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Abstract: The dynamic modeling, motion control and flexible vibration active suppression of space
robot under the influence of flexible base, flexible link and flexible joint are explored, and motion
and vibration integrated fixed-time sliding mode control of fully flexible system is designed. The
flexibility of the base and joints are equivalent to the vibration effect of linear springs and torsion
springs. The flexible links are regarded as Euler–Bernoulli simply supported beams, which are
analyzed by the hypothetical mode method, and the dynamic model of the fully flexible space robot
is established by using the Lagrange equation. Then, the singular perturbation theory is used to
decompose the model into slow subsystem including rigid motion and the link flexible vibrations,
and fast subsystems including the base and the joint flexible vibrations. A fixed time sliding mode
control based on hybrid trajectory is designed for the slow subsystem to ensure that the base and
joints track the desired trajectory in a limited time while achieving vibration suppression on the
flexible links. For the fast subsystem, linear quadratic optimal control is used to suppress the flexible
vibration of the base and joints. The simulation results show that the controller proposed in the paper
can make the system state converge within a fixed time, is robust to model uncertainty and external
interference, and can effectively suppress the flexible vibration of the base, links, and joints.

Keywords: fully flexible base–link–joint space robot; singular perturbation theory; motion and
vibration; fixed time sliding mode control; flexible vibration suppression control; integrated control

1. Introduction

Space robots are rootless multi-body systems used to perform exploration, assembly,
construction, service, repair, or assist astronauts in extravehicular missions in the special
space environment, and play an integral role in the space exploration process, and have
been the focus of research by space workers [1–6]. Space missions are complex and diverse,
and space robots have different configurations [7]. For space robots with small size, low
slow speed, and low control accuracy requirements, they are generally modelled and
controlled according to multi-rigid body systems. In recent years, as the research on
space robotics has intensified, various studies on space robotics under the assumption of
rigid model have been relatively mature, and the obtained results can better solve various
problems including system dynamics modelling, motion planning and trajectory tracking.
However, the existing space robots are typical flexible multi-body systems, and their base,
links and joints are subject to flexible vibration phenomena. For example, the joint device
that drives the motion of the links of a space robot will be flexible due to reasons such as
a lightweight drive motor [8]. The link is generally made of lightweight materials due to
factors such as launch cost and structural design, and is designed as a slender rod-like
structure, which is prone to vibration when performing tasks [9]. Moreover, the length of
the space robot link is limited by constraints such as the size and structure of the launch
vehicle. Moreover, due to the constraints of launch vehicle size and structure, the length
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of the space robot link is limited, so it is easy to fail to reach the working area during the
construction or maintenance of large solar power panels, etc. Considering the space robot
with the robot arm fixed to the base, the working range and operational flexibility are much
less than the space robot with the robot arm sliding on the base in the same configuration,
so the latter is more operable. A space robot arm which can slide on the base is mounted
on the base truss rail to cover a larger working area by moving the arm, but the truss rail is
prone to vibration under the influence of external forces [10].

From the above analysis, it is clear the space robot structure flexibility is mainly caused
by the vibration of three types of components: the base, links and joints. In the non-damped
space environment, once the flexible vibration is excited, the decay will be very slow, and
the high-frequency tremor not only affects the normal rest and relaxation of astronauts,
but also excites each other with the space robot base and joint motion, which in serious
cases causes significant shaking of the base of the reserve liquid fuel and even damage
to the joint device. In addition, because the space robot motor directly drives the base
and joints, and the vibration of the flexible joints and the joint drive torque are coupled
with each other, it is easy to cause the vibration of the base, which leads to the difficulty of
controlling the base and joints, and then affects the control accuracy of the whole system,
and even triggers the control failure. Therefore, considering the flexibility effect of space
robot bases, arms, and joints and actively suppressing their vibration is of great importance
in improving system control accuracy and ensuring reliability.

At present, scholars from various countries have accumulated a great deal of re-
search experience in dealing with the flexibility of space robot arms [11]; they have also
achieved certain results in the control and vibration suppression problems of flexible
jointed robots [12]; they have also obtained stage results in dealing with the influence of
the flexibility of a certain two types of components in the existence of bases, arms and
joints of space robots [13]. Li et al. [14] discussed collision motion control of a flexible
two-armed space robot capturing a rotating object. Fu et al. [15] studied the passive finite
dimensional repetitive control and vibration suppression of flexible jointed space robots.
Yang et al. [16] investigated adaptive output feedback control algorithms for flexible base
robots. Yu et al. [17] investigated a hybrid trajectory-based terminal sliding mode control
scheme for a flexible space robot arm under the influence of base vibration. However,
research on motion control and vibration suppression of base, arm, and joint fully flexible
space robots is not yet available and needs to be accumulated and improved further. The
fully flexible space robot is a highly coupled and nonlinear time-varying system with rigid
motion and triple-flexible vibration, which faces four outstanding difficulties: complicated
dynamics modelling, difficulty of rigid-flexible decoupling, low accuracy of motion control
and difficulty of triple-flexible simultaneous vibration suppression. Thus, this paper pro-
poses a dynamics modeling method for elastic base, flexible arm and flexible joint space
robots, as well as a rigid-flexible decoupling scheme based on the dual time-scale scaling
method, and designs an integrated control scheme for the motion and vibration of fully
flexible space robots based on the decomposed model.

Tracking control is particularly important for space robotics applications, where the
goal is to enable the base and joints to track up the desired trajectory with the desired
dynamic performance. In recent decades, various space robot control methods have
emerged [18,19]. However, because the fully flexible space robot has time-varying, rigid-
flexible strong coupling, highly nonlinear and other characteristics, traditional PID control,
feedback control and other factors struggle to meet its high-precision requirements, and
for the ordinary rigid motion controller, because it cannot suppress the system multiple
flexible vibration, control failure of fully flexible system is easy to trigger. Although sliding
mode control and adaptive control have high control accuracy, most of the stabilization is
asymptotic stabilization, which takes an infinitely long time to converge to the equilibrium
point of the system and the different initial states of the system can significantly affect
the tracking performance. To address the above problems, this paper proposes a fixed-
time sliding mode control for motion vibration integration, and uses Lyapunov theory to
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demonstrate that the system tracking error can converge in fixed time, while achieving
the suppression of flexible vibration of the base, arm and joint. Simulation analysis was
performed to verify the effectiveness of the proposed algorithm.

This paper is organized as follows. In Section 2, the base, arm, and joint fully flexible
space robot dynamics models are developed. In Section 3, the rigid-flexible decomposition
of the model is performed for the fully flexible spatial robot system based on the dual time-
scale scaling principle. In Section 4, the motion vibration integrated fixed-time sliding mode
control is proposed to achieve convergence of the base and joints to the desired trajectory
in a fixed time and to suppress the base, arm, and joint flexible vibration simultaneously.
In Section 5, numerical simulations are performed to verify this control strategy. Finally,
conclusions are given in Section 6.

2. Dynamic Modeling of Fully Flexible Base–Link–Joint Space Robot
2.1. Fully Flexible Base–Link–Joint Space Robot Model

As shown in Figure 1, the floating flexible base–link–joint space robot consists of
a carrier B0, a flexible link B1 at the near the base, and a flexible link B2 at the far base.
OC0 is the center of mass of base B0, OC is the total center of mass of the system, and Ok
is the geometric center of the joint hinge connecting Bk−1 and Bk(k = 1, 2). The inertial
coordinate system OXY and each split contiguous coordinate system Ok′Xk′Yk′ (k′ = 0, 1, 2)
are established, where O0 overlaps with OC0.r0 and rC denote the position vectors of the
base center of mass and the total center of mass of the system in the inertial coordinate
system, respectively, and rk denotes the vector diameter of any point on the flexible link
Bk with respect to O (k = 1, 2). qb is the base elastic deformation at the articulation of base
and link B1, q0 is the base attitude angle, qk is the relative rotation angle of link Bk, and qmk
is the rotation angle of the joint motor rotor (k = 1, 2). xk is the arbitrary distance in the
direction of the longitudinal axis Xk of the flexible link Bk, and vk(xk, t) is the transverse
elastic deformation of the link Bk at the xk cross section. The mass of the base is m0 and the
inertia is J0. The initial length of link Bk is lk and the density is ρk(k = 1, 2). The inertia of
the motor rotor at joint Ok is Jmk. In this paper, the elastic part of the base is equated to a
massless linear telescopic spring, the stiffness factor kb is taken as a constant value, and the
distance between OC0 and O1 is l0 when the initial amplitude of the base is 0 m.
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2.2. Flexible Joint Model

According to Spong’s assumption [20], the flexible coupling between the rotor of the
drive motor mounted at joint Ok(k = 1, 2) and the link Bk can be simplified to a linear
torsion spring without inertia, taking its stiffness factor kmk as a constant value. When the
motor rotor turns through angle qmk, the actual angle of rotation of the driven link Bk is qk
due to the torsion spring elastic force. Therefore, the elastic force between the motor rotor
and the link is kmk(qmk − qk). The flexible joint structure is shown in Figure 2.
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2.3. Flexible Link Model

In this paper, the flexible link of the robot arm is equated to a simply supported
beam, which is analyzed by using the Euler–Bernoulli beam correlation theory with the
hypothetical modal method. Take its flexural stiffness EIk as a constant value, and the
deformation of flexible link Bk(k = 1, 2) as:

vk(xk, t) =
nk

∑
j=1

φkj(xk)δkj(t), (0 ≤ xk ≤ lk), (1)

where φkj, δkj denotes the j order modal function of link Bk and its corresponding modal

coordinates, φkj(xk) = sin
(

jπ
lk

xk

)
, nk are the retained modal numbers, and since the large-

amplitude vibration is mainly composed of the first few modal orders, this paper takes
nk = 2.

2.4. Fully Flexible Base–Link–Joint Space Robot Modeling

According to the geometric position of the system in the inertial coordinate system,
we have:  r0 = (x0, y0)

T

r1 = r0 + (l0 + qb)e0 + x1e1 + v1(x1, t)e′1
r2 = r0 + (l0 + qb)e0 + l1e1 + x2e2 + v2(x2, t)e′2

, (2)

where (x0, y0) is the base center-of-mass coordinate, ek′(k′ = 0, 1, 2) is the unit vector in
the direction of each split conjoined coordinate system Xk′ , and e′k(k = 1, 2) is the unit
vector in the direction of transverse deformation of the flexible link Bk, perpendicular to
the longitudinal axis Xk.

The total mass of the system is:

m = m0 +
2

∑
k=1

ρklk. (3)

According to the definition of the center of mass, we have:

m0r0 +
2

∑
k=1

∫ lk

0
ρkrkdxk = mrC. (4)

From Equations (1) to (3), we obtain the expressions for the vector diameter of each
component of the system as:

rk′ = rC + Γk′0(l0 + qb)e0 + Γk′1e1 + (Γk′2δ11(t) + Γk′3δ12(t))e′1+
Γk′4e2 + (Γk′5δ21(t) + Γk′6δ22(t))e′2

,
(
k′ = 0, 1, 2

)
, (5)

where Γ00 ∼ Γ26 is the inertial parameter combination function.
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Let
.
rC = 0, Equation (5) take the derivative, then calculate the kinetic energy of each

split of the system as: 
Tr0 = 1

2 m0
.
r2

0 +
1
2 J0

.
q2

0
Tri =

1
2

∫ lk
0 ρk

.
r2

kdxk, (k = 1, 2)
Tmk =

1
2 Jmk

.
q2

mk, (k = 1, 2)

, (6)

where Tr0 indicates the kinetic energy of the base, Trk indicates the kinetic energy of link
Bk, and Tmk indicates the kinetic energy of the motor rotor at joint Ok.

Neglecting the effect of weak gravity, the potential energy of each part of the system
is as follows: 

Vb = 1
2 kbq2

b

Vak =
1
2

2
∑

j=1
kδkjδ

2
kj, (k = 1, 2)

Vmk =
1
2 kmk(qmk − qk)

2, (k = 1, 2)

, (7)

where Vb represents the elastic potential energy of the base, Vak represents the potential

energy of link Bk, kδkj = EIk
∫ lk

0

(
..
φ

2
kj(xk)

)
dxk, Vmk represent the potential energy of flexible

joints Ok.
The Lagrange function is defined as:

L = Tr0 +
2

∑
k=1

(Trk + Tmk)−Vb −
2

∑
k=1

(Vak + Vmk). (8)

Substituting Equation (8) into the Lagrange equation, the carrier position uncontrolled,
attitude controlled fully flexible space robot dynamics model as follows:

D(qb, q, δ)


..
qb..
q
..
δ

+ h
(

qb, q, δ,
.
qb,

.
q,

.
δ
)
+


kbqb

0
−τ
Kδδ

 =


0
τ0

02×1
04×1

, (9)

Jm
..
qm + τ = τm, (10)

τ = Kmσ, (11)

where D(qb, q, δ) ∈ R8×8 is the symmetric positive definite mass matrix,
h
(

qb, q, δ,
.
qb,

.
q,

.
δ
)
∈ R8×1 is the column vector of centrifugal and Koch forces, which can

be written as the product of H
(

qb, q, δ,
.
qb,

.
q,

.
δ
)
∈ R8×8 and

[
.
qT

b ,
.
qT,

.
δ

T
]T

. q =
[
q0, qT

j

]T

is the column vector of carrier attitude and joint angle, qj = [q1, q2]
T. qm = [qm1, qm2]

T,

δ = [δ11, δ12, δ21, δ22]
T, Kδ = diag(kδ11, kδ12, kδ21, kδ22) is the diagonal matrix of flexi-

ble rod stiffness coefficients, Jm = diag(Jm1, Jm2), Km = diag(km1, km2), σ = qm − qj,

τm = [τm1, τm2]
T is the motor rotor control torque.

3. Model Decomposition of Fully Flexible Base–Link–Joint Space Robot

The outstanding difficulty of active control of motion vibration of fully flexible space
robots lies in the existence of triple flexibility, and active suppression of the flexibility
of one class of components will cause excitation of another class, which is difficult to
control. To solve the above problem, the system flexibility is analyzed at different time
scales using the singular perturbation method. The total controller of motor with joint
flexibility compensation is designed as:

τm = (I + Kc)τn −Kcτ, (12)
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where I ∈ <2×2 is the unit matrix, Kc ∈ <2×2 is the symmetric positive definite flexible
compensation matrix, τn ∈ <2 is the controller to be designed, and the expression is:

τn = τns + τnf, (13)

where τns ∈ <2 is the slow subsystem controller, τnf ∈ <2 is the fast-variable subsys-
tem controller.

Substituting Equation (12) into Equation (10), we have:

..
σ = J−1

m (I + Kc)(τn − τ)− ..
qj. (14)

Equation (9) is written in blocks as:

[
Dbb Dba
Dab Daa

]
..
qb..
q
..
δ

+

[
Hbb Hba
Hab Haa

]
.
qb.
q
.
δ

+


kbqb

0
−τ
Kδδ

 =


0
τ0

02×1
04×1

, (15)

where Dbb, Hbb ∈ <1×1, Dba, Hba ∈ <
1×7Dab, Hab ∈ <

7×1, Daa, Haa ∈ <7×7, they are all

submatrices corresponding to D(qb, q, δ) and H
(

qb, q, δ,
.
qb,

.
q,

.
δ
)

.
Define the relation equation as follows:

N =

[
N11 N12
N21 N22

]
=

[
Dbb Dba
Dab Daa

]−1

, (16)

where N11 ∈ <1×1, N12 ∈ <1×7, N21 ∈ <7×1, N22 ∈ <
7×7, they are all submatrices

corresponding to N(qb, q, δ).
Let q, δ be the slow sub-variant, qb, σ be the fast sub-variant, and µ = 1/min(kb, km1, km2)

be the singular perturbation factor.
Substituting Equation (16), τ = Kmσ and µ = 0 into Equation (15), the kinetic

equation of the slow subsystem is obtained as follows:

R(q, δ)

[ ..
q
..
δ

]
+ S

(
q, δ,

.
q,

.
δ
)[ .

q
.
δ

]
+

[
03×1
Kδδ

]
=

[
τoj

04×1

]
, (17)

where R(q, δ) = Daa +

 0 01×2 01×4
02×1 (I +Kc)

−1Jm 02×4
04×1 04×2 04×4

, S
(

q, δ,
.
q,

.
δ
)
= Haa, τoj =

[
τ0, τT

ns
]T,

they are all submatrices corresponding to N(qb, q, δ). Define ℘ to be an arbitrary matrix, then ℘
to be a new expression for ℘ when µ→ 0.

Due to the coupling effect between the rigid motion of the slow-variable subsys-
tem and the flexible vibration of the rod, which affects the operating accuracy. For this
reason, before designing the trajectory tracking control algorithm, the slow subsystem
needs to be decoupled, the R and S in Equation (17) are written in separate blocks as[

R11 R12
R21 R22

]
and

[
S11 S12
S21 S22

]
, where R11, S11 ∈ <3×3, R12, S12 ∈ <3×4, R21, S21 ∈ <4×3,

R22, S22 ∈ <4×4. Considering the external disturbance, the dynamic model of the fully
driven rigid subsystem is obtained by decoupling Equation (17) as follows:

M(δ, q)
..
q + C

(
δ,

.
δ, q,

.
q
) .

q + c1

(
δ,

.
δ, q,

.
q
)
= τoj + d, (18)

where M(δ, q) = R11−R12R−1
22 R21, C

(
δ,

.
δ, q,

.
q
)
= S11−R12R−1

22 S21 is the column vector of
centrifugal force and Coriolis force equivalent to the rigid subsystem,
c1

(
δ,

.
δ, q,

.
q
)
=
(

S12 −R12R−1
22 S22

) .
δ−R12R−1

22 Kδδ is the nonlinear term of system dy-
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namics, d is the external interference applied to the driving motor of the fully flexible
space robot.

According to the principle of mutual independence of fast and slow time scales,
the corresponding subsystem is found based on the fast time scale. Take fast time scale
as tf = t/

√
µ, fast subsystem state variable as qf =

[
qf1, qf2, qT

f3, qT
f4
]T. qf1 = qbf − qbf,

qf2 =
√

µ
.
qbf, qf3 = σf − σf, qf4 =

√
µ

.
σf. The flexible deformation of the base and joint

under the fast time scale are qbf and σf respectively. Take the derivative of qf, the dynamics
equation of the fast subsystem is as follows:

dqf/dtf = Afqf + Bfτnf, (19)

where Af =


0 1 01×2 01×2

−N11kbf 0 N∗12Kmf 01×2
02×1 02×1 02×2 I2×2
02×1 02×1 −J−1

m (I+Kc)Kmf 02×2

, Bf =
[
0T

1×2,0T
1×2,02×2,

(
J−1
m (I+Kc)

)T]T
,

N∗12 is the row vector consisting of the second and third elements of N12 ∈ <1×7.

4. Integrated Fixed Time Sliding Mode Control for Motion and Vibration
4.1. Fixed Time Sliding Mode Control

For the fully driven slow rigid subsystem Equation (18), it is considered that the
complete information of the model is difficult to obtain for practical applications, but a
nominal model can usually be obtained. Let the nominal models of system Equation (18)
be M0 and C0, ∆M = M0 −M, ∆C = C0 − C. Then, Equation (18) can be rewritten as:

M0
..
q + C0

.
q = τoj + ε, (20)

where ε = ∆M
..
q + ∆C

.
q− c1 + d.

Taking the state variable x1 = q, x2 =
.
q. From Equation (20), we have:{ .

x1 = x2.
x2 = Γ + Φ + h

, (21)

where Γ = M−1
0 τoj = [Γ1, Γ2, Γ3]

T, Φ = M−1
0 ε = [Φ1, Φ2, Φ3]

T, h = −M−1
0 C0

.
q = [h1, h2, h3]

T.
Consider the nonlinear system as follows:

.
x(t) = f(t, x), x(t0) = x0, (22)

where x(t) ∈ Rn is the system state variable, f(t, x) is a smooth nonlinear function, and the
origin is assumed to be the equilibrium point of the system (22).

Definition 1. Suppose that system (22) is globally asymptotically stable if there exists a finite
convergence time tfc(x0) , which holds for all t ≥ tfc satisfying x(t) = 0 , then system (22) is
globally finite time stable [21].

Definition 2. The system (22) is globally fixed-time stable if it is globally finite-time stable while
there exists a definite upper bound on the convergence time and the value of the upper bound is
independent of the system state variables [22].

The following lemma gives a sufficient condition for the fixed time convergence of
system (22).
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Lemma 1. If there is a continuous radial bounded positive definite functionV, it satisfies the
relationship as follows:

.
V ≤ −κ1Vp1(x)− κ2Vp2(x), (23)

where κ1, κ2 > 0, p1 > 1, 0 < p2 < 1.

Then, the system (22) is globally fixed and time stable, and its convergence time
satisfies the equation as follows [23]:

tfc ≤ tmax :=
1

κ1(p1 − 1)
+

1
κ2(1− p2)

. (24)

For the dynamic model described in equation (21), the purpose of robot control
is to make the base attitude angle and joint angle vector q track the desired trajectory
qd = [qd0, qd1, qd2]

T . The tracking error e = q− qd is defined, e = [e0, e1, e2]
T, where e0 is

the base attitude tracking error, and e1 and e2 are the trajectory tracking errors of 1 joint
and 2 joint, respectively.

The switching function is selected as follows:

si =
.
ei + γ1ea1

i + β1ea2
i , i = 0, 1, 2, (25)

where s0 is the switching function of the base, s1 and s2 are the switching functions of 1 and
2 joints, respectively. a1 = m1/n1, a2 = p1/q1.γ1 and β1 are normal numbers, m1, n1, p1, q1
are positive odd number and satisfies m1 > n1 and p1 < q1 < 2p1.

The sliding mode reaching law is designed as follows:

.
si = −

γ2√
2

(
si√

2

)2a3−1
− β2√

2

(
si√

2

)2a4−1
, i = 0, 1, 2, (26)

where a3 = m2/n2, a4 = p2/q2.γ2 and β2 are normal numbers, m2, n2, p2, q2 are positive
odd number and satisfies m2 > n2 and p2 < q2.

Taking the derivative of Equation (25) and substituting Equation (21) into it, we have:

.
si =

..
ei + γ1a1ea1−1

i
.
ei + β1a2ea2−1

i
.
ei

= Γi + Φi + hi −
..
qdi + γ1a1ea1−1

i
.
ei + β1a2ea2−1

i
.
ei, i = 0, 1, 2

(27)

Equation (26) is associated with Equation (27); we have:

Γi = −Φi − hi +
..
qdi − γ1a1ea1−1

i
.
ei−

β1a2ea2−1
i

.
ei − γ2√

2

(
si√

2

)2a3−1
− β2√

2

(
si√

2

)2a4−1
, i = 0, 1, 2

(28)

The fixed time sliding mode controller is as follows:

τoj = M0Γ, (29)

where the elements of Γ are shown in Equation (28).

Theorem 1. For system (21), the system is globally stable and the tracking error e converges to
zero in a fixed time when the switching function (25) and the controller (28) are elected.

Proof 1. Selecting Lyapunov function as:

Vi =
1
2

s2
i . (30)
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Taking the derivative of Vi and substituting Equation (26) into it, we have:

.
Vi =

.
sisi

= − γ2√
2

(
si√

2

)2a3−1
si −

β2√
2

(
si√

2

)2a4−1
si

= −γ2Va3
i − β2Va4

i

(31)

According to the lemma, the reaching time of the system is as follows:

tfc1 ≤ tmax1 :=
1

γ2(a3 − 1)
+

1
β2(1− a4)

. (32)

When the system reaches the sliding surface, according to Equation (25), we have:

.
ei = −γ1ea1

i − β1ea2
i . (33)

According to lemma and Equation (33), the sliding mode motion time of the system is
as follows:

tfc2 ≤ tmax2 :=
1

γ1(a1 − 1)
+

1
β1(1− a2)

. (34)

Because of Vi ≥ 0,
.

Vi ≤ 0, the system is globally stable and the convergence time is
as follows:

Tfc = tmax1 + tmax2 = 1
γ2(a3−1)+

1
β2(1−a4)

+ 1
γ1(a1−1) +

1
β1(1−a2)

(35)

4.2. Fixed Time Sliding Mode Control Based on Hybrid Trajectory

Since the fixed time sliding mode control designed in the previous section only ensures
that the base and joints track the desired trajectory, but not the flexible links modes can
be suppressed. Therefore, this section uses the virtual force concept to generate a hybrid
trajectory qh that reflects both the rigid desired trajectory and the modal vibration1 and
designs a fixed time sliding mode control based on the hybrid trajectory to achieve control
of the base joint motion and suppression of the links vibration. Let eh = qh − qd, virtual
force F ∈ R3×1 be generated by the generator as follows:

..
eh + K1

.
eh + K2

.
eh = F, (36)

where K1, K2 ∈ <3×3 are constant diagonal matrices.
Let the hybrid error be er = qh − q and the hybrid switching function be

(si)r =
.
eir + γ1ea1

ir + β1ea2
ir , i = 0, 1, 2. Then, the fixed time sliding mode controller based on

the hybrid trajectory is as follows: (
τoj
)

r = M0Γr, (37)

Γir = −Φi − hi +
..
qri − γ1a1ea1−1

ir
.
eir−

β1a2ea2−1
ir

.
eir − γ2√

2

(
sir√

2

)2a3−1
− β2√

2

(
sir√

2

)2a4−1
, i = 0, 1, 2

(38)

Substituting the controller Equations (37) and (38) into the rigid subsystem Equation (18),
we have:

..
er + K1

.
er + K2er = G′, (39)

where G′ =
..
qh −M−1[−C

.
q − c1 +

(
τoj

)
r
+ d

]
+ K1

.
er + K2

.
er + ber.

Equation (36) is added to Equation (39), we have:

..
e + K1

.
e + K2e = F + G′. (40)
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Defining state variable qs =

[
δT, eT,

.
δ

T
,

.
eT
]T

, according to Equations (37)–(40), we have:

.
qs = Asqs + BsF + Ls. (41)

where As, Bs, Ls are the known coefficient matrices.
The virtual force F [24] is designed as follows:

F = −R−1
s BT

s Psqs, (42)

where Rs is the weighting matrix corresponding to F in the performance index function, Ps
is the solution of the corresponding Riccati equation.

4.3. Base and Joint Flexible Vibration Suppression Control

In the fast subsystem, the state equation of variable qf representing flexible vibration
under fast time scale tf is shown in Equation (19). Performance indicator functions are
constructed as follows:

Jqf =
1
2

∫ ∞

0

(
qT

f Qfqf + τT
nfRfτnf

)
dtf, (43)

where symmetric weight matrix Qf ≥ 0, Rf > 0.
For any matrix ℘, satisfying ℘℘T = Qf, if the solution P of Riccati Equation (44) is

symmetric and positive definite, then the matrix pair {Af,℘} is completely observable.

PAf + AT
f P− PBfR

−1
f BfP + Qf = 0. (44)

Because the array pair {Af, Bf} is completely controllable, there is an optimal control
in Equation (19) as follows:

τnf = −R−1
f BT

f Pqf. (45)

The optimal performance index function is as follows:

J∗qf =
1
2

qT
f (0)Pqf(0), (46)

where P is the unique solution of Equation (44).
According to the above analysis, we have that the integrated fixed time sliding mode

control for motion and vibration (IFSM) proposed in this paper is mainly composed of
fixed time sliding mode controller based on hybrid trajectory (37), (38), virtual force (42),
fast controller (45), controller to be designed (13) and motor general controller (12).

5. Simulation Analysis

The fully flexible base–link–joint space robot system shown in Figure 1 is used as
an example for simulation and analysis. Fully flexible space robot base size l0 = 1.5 m,
base mass m0 = 40 kg, base rotational inertia J0 = 30 kg ·m2, base elasticity coefficient
kb = 500 N/m. Link density ρ1 = 3.5 kg/m, ρ2 = 1.1 kg/m, link length lk = 1.5 m, link
bending stiffness EIk = 100 N/m2. Motor rotor moment of inertia Jmk = 0.1 kg ·m2, joint
elasticity coefficient kmk = 50 Nm/rad, k = 1, 2.

The simulation validation is implemented in MATLAB software, mainly using the 4th
order Runge-Kutta method, taking a step size of 0.01 s. Let 0 s be the initial simulation
time. Before the controller is turned on, the base and joints of the fully flexible space
robot do not move, and the base, links and joints do not vibrate. Its initial configuration
qb = 0 m, q = [0.5, 0.3, 0.9]T(rad), δ = [0, 0, 0, 0]T(m), qm = [0.3, 0.9]T(rad).

.
qb = 0 m/s,

.
q = [0, 0, 0]T(rad/s),

.
δ = [0, 0, 0, 0]T(m/s),

.
qm = [0, 0]T(rad/s). Assume that a space
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mission requires a fully flexible space robot base attitude and joints to track the following
desired trajectory qd = [qd0, qd1, qd2]

T:
qd0 = cos(π

5 t)− 1
qd1 = sin(π

5 t)
qd2 = cos(π

5 t)
.

In order to control the fully flexible space robot base and joints to track the preset
desired trajectory to accomplish the space mission, the following simulation is conducted.
Turn on the IFSM proposed in this paper at 0 s, and observe the movement of the system
base and joint, as well as the vibration of the base, link and joint. The control parameters
are selected as γ1 = 40, β1 = 3, m1 = 7, n1 = 5, p1 = 7, q1 = 9, γ2 = 3, β2 = 5, m2 = 7,
n2 = 5, p2 = 7, q2 = 9, because the design purpose of IFSM controller is to suppress
multiple vibration of fully flexible space robot and realize motion control. The common
rigid controller has low reliability in controlling the fully flexible space robot, and it is easy
to cause control failure. In order to verify this problem, and verify the effectiveness of
the flexible vibration suppressor in the IFSM controller, the flexible vibration suppressor
is closed in IFSM, and the IFSM without vibration suppression (IFSM-NV) is used to re-
simulate. IFSM-NV is composed of Equations (28) and (29) and τm = (I + Kc)τns −Kcτ.
The control parameters during simulation are the same as IFSM. In addition, compared
with the traditional motion and vibration integrated sliding mode controller (ISM), IFSM
has the functions of fixed time convergence and resisting external interference. In order
to verify the advantages of IFSM control, ISM is used for comparative simulation. ISM is
composed of traditional sliding mode controller and flexible vibration suppressor proposed
in this paper, where switching function sr =

.
er + λer, sliding mode controller based on

hybrid trajectory
(
τoj
)

r = M
( ..
qh − λ

.
er − εsgnsr

)
+ C

.
q. The control parameters are selected

as ε = 2, λ = 1. At the same time, the flexible vibration suppressor is closed in ISM
(ISM-NV) for simulation, and the control effect of ISM-NV is observed on the fully flexible
system.

Therefore, for the fully flexible space robot system, the control schemes mainly include
the following two categories: (1) IFSM control and IFSM-NV control and (2) ISM control
and ISM-NV control. Figure 3 shows the base attitude trajectory tracking curve of the fully
flexible space robot under two control conditions, and Figure 4 shows the 1 joint trajectory
tracking curve of the fully flexible space robot under two control conditions. Figure 5 is the
2 joint trajectory tracking curve of fully flexible space robot under two control conditions.

From Figure 3a, it can be seen that with IFSM, the error between the base attitude
angle and the desired base attitude angle of the fully flexible space robot is 0.0199 rad
at 3.2 s, while with IFSM-NV, the desired trajectory can be tracked by 6.8 s, but the base
trajectory has a tendency of irregular motion at 7 s. As can be seen from Figures 4a and 5a,
with IFSM, the error between the actual trajectory of the 1 joint and the desired trajectory
is 0.0199 rad at 3 s, the error of the 2 joint is 0.0199 rad at 2.2 s; When IFSM-NV is used,
both 1 joint and 2 joint tend to track the desired trajectory, but the tracking trend of 2 joint
is not obvious, and both joints deviate from the desired trajectory at 7 s. As can be seen
from Figures 3b, 4b and 5b, with ISM, the base attitude and joints of the fully flexible space
robot can accurately track the desired trajectory. When the convergence time of the base
and joint are 4 s, 3.3 s and 2.5 s, respectively, the error reaches 0.0199 rad; When ISM-NV
is used, the base tends to track the desired trajectory before 2.5 s and the joint tends to
track the desired trajectory before 2 s, but the joint deviates from the desired trajectory
after 2 s. The simulation results show that both IFSM and ISM can control the base attitude
and joint movement of the fully flexible space robot according to the expected trajectory.
IFSM-NV and ISM-NV can only make the fully flexible space robot move according to the
desired trajectory, or track the desired trajectory for a short time, and finally all diverge.
It is verified that the rigid controller controls the fully flexible system with low control
accuracy and easy to cause control failure. In addition, under IFSM control, the system
convergence time is less than 5.6 s, while under ISM control, the system convergence time
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is less than 6 s. According to Equation (35), the fixed time of IFSM convergence is 3.8958 s;
therefore, compared with ISM, the controller proposed in this paper meets the requirements
of convergence in a fixed time.
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In order to visually observe the flexible vibration suppression effect of the flexible
vibration suppressor proposed in this paper on the system base and joint, the follow-
ing simulation is carried out. Figure 6 is the flexible vibration curve of the base of the
fully flexible space robot under two control conditions, and Figure 7 is the flexible vi-
bration curve of the 1 joint of the fully flexible space robot under two control conditions.
Figure 8 shows the flexible vibration curves of 2 joints of fully flexible space robot under
two control conditions.
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(b) ISM. 

0 5 10 15 20-1

0

1

2

3

t/s

σ 1/ra
d

10 15 20-0.2

0

0.2IFSM

 
0 5 10 15 20-1

-0.5

0

0.5

1

t/s

σ 1/ra
d

10 15 20
-0.2

0
0.2

ISM

 
(a) (b) 

Figure 7. Elastic vibration curve of fully flexible space robot 1 joint under two controls. (a) IFSM, (b) 
ISM. 
Figure 7. Elastic vibration curve of fully flexible space robot 1 joint under two controls. (a) IFSM,
(b) ISM.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21 
 

0 2 4 6 8-10

-5

0

5

10

15

t/s

σ 2/ra
d 0 2 4-0.05

0

0.05

IFSM-NV

 
0 0.5 1 1.5 2 2.5 3-15

-10

-5

0

5

10

t/s

σ 2/ra
d

ISM-NV

 

0 5 10 15 20-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

t/s

σ 2/ra
d

10 15 20-0.05

0

0.05
IFSM

 
0 5 10 15 20-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

t/s

σ 2/ra
d

10 15 20-0.05

0

0.05

ISM

 
(a) (b) 

Figure 8. Elastic vibration curve of fully flexible space robot 2 joint under two controls. (a) IFSM, (b) 
ISM. 

According to Figure 6a,b, the flexible vibration of the base can be suppressed within 
0.015 m by using IFSM and ISM controllers. For space robots with large volume and 
heavy load, the vibration of the base truss guide rail meets the scope of aerospace appli-
cations. When the flexible vibration suppressor proposed in this paper is closed and 
controlled by IFSM-NV, the amplitude of the base gradually increases from 0.015 m and 
diverges beyond the actual value at 7 s. When ISM-NV control is adopted, the amplitude 
of the base reaches 0.05 m at 2.5 s, and the vibration tends to be irregular and uncontrol-
lable. From Figures 7 and 8, the IFSM and ISM controllers can suppress the amplitudes of 
the 1 and 2 joints of the fully flexible Space robot to within 0.2 rad and 0.05 rad, respec-
tively. Using IFSM-NV controller, the amplitude of 1 joint reaches 0.5 rad at 4.5 s, and the 
amplitudes of 1 joint and 2 joint diverge around 7 s. With the IFSM-NV controller, both 
joint 1 and joint 2 vibrated violently at 2.5 s and finally caused control failure. The simu-
lation results show the effectiveness of the flexible damper for the flexible suppression of 
the base and joint of the fully flexible space robot. 

In order to further investigate the vibration suppression effect of the controller on 
the flexible link vibration of the fully flexible space robot, the following simulation is 
carried out. Among them, Figure 9 shows the first-order modal vibration curve of the link 
B1 of the fully flexible space robot under two control conditions; Figure 10 shows the 
second-order modal vibration curve of the link B1 of the fully flexible space robot under 
two control conditions; Figure 11 shows the first-order modal vibration curve of the link 
B2 of the fully flexible space robot under two control conditions; Figure 12 shows the 
second-order modal vibration curve of the link B2 of the fully flexible space robot under 
two control conditions. 
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According to Figure 6a,b, the flexible vibration of the base can be suppressed within
0.015 m by using IFSM and ISM controllers. For space robots with large volume and heavy
load, the vibration of the base truss guide rail meets the scope of aerospace applications.
When the flexible vibration suppressor proposed in this paper is closed and controlled
by IFSM-NV, the amplitude of the base gradually increases from 0.015 m and diverges
beyond the actual value at 7 s. When ISM-NV control is adopted, the amplitude of the base
reaches 0.05 m at 2.5 s, and the vibration tends to be irregular and uncontrollable. From
Figures 7 and 8, the IFSM and ISM controllers can suppress the amplitudes of the 1 and 2
joints of the fully flexible Space robot to within 0.2 rad and 0.05 rad, respectively. Using
IFSM-NV controller, the amplitude of 1 joint reaches 0.5 rad at 4.5 s, and the amplitudes of
1 joint and 2 joint diverge around 7 s. With the IFSM-NV controller, both joint 1 and joint 2
vibrated violently at 2.5 s and finally caused control failure. The simulation results show



Appl. Sci. 2021, 11, 11685 15 of 19

the effectiveness of the flexible damper for the flexible suppression of the base and joint of
the fully flexible space robot.

In order to further investigate the vibration suppression effect of the controller on the
flexible link vibration of the fully flexible space robot, the following simulation is carried
out. Among them, Figure 9 shows the first-order modal vibration curve of the link B1 of the
fully flexible space robot under two control conditions; Figure 10 shows the second-order
modal vibration curve of the link B1 of the fully flexible space robot under two control
conditions; Figure 11 shows the first-order modal vibration curve of the link B2 of the fully
flexible space robot under two control conditions; Figure 12 shows the second-order modal
vibration curve of the link B2 of the fully flexible space robot under two control conditions.
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From Figures 9 and 10, it can be seen that by using IFSM and ISM controllers, the
first-order mode of the link B1 can be suppressed within 2 mm and 5 mm, respectively,
and the second-order mode of the link B1 can be suppressed within 0.05 mm and 0.4 mm,
respectively. If the flexible vibration suppressor proposed in this paper is closed, under the
control of IFSM-NV, the initial amplitude of the first mode of the link B1 is 0.01 m, reaching
0.4 m at 7 s, and the initial amplitude of the second mode of the link B1 is 0.2 mm, reaching
0.15 m at 7 s. Under ISM-NV control, the initial amplitude of the first mode of the link B1
is 0.02 m, reaching 0.04 m at 2 s, and the initial amplitude of the second mode of the link
B1 reaches 6 mm at 2.7 s. From Figures 11 and 12, it can be seen that by using IFSM and
ISM controllers, the first-order mode of the link B2 can be suppressed within 1 mm and
2 mm, respectively, and the second-order mode of the link B2 can be suppressed within
0.02 mm and 0.2 mm, respectively. If the flexible vibration suppressor proposed in this
paper is closed, under the control of IFSM-NV, the initial amplitude of the first mode of the
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link B2 is 2 mm and reaches 0.6 m in 7 s, the initial amplitude of the second-order mode
of the link B2 reaches 0.06 m at 7 s. Under ISM-NV control, the first modal amplitude of
the link B2 is 0.04 m, and the initial amplitude of the second modal of the link B2 reaches
0.04 m at 2.7 s. The simulation results show that the flexible vibration suppressor proposed
in this paper can suppress the flexible vibration of the flexible link of the manipulator.

In addition, in order to compare and verify the robustness of IFSM to external inter-
ference, external disturbance is introduced to make d = diag(5, 5, 5). Simulations were
carried out separately using IFSM and ISM to observe the error convergence rates of the
two control algorithms in the presence of the effect of d. Error conversion rates are calcu-
lated by log ‖q− qd‖, the unit is log(rad). Therefore, the smaller the error convergence
rate, the higher the control accuracy of the controller.

From Figure 13a, it can be seen that the total error convergence rate of the fully flexible
space robot base, links and joint is within [−2.5, −1.6], when no external perturbation
d is considered under the IFSM controller condition, and within [−2.5, −1.6] when the
effect of the perturbation d is considered, the disturbance d can hardly affect the system
control accuracy under IFSM control. From Figure 13b, it can be seen that the total error
convergence rate of the fully flexible space robot base, links and joints is within [−1.7,
−1.6] when the external disturbance d is not considered under the ISM controller condition;
when the effect of the disturbance d is considered, the error convergence rate is within
[−1.5, −2] and the control accuracy is significantly reduced, the disturbance d significantly
degrades the system control accuracy under ISM control. The simulation results show that
the IFSM controller is robust to external disturbances.
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6. Conclusions

For space robot systems under the influence of full flexibility of base, arm and joint,
based on the dynamics modeling and model singular regression decomposition, a motion
vibration integration fixed-time sliding mode control scheme is proposed.

Simulation results show that for fully flexible space robot systems, the control accuracy
of rigid motion controllers is low, and even control failures are easily triggered. The motion-
vibration integrated fixed-time sliding-mode controller proposed in this paper can suppress
vibrations of the base, links and joints of the fully flexible space robot within 0.015 m, 0.2 rad
and 0.001 m. Meanwhile, the controller enables the base and joints to move according to
the desired trajectory. Compared with the traditional integrated motion-vibration control
consisting of sliding-mode control, this controller is suitable for systems with uncertain
models, fixed-time convergence, and resistance to external disturbances.

In the future, we will also apply the designed control scheme to the semi physical sim-
ulation experimental platform to provide theoretical guidance and simulation verification
for the actual operation of motion control and vibration suppression of fully flexible space
robot. At the same time, the capture operation of non-cooperative spacecraft using fully
flexible space robot is also the content of our further research.



Appl. Sci. 2021, 11, 11685 18 of 19

Author Contributions: Conceptualization, X.F.; methodology, X.F. and H.A.; software, X.F. and L.C.;
investigation, X.F. and H.A.; writing—original draft preparation, X.F.; writing—review and editing,
X.F. and H.A.; supervision, H.A. and L.C.; funding acquisition, H.A. and L.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
No. 51741502, 11372073), Science and Technology Project of the Education Department of Jiangxi
Province (Grant No. GJJ200864), Jiangxi University of Science and Technology PhD Research Initiation
Fund (Grant No. 205200100514).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, H.; Liang, J.; Wu, S.; Liu, Q.; Zhang, W. Dynamics modeling and experiment of a flexible capturing mechanism in a space

manipulator. Lixue Xuebao Chin. J. Theor. Appl. Mech. 2020, 52, 1465–1474.
2. Sands, T. Development of deterministic artificial intelligence for unmanned underwater vehicles (UUV). J. Mar. Sci. Eng. 2020,

8, 578. [CrossRef]
3. Han, Y.; Guo, W.; Gao, F.; Yang, J. A new dimension design method for the cantilever-type legged lander based on truss-mechanism

transformation. Mech. Mach. Theory 2019, 142, 103611. [CrossRef]
4. Ai, H.; Zhu, A.; Wang, J.; Yu, X.; Chen, L. Buffer compliance control of space robots capturing a non-cooperative spacecraft based

on reinforcement learning. Appl. Sci. 2021, 11, 5783. [CrossRef]
5. Meng, Q.; Liang, J.; Ma, O. Identification of all the inertial parameters of a non-cooperative object in orbit. Aerosp. Sci. Technol.

2019, 91, 571–582. [CrossRef]
6. Cocuzza, S.; Pretto, I.; Debei, S. Least-Squares-Based Reaction Control of Space Manipulators. J. Guid. Control Dyn. 2012,

35, 976–986. [CrossRef]
7. Fu, X.; Ai, H.; Chen, L. Repetitive learning sliding mode stabilization control for a flexible-base, flexible-link and flexible-joint

space robot capturing a satellite. Appl. Sci. 2021, 11, 2076. [CrossRef]
8. Liu, L.; Yao, W.; Guo, Y. Prescribed performance tracking control of a free-flying flexible-joint space robot with disturbances

under input saturation. J. Frankl. Inst. 2021, 358, 4571–4601. [CrossRef]
9. Huang, X.; Chen, L. Finite-time control and vibration suppression of two-flexible-link space robots with dead-zone. Zhongguo

Jixie Gongcheng 2019, 30, 1212–1218.
10. Evans, L. Canadian Space Robotics on Board the International Space. In Proceedings of the CCToMM Symposium on Mechanism,

Machines, and Mechatronics, Montreal, QC, Canada, 26–27 May 2005; Canadian Space Agency: Montreal, QC, Canada; pp. 26–27.
11. Liang, J.; Chen, L.; Liang, P. Neural network adaptive control and vibration hierarchical fuzzy control of flexible arm space robot.

Jisuanji Jicheng Zhizao Xitong/Comput. Integr. Manuf. Syst. CIMS 2012, 18, 1930–1937.
12. Gorial, I. Sliding mode controller design for flexible joint robot. Eng. Technol. J. 2018, 36, 733–741.
13. Zhang, Q.; Liu, X.; Cai, G. Dynamics and control of a flexible-link flexible-joint space robot with joint friction. Int. J. Aeronaut.

Space Sci. 2021, 22, 415–432. [CrossRef]
14. Li, X.; Wu, L. Impact motion control of a flexible dual-arm space robot for capturing a spinning object. Int. J. Adv. Robot. Syst.

2019, 16, 1–7. [CrossRef]
15. Fu, X.; Chen, L. Passive finite-dimensional repetitive control based on singular perturbation method of free-floating space robotic

manipulators system with two flexible joints. In Proceedings of the International Astronautical Congress, IAC, Bremen, Germany,
1–5 October 2018; pp. 1–5.

16. Yang, B.; Calise, A.; Craig, J. Adaptive output feedback control of a flexible base manipulator. J. Guid. Control Dyn. 2007,
30, 1068–1080. [CrossRef]

17. Yu, Y. Hybrid-trajectory based terminal sliding mode control of a flexible space manipulator with an elastic base. Robotica 2020,
38, 550–563. [CrossRef]

18. Giordano, M.; Calzolari, D.; Stefano, M.; Mishra, H.; Christian, O.; Albu-Schaffer, A. Compliant floating-base control of space
robots. IEEE Robot. Autom. Lett. 2021, 6, 7485–7492. [CrossRef]

19. Shi, B.; Wu, H. Space robot motion path planning based on fuzzy control algorithm. J. Intell. Fuzzy Syst. 2021, 2, 1–8. [CrossRef]
20. Spong, M. Modeling and control of elastic joint robots. J. Dyn. Syst. Meas. Control 1987, 109, 310–319. [CrossRef]
21. Zuo, Z.; Tian, B.; Defoort, M.; Ding, Z. Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics.

IEEE Trans. Autom. Control. 2018, 63, 563–570. [CrossRef]
22. Polyakov, A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control. 2012,

57, 2106–2110. [CrossRef]

http://doi.org/10.3390/jmse8080578
http://doi.org/10.1016/j.mechmachtheory.2019.103611
http://doi.org/10.3390/app11135783
http://doi.org/10.1016/j.ast.2019.05.047
http://doi.org/10.2514/1.45874
http://doi.org/10.3390/app11178077
http://doi.org/10.1016/j.jfranklin.2021.03.001
http://doi.org/10.1007/s42405-020-00294-3
http://doi.org/10.1177/1729881419857534
http://doi.org/10.2514/1.23707
http://doi.org/10.1017/S0263574719000857
http://doi.org/10.1109/LRA.2021.3097496
http://doi.org/10.3233/JIFS-219094
http://doi.org/10.1115/1.3143860
http://doi.org/10.1109/TAC.2017.2729502
http://doi.org/10.1109/TAC.2011.2179869


Appl. Sci. 2021, 11, 11685 19 of 19

23. Zuo, Z.; Han, Q.; Ning, B.; Ge, X.; Zhang, X. An overview of recent advances in fixed-time cooperative control of multiagent.
IEEE Trans. Ind. Inform. 2018, 14, 2322–2334.

24. Lee, S.; Lee, C. Hybrid control scheme for robust tracking of two-link flexible manipulator. J. Intell. Robot. Syst. 2002, 34, 431–452.
[CrossRef]

http://doi.org/10.1023/A:1019691501134

	Introduction 
	Dynamic Modeling of Fully Flexible Base–Link–Joint Space Robot 
	Fully Flexible Base–Link–Joint Space Robot Model 
	Flexible Joint Model 
	Flexible Link Model 
	Fully Flexible Base–Link–Joint Space Robot Modeling 

	Model Decomposition of Fully Flexible Base–Link–Joint Space Robot 
	Integrated Fixed Time Sliding Mode Control for Motion and Vibration 
	Fixed Time Sliding Mode Control 
	Fixed Time Sliding Mode Control Based on Hybrid Trajectory 
	Base and Joint Flexible Vibration Suppression Control 

	Simulation Analysis 
	Conclusions 
	References

