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Abstract: During recent years, power conversion efficiencies (PCEs) of organic-inorganic halide
perovskite solar cells (PSCs) have shown remarkable progress. The emergence of various thin film
deposition processes to produce perovskite films, notably using solution processing techniques, can
be credited in part for this achievement. The engineering of chemical precursors using solution
processing routes is a powerful approach for enabling low-cost and scalable solar fabrication pro-
cesses. In the present study, we have conducted a systematic study to tune the equimolar precursor
ratio of the organic halide (methylammonium iodide; MAI) and metal halide (lead iodide; PbI2) in a
fixed solvent mixture of N,N-dimethylformamide (DMF):dimethylsulfoxide (DMSO). The surface
morphology, optical characteristics, and crystallinity of the films produced with these four distinct
solutions were investigated, and our analysis shows that the MAI:PbI2 (1.5:1.5) film is optimal under
the current conditions. The PSCs fabricated from the (1.5:1.5) formulation were then integrated
into the n-i-p solar cell architecture on fluorine-doped tin oxide (FTO) substrates, which exhibited
a PCE of ~14.56%. Stability testing on this PSC device without encapsulation at 29 ◦C (ambient
temperature) and 60% relative humidity (RH) under one-sun illumination while keeping the device
at its maximum power point showed the device retained ~60% of initial PCE value after 10 h of
continuous operation. Moreover, the recombination analysis between all four formulations showed
that the bimolecular recombination and trap-assisted recombination appeared to be suppressed in
the more optimal (1.5:1.5) PSC device when compared to the other formulations used in the n-i-p
PSC architecture.

Keywords: perovskite solar cells; equimolar concentration; solution processing; organic halide; metal
halide; n-i-p

1. Introduction

The past decade has witnessed increasing interest in novel materials such as graphene
and its hybrids [1,2], transition metal dichalcogenides (TMDCs) [3], black phosphorus [4],
and organic–inorganic metal halide perovskites as promising optoelectronic materials
for solid-state photovoltaics [5], light-emitting diodes (LEDs) [6], lasers [7], photode-
tectors [8–10], and photocatalysts [11]. Perovskite materials exhibit many remarkable
optoelectronic properties such as broad bandgap tunability [12,13], high absorption co-
efficients [5], ambipolar charge transport properties [14], long charge carrier diffusion
lengths (>1 µm) [15], high charge carrier mobilities [16], low non-radiative recombination
rates [17,18], and high emission color purity [19]. Aside from that, ionic conductivity in
perovskites arises from ion/defect migration, which has revealed a fascinating feature
toward switchable resistance depending on the history of the last applied bias. This ability
to reliably regulate ion migration and hysteresis has aided in the development of memris-
tors devices (memory + resistor) based on the unique structural properties provided by
perovskites [20]. These remarkable properties make perovskites ideal candidates for their
use as light-harvesting materials in solar cells and various other devices.
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Perovskite structures have the stoichiometry of ABX3, where A = a large organic/inorg-
anic cation (e.g., CH3NH3

+, Cs+), B = an inorganic metal cation (e.g., Pb2+, Sn2+), and X = a
halide anion (e.g., Cl−, Br−, I−). The formability of the perovskite structure is determined
by the geometrical tolerance factor t, defined as t = (rA+rX)√

2 (rB+rX)
, where rA, rB, and rX are

the effective ionic radii of the A, B, and X ions [21]. The ideal perovskite structure is
formed when t = 1, but a feasible range of values for the formability of alkali metal halide
perovskites is 0.813 < t < 1.107 [22].

While the organic halide (e.g., methylammonium iodide (MAI)) component of the
perovskite dissolves readily in virtually all polar solvents, finding a solvent to dissolve
the metal halide (e.g., lead iodide (PbI2)) component is more difficult. Some of the widely
used solvents include N,N-dimethylformamide (DMF) and dimethylsulfoxide (DMSO),
and the solubility limit of PbI2 has been experimentally determined to be ~450 mg/mL and
~600 mg/mL in DMF and DMSO, respectively, which is sufficient to form an adequately
thick perovskite film [23,24]. Over the years, several distinct variants of solution-processing
by spin coating of perovskite materials have been studied. Such approaches have the
common goal to produce perovskite films with dense and homogeneous morphology
and large grain size and to achieve optimal crystallinity to yield an effective photoab-
sorber layer within the photovoltaic solar cell stack. The so-called one-step, two-step,
and solvent engineering procedures are the most popular (Figure 1). Using the one-step
method, 3D perovskite (e.g., MAPbI3) can be readily formed by spin coating the mix-
ture of perovskite precursors (e.g., MAI and PbI2) in some polar aprotic solvents, such
as N,N-dimethylacetamide (DMAc) and DMF. After spin coating, films can be thermally
treated at mild temperatures to form the desired perovskite phase [25]. While this method
is straightforward and remains widely used for some perovskite compositions [26,27],
the perovskite precursors may undergo chemical reactions in the solution that affect the
final film structure and composition, with a concomitant impact on the solar cell per-
formance [28]. The two-step method, in which one of the precursors is deposited first,
followed by the deposition of a second precursor and thermal annealing, was popular in
the early days of perovskite research [29]. Most commonly, the first precursor (e.g., PbI2) is
deposited by spin coating, while the second one (e.g., MAI) can be deposited by dipping
the sample into a solution [30] or by spin coating on top of the first layer [31]. For a time,
devices fabricated using the two-step method performed better than those made using the
one-step approach [32], but the situation drastically changed with the advent of the solvent
engineering approach [33], which remains the most commonly used method to date.

The solvent engineering method is a variation of the one-step approach, in which
all perovskite precursors are deposited in a single step, followed by the application of
an antisolvent, which causes the rapid crystallization of the perovskite layer [34]. This
method provides the ease of the one-step method and, at the same time, results in better film
morphology, similar to that observed for the two-step method. The use of a suitable amount
of DMSO (Lewis base) in combination with DMF can form the Lewis acid-base adduct with
PbI2 (Lewis acid), which results in the formation of a dense perovskite layer via the MAI-
PbI2-DMSO intermediate phase. The antisolvent treatment enables the elimination of the
host solvent(s) and initiates crystallization of the perovskite film during this intermediate
phase, which helps regulate crystal development and morphology of the film. However,
the use of an excessive amount of DMSO may lead to pinholes in the perovskite film, and
thus, a small volume of DMSO is usually preferred with DMF; here, we used DMF:DMSO
(4:1) [33,35]. The rate at which the antisolvent is applied is crucial and one of the decisive
steps to determine film quality; thus, an appropriate rate of antisolvent dropping should
be optimized for different antisolvents [36]. The convenience and simplicity of solution-
processed perovskite layers by spin coating, which can be conducted in practically any
laboratory without the need of expensive and sophisticated vacuum apparatus, is one of the
primary advantages of this method. Another important benefit is the ability to introduce
additives to the perovskite precursor solution, which has proven to have a beneficial
impact on the final perovskite structure [37]. Therefore, an organized study to optimize
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varying equimolar concentrations during the spin coating of perovskite precursors is
highly beneficial in making MAPbI3 PSCs since these are often still used as a benchmark to
compare with the growing family of other perovskite-based photoabsorbers for PSCs.
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Figure 1. Illustrated are the (a) one-step spin coating, (b) two-step spin coating, and (c) one-step
spin coating via solvent engineering and antisolvent extraction methods. In our work, we have
used the one-step coating and solvent engineering and antisolvent extraction approach to form our
photoabsorber layers.

In the present report, we have conducted a systematic study in tuning the equimolar
precursor ratio of the organic halide (MAI = 1 M, 1.2 M, 1.5 M, 1.6 M) and metal halide
(lead iodide: PbI2 = 1 M, 1.2 M, 1.5 M, 1.6 M) in a fixed solvent mixture of DMF:DMSO.
Hereafter, the fabricated films and perovskite solar cells (PSCs) with these four different
concentrations will be denoted as (1.0:1.0), (1.2:1.2), (1.5:1.5) and (1.6:1.6) in this study.
These films were studied and discussed on the basis of their surface morphology, optical
properties and crystallinity. Additionally, the n-i-p PSCs fabricated from all four formula-
tions were analyzed for recombination losses and operational stability study, which we
also discuss here.

2. Materials and Methods
2.1. Materials

Lead (II) iodide (PbI2, 99.99%) was purchased from TCI America, while DMF, DMSO,
anhydrous ethanol, toluene, chlorobenzene, acetonitrile, 4-tert-butylpyridine (TBP), tita-
nium diisopropoxide bis(acetylacetonate), and bis(trifluoromethane)sulfonimide lithium
salt (Li-TFSI) were purchased from Sigma-Aldrich, St. Louis, MO, USA. The methyl am-
monium iodide (MAI, 99.9%) and tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine)cobalt(III)
tris-(bis(trifluoromethyl sulfonyl)imide) (FK209) were also purchased from Sigma-Aldrich,
St. Louis, MO, USA. Finally, the 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9′-
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spirobifluorene (Spiro-OMeTAD) was obtained from Lumtec, Taiwan. All chemicals were
used as received.

2.2. Morphology Characterization

Field-emission scanning electron microscopy (FE-SEM) was performed using an FEI-
Quanta environmental SEM. One-dimensional X-ray diffraction (1D-XRD) measurements
were conducted using a Rigaku Ultima III X-ray diffractometer.

2.3. Optical Characterization

Ultraviolet–visible (UV–vis) optical absorption spectroscopy of the synthesized films
was conducted using the Agilent CARY 5000 spectrophotometer. The steady-state photolu-
minescence (PL) spectra were measured using a LabRAM HR Evolution spectrometer from
HORIBA Scientific, equipped with a ~532 nm laser source for optical excitation.

2.4. Device Fabrication

For the PSC device fabrication, first, pre-etched fluorine-doped tin oxide (FTO) coated
glass substrates were cleaned rigorously using soapy water, deionized water (DI), ethanol
and isopropanol (IPA) for 20 min each under sonication. After cleaning, the substrates
were N2 blow-dried to remove the residual solvents from the substrates and then thermally
treated in a convection oven at 70 ◦C for 30 min. Cleaned substrates were further treated
in a UV-ozone plasma for 20 min before starting the thin film deposition of the solar cell
stacking layers. For the fabrication of the n-i-p structure, the cleaned FTO substrates
were spin coated with a 0.15 M solution of titanium diisopropoxide bis(acetylacetonate) in
ethanol at 3000 rpm for 20 s to form a compact titanium dioxide (c-TiO2) electron transport
layer (ETL) and subsequently annealed at 510 ◦C for 30 min. For the perovskite absorber
layer, a perovskite precursor solution was prepared with an equimolar precursor ratio of
the organic halide (MAI = 1 M, 1.2 M, 1.5 M, 1.6 M) and the metal halide (PbI2 = 1 M, 1.2 M,
1.5 M, 1.6 M) in a fixed solvent formulation of DMF:DMSO (4:1); all four solutions were
stirred at 65 ◦C overnight. The perovskite films were then deposited by spin coating these
4 precursor solutions on top of the c-TiO2 layer via a spin coating program comprising of 8 s
at 1000 rpm, with a subsequent ramp to 5100 rpm for 15 s. An amount of 0.1 mL of toluene,
used as the anti-solvent, was dripped dynamically onto the underlying spinning substrate,
for the last 5 s of the second stage ramp to 5100 rpm. The stack was then thermally treated
at 125 ◦C for 20 min. For the hole transport layer (HTL), the spiro-OMeTAD (86 mg mL−1

in chlorobenzene) was doped with three solutions, all used in conjunction, consisting of
34 µL of TBP, 20 µL of Li-TFSI and 11 µL FK209. For the latter two solutions, i.e., Li-TFSI, a
mother solution of 500 mg/mL in acetonitrile was used, while the FK209 required a mother
solution of 300 mg/mL in acetonitrile. This spiro-OMeTAD solution was spin coated onto
the underlying perovskite layer at 4000 rpm for 20 s to form the HTL in our PSC. Finally,
an ~80 nm thick Au top electrode was deposited using e-beam evaporation at a pressure of
~10−5 Torr.

2.5. PSC Device Characterization

The electrical characteristics of our fabricated PSCs were measured under one-sun
optical illumination, i.e., 100 mW cm−2, using the Oriel LSH-7320 LED solar simulator
connected to a source meter unit from Ossila (Model: X200). The light was calibrated with a
standard mono-Si solar cell (PVM-396, PV Measurements Inc., Boulder, CO, USA) certified
by the US National Renewable Energy Laboratory (NREL).

3. Results and Discussion

Various perovskite films with an equimolar ratio of MAI:PbI2, i.e., (1.0:1.0), (1.2:1.2),
(1.5:1.5), and (1.6:1.6), were synthesized as described in the device fabrication section and
characterized using SEM, XRD, UV–vis, and PL. First, the morphological characteristics of
the perovskite films prepared on the glass substrates were examined via SEM, as shown in
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Figure 2a–d. The SEM image of (1:1) film formulation shows that the perovskite crystal-
lization process did not reach completion, given the very small size of the grains buried
in the midst of cracked islands comprised of a significant density of pinholes. Similarly,
the (1.2:1.2) and (1.6:1.6) formulations showed improper perovskite crystallization, again
with a high density of cracks and pinholes. However, the (1.5:1.5) film appears to be much
better than the rest of the films due to a denser morphology with a far lower density of
visible pinholes and cracks for this composition.
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Figure 2. The SEM images of the perovskite films fabricated on glass substrates using different equimolar concentrations of
MAI:PbI2: (a) (1.0:1.0), (b) (1.2:1.2), (c) (1.5:1.5), and (d) (1.6:1.6). (e) XRD spectra of the perovskite films synthesized on
glass substrates at the increasing equimolar ratios of MAI:PbI2 from bottom-to-top. Inset in the bottom panel shows the
magnified region in XRD spectra for (1.0:1.0) film at 13.14◦ ascribed to the PbI2 peak.

Shown in Figure 2e are the XRD spectra of the fabricated absorber layers at these
four compositions, and the results are in good agreement with prior reports [38]. The
(1.5:1.5) film shows relatively intense peaks for the (110), (112), (121), (020), (220), and (222)
planes with their intensity counts being higher than the other films, suggesting the better
crystallinity of the (1.5:1.5) film, as compared to the rest of the samples; this in alignment
with the SEM data taken for the (1.5:1.5) composition, where a compact morphology is
evident (Figure 2c). While the presence of the PbI2 impurity peak for the (1.0:1.0) and
(1.2:1.2) formulations located at ~12.5–13◦ is not ideal, this peak could also arise from
the onset of post-synthesis degradation upon exposure to ambient conditions [39], or
possible instrumentation resolution errors in measuring minute microgram resolution
of precursor masses. Additionally, the magnified image of the XRD spectra for the (1:1)
formulation at 13.14◦ is shown in the inset of Figure 2e, bottom panel. The crystallite
size as it pertains to the (110) peak was calculated using the Scherrer relation, S = Kλ

βcosθ ,

where S is the estimated crystallite grain size, λ = 0.15406 Å for the wavelength of the
X-rays used in the diffractometer, β represents the full-width-half-maximum (FWHM) in
radians, θ is the diffraction Bragg angle, K is the Scherrer constant, which was taken to be
~0.94, as characteristic of spherical crystals with cubic symmetry, which we assumed likely
for our samples [40]. Based on the above analysis, the crystallite size for the films was
calculated to be 43.4 nm (1.0:1.0) < 44.2 nm (1.2:1.2) < 45.5 nm (1.6:1.6) < 48.1 nm (1.5:1.5), as
summarized in Table 1. Even though the variation between the sizes is very small based on
this calculation, the data are consistent with the crystallite size being largest for the (1.5:1.5)
film compared to the other films.
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Table 1. Crystallite grain size of perovskite films for all four formulations.

MAPbI3
(MAI:PbI2) Peak Position (θ) FWHM

(Radian) Crystallite Size (nm)

1.0:1.0 7.06 0.00337 43.4

1.2:1.2 7.05 0.00330 44.2

1.5:1.5 7.06 0.00303 48.1

1.6:1.6 7.06 0.00321 45.5

The thickness profile of the films is shown in Figure 3, measured using atomic force
microscopy (AFM). The nominal film thickness h for the (1.0:1.0), (1.2:1.2), (1.5:1.5), and (1.6:1.6)
formulations was measured to be 287 ± 97 nm < 317 ± 72 nm < 337 ± 58 nm < 346 ± 66 nm,
respectively. The uncertainty values associated with each thickness (formulation) represent
the average roughness (Ravg) acquired from the AFM, and a slight trending toward increasing
nominal thickness was observed as the molar ratio was increased, despite the wide variability
in Ravg, not uncommon for spin-coated perovskite films. The slight increase in the average
thickness with increasing concentration may be linked to the associated increase in viscosity
since the spin coating parameters remained fixed.
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337 ± 58 nm, and (d) (1.6:1.6): 346 ± 66 nm.

The UV–vis optical absorption profiles for all the fabricated films are shown in
Figure 4a. For comparison, the absorption profiles of all the MAPbI3 perovskite films
were in agreement with the prior reported studies [41]. Here, it can be seen that the
(1.5:1.5) film showed optimal absorption characteristics amongst all the films, which is
consistent with its compact morphology, as corroborated through the SEM imaging re-
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sults in Figure 2c. A validation of the slight increase in thickness with an increase in
concentration is also evident in the absorption data, where the absorbance increased as the
concentration increased, i.e., from the smallest concentration (1.0:1.0) to the highest con-
centrations, specifically (1.5:1.5) and (1.6:1.6). The absorbance of the (1.5:1.5) and (1.6:1.6)
films was almost identical up until about 575 nm, and below 550 nm, the absorbance of
the (1.5:1.5) film increased at these shorter wavelengths. This is likely due to the fact that
the (1.5:1.5) film depicts a more compact morphology with fewer pinholes compared to all
the other film formulations, which may contribute to its slight enhancement in absorbance
when compared to the almost equally thick (1.6:1.6) film. The PL emission peak (Figure 4b),
for all the fabricated perovskite samples, lies in the vicinity of ~778 nm and aligns well with
the prior literature for MAPbI3 films [42]. The lesser PL counts or highest PL quenching for
the (1.5:1.5) perovskite formulation on c-TiO2/FTO/glass substrates may be likely due to
the more efficient charge extraction between the c-TiO2 and perovskite layer, which further
suggests that the (1.5:1.5) film is more suitable for the PSC devices. However, since PL
quenching can also arise from non-radiative recombination, steady-state PL, when com-
bined with time-resolved photoluminescence (TRPL), would provide a firmer validation
of the efficiency of the charge carrier extraction process, which will be conducted in a
future study.
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PSCs with all four formulations were fabricated based on the n-i-p architecture (Au/Spiro-
OMeTAD/MAPbI3/c-TiO2/FTO), as shown by the device schematic in Figure 5a, and their
recorded current density versus voltage (J-V) characteristics are shown in Figure 5b. The
(1.5:1.5) PSC exhibited a maximum PCE of 14.56% among all formulations along with an open-
circuit voltage VOC of ~1.05 V, short-circuit current density JSC of ~22.21 mA cm−2, fill-factor
(FF) of ~62.58%, series resistance RS of ~8.82 Ω cm2, and shunt resistance RSh of ~3.49 kΩ cm2.
On the other hand, for the (1.6:1.6), (1.2:1.2) and (1.0:1.0) formulations, PCE values of ~12.25%,
10.98%, and 9.32% were measured, respectively. The photovoltaic parameters for all PSCs are
summarized in Table 2. While there is scope to improve these parameters further, the PCE
trend: (1.5:1.5) > (1.6:1.6) > (1.2:1.2) > (1.0:1.0), lies in good agreement with the absorption and
PL spectra.

The recombination losses for the fabricated PSCs were examined by recording the
light intensity-dependent J–V Characteristics. Typically, the JSC of the devices follows a
power-law relationship with the incident light intensity I such that, JSC ∝ Iα, where α is
extracted from the slope of the log-log JSC versus I plot, as shown in Figure 6a, and it repre-
sents the extent of bimolecular recombination [43,44]. Usually, α close to unity indicates
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the presence of weak bimolecular recombination. The α value for the PSCs were extracted
as follows: α = 0.965 (1.5:1.5) > 0.950 (1.6:1.6) > 0.917 (1.2:1.2) > 0.910 (1.0:1.0). Thus, these
data indicate the presence of minimal bimolecular recombination in the (1.5:1.5) PSC. Mean-
while, information about the trap-assisted recombination losses can be obtained from the
dependence of the VOC and I, according to the following relation, where VOC ∝ nkT

q ln(I).
Here, n is a coefficient, k is the Boltzmann constant, T is the temperature in Kelvin, and q is
the elementary charge. The value of the coefficient n usually ranges between 1 and 2, where
an n~1 indicates the absence of trap-assisted recombination, while n > 1 suggests the pres-
ence of trap-assisted recombination [12,45]. From the fit in Figure 6b, the value of n in the
devices was deduced to be: n = 1.57 (1.5:1.5) < 1.63 (1.6:1.6) < 1.78 (1.2:1.2) < 1.87 (1.0:1.0),
which indicates that the (1.5:1.5) PSC has the least presence of trap-assisted recombination.
Overall, both studies shown in Figure 6a,b suggest minimal bimolecular and trap-assisted
recombination occurring in the (1.5:1.5) PSC, which also corroborates its higher PCE perfor-
mance amongst all four formulations.
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Figure 5. Device architecture of the (a) n-i-p PSCs (Au/Spiro-OMeTAD/MAPbI3/c-TiO2/FTO/glass) and (b) the J-V
Characteristics of the fabricated PSCs using all four formulations.

Table 2. Photovoltaic parameters of the fabricated n-i-p PSC devices.

MAPbI3
(MAI:PbI2)

PCE
(%)

FF
(%)

JSC
(mA·cm−2)

VOC
(V)

RSh
(kΩ-cm2)

RS
(Ω-cm2)

1.0:1.0 9.32 46.38 20.06 1.00 0.22 15.58

1.2:1.2 10.98 50.75 20.34 1.06 1.36 19.33

1.5:1.5 14.56 62.58 22.21 1.05 3.49 8.82

1.6:1.6 12.25 55.50 20.39 1.08 1.29 16.29

Moreover, the continuous evolution of photovoltaic parameters for (1.5:1.5) PSC with
time up to 10 h were monitored while keeping the device at its maximum power point,
as shown by the data in Figure 7b. The relative humidity (RH) and ambient temperature
during the experiment were noted to be ~60% and ~29 ◦C, respectively. It can be seen that
the (1.5:1.5) PSC retained ~90% of its initial VOC and FF after 10 h of continuous tracking,
but the JSC and PCE decreased to ~70% and ~60%, respectively, of their initial values for
the same duration. There might be a number of possible reasons for the JSC loss attributed
to photo-oxidization, or degradation of the charge extraction layers, or their degraded
interfaces with the perovskite reducing the charge extraction efficiency [46,47], which will
be examined further in future work.
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Figure 7. (a) The stabilized current output of PSC devices at 0.6 V for 3 min, and (b) the evolution of PV parameters with
respect to time when the (1.5:1.5) PSC device was held at its maximum power point.

4. Conclusions

In summary, perovskite films with various equimolar concentrations of MAI and PbI2
were synthesized and analyzed. The (1.0:1.0), (1.2:1.2), and (1.6:1.6) films did not appear to
be optimal and exhibited pinholes and cracks within the photoabsorber, and thus these
films were not suitable for the PV device fabrication of the solar cell stack. However, the
(1.5:1.5) formulation exhibited a compact morphology which appeared more suitable as a
photoabsorber in the PSCs. Accordingly, PSCs fabricated using the (1.5:1.5) films exhibited
a PCE of ~14.56% for the n-i-p structure. Operational stability analysis was conducted, and
the continuous evolution of photovoltaic parameters with time up to 10 h was monitored
while keeping the device at its maximum power point, which revealed that the (1.5:1.5)
PSC retained ~90% of its initial VOC and FF after 10 h of continuous tracking, but the JSC
and PCE decreased to ~70% and ~60%, respectively, of their initial values during the same
amount of time. These results provide a benchmark to further tune the materials synthesis
and device fabrication efforts to form higher performance PSCs in the future.
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