv afternoon.NOM announce.PRE indictment.ACC)

59.
The president had been scheduled to leave for the trip on Sunday.
(President.NOM schedule.PRE leave.PRE for.COMv trip.NOM on.COM
Sunday.NOM)

60. A sale has been hit after a robbery in a store.
(Sale.ACC hit.PRE after.COMv robbery.NOM in.COMv store.NOM)

61.
I have won this race twice and it would be great to win it again.
(I.NOM win.PRE this.GEN race.ACC twice.ADV it.NOM is.LIN
great.COM win.PRE it.ACC again.ADV)

62.
We ‘ve got great commanders on the ground in leadership.
(We.NOM get.PRE great.GEN commander.ACC on.COMv ground.NOM
in.COMv leadership.NOM)

63.
He intends to return to the company within next year.
(He.NOM intend.PRE return.PRE company.ACC within.COMv next.GEN
year.NOM)

64.
Providing sensitive information to strangers by phone is dangerous.
(Providing.PRE sensitive.GEN information.ACC to.COMv stranger.NOM
by.COMn phone.NOM is.LIN dangerous.COM)

65.

She heard the noise and thought someone must have been making it for the
event.
(She.NOM hear.PRE noise.ACC think.PRE someone.NOM must.ADV
make.PRE it.ACC for.COMv event.NOM)

66.
He had been banned over fears that raised the chances of contamination.
(He.ACC ban.PRE over.COMv fear.NOM raise.PRE chance.NOM
contamination.NOM)

67.
Readers who want local color in their mysteries usually seek exotic foreign.
(Reader.NOM want.PRE local.GEN color.ACC in.COMv their.GEN
mystery.NOM usually.ADV seek.PRE exotic.GEN foreign.ACC)

68.
He said he will develop a new investment strategy for several months.
(He.NOM said.PRE he.NOM develop.PRE new.GEN investment.NOM
strategy.NOM for.COMv several.GEN month.NOM)

69.

The emerging legislation is at his economic recovery program for further
years.
(Emerging.GEN legislation.NOM is.PRE at.LIN his.GEN economic.NOM
recovery.NOM program.NOM for.COMv further.GEN year.NOM)

70.
All the records were always at hand if we must call about something.
(All.GEN record.NOM are.LIN always.ADV at.COM hand.NOM
we.NOM must.ADV call.PRE about.COMv something.NOM)

71.

The TV series has become a big hit among viewers who find empathy with
characters in the drama.
(TV.NOM series.NOM become.PRE big.GEN hit.NOM among.COMv
viewer.NOM find.PRE empathy.ACC with.COMv character.NOM
in.COMv drama.NOM)

72.
The chain of workers involved in real estate deals has grown over the years.
(Chain.NOM worker.NOM involved.PRE in.COMv real.GEN estate.NOM
deal.NOM grow.PRE over.COMv year.NOM)

73.

Rival studios have come together to push consumers to rent more movies on
their cable boxes.
(Rival.NOM studio.NOM come.PRE together.ADV push.PRE
consumer.ACC rent.PRE more.GEN movie.ACC on.COMv their.GEN
cable.NOM boxe.NOM)

74.
He fled to a neighboring town where he took a family hostage.
(he.NOM fled.PRE neighbour.GEN town.ACC he.NOM take.PRE
family.NOM hostage.NOM)

75.
Everyone was expecting France teams to make the finals competition.
(Everyone.NOM expect.PRE France.ACC team.ACC make.PRE final.GEN
competition.ACC)
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