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Abstract: Through the continued development of technology, applying deep learning to remote
sensing scene classification tasks is quite mature. The keys to effective deep learning model training
are model architecture, training strategies, and image quality. From previous studies of the author
using explainable artificial intelligence (XAI), image cases that have been incorrectly classified can
be improved when the model has adequate capacity to correct the classification after manual image
quality correction; however, the manual image quality correction process takes a significant amount
of time. Therefore, this research integrates technologies such as noise reduction, sharpening, partial
color area equalization, and color channel adjustment to evaluate a set of automated strategies for
enhancing image quality. These methods can enhance details, light and shadow, color, and other
image features, which are beneficial for extracting image features from the deep learning model
to further improve the classification efficiency. In this study, we demonstrate that the proposed
image quality enhancement strategy and deep learning techniques can effectively improve the
scene classification performance of remote sensing images and outperform previous state-of-the-
art approaches.

Keywords: image quality; remote sensing; scene classification; deep learning; explanation artificial
intelligence

1. Introduction

With the continuous development of science and technology, the image quality
achieved by air cameras, mobile phones, and other camera equipment has progressively
improved. Additionally, the information that can be obtained from the image is richer in
detail. When remote sensing images are used for deep learning model training, the proper
categorization of scenes is an important step in understanding the classification of remote
sensing images. Remote sensing image scene classification tasks can be applied in various
fields [1,2] such as disaster prevention and relief, smart city planning, land covering, and
land change detection. Thus, the automatic classification of a large amount of remote
sensing image data is a crucial study topic [3].

For the improvement of the image data, the use of various methods of enhancement
processing may provide a higher level of image characteristics and assist in reinforcing the
image features of the neural network model in the subsequent phase. For image process-
ing, most of the existing methods are to directly crop the original image into the model
training. However, for some images with poor quality, the details and contrast are often
not satisfactory with the requirements after multiple feature extractions. Consequently, it is
difficult to achieve good results with the scene classification task. Using the Sobel edge
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detection algorithm and Gaussian smoothing function to identify the relevant region in
an image, Bhowmik et al. [4] suggested region-based processing to discard background
information and obtain a faster converge for deep learning model training. The image
quality assessment method is used to quantify the level of image accuracy, which can be
classified as subjective and objective methods. The subjective method is based on the user’s
perception of the image, whereas the objective method is based on the mathematical calcu-
lation model for image quality prediction. Varga [5] extracted visual features by attaching
global average pooling layers to multiple inception modules of an ImageNet database
pre-trained convolutional neural network for no-reference image quality assessment.

Within the model of the deep neural network of supervised learning, if we can figure
out where the distinctive feature texture of the region in the image, it will be a help
for predicting and would provide significant assistance in the model development. Thus,
using explainable artificial intelligence (XAI) technology is very useful for image analysis of
model training, which includes understanding the reasonable and interpretable relationship
between model prediction and image characteristics [6,7]. When we can explain how the
model performs task classification analysis, we can use it to assess whether the model
decisions are reasonable. We can modify the model to ensure its reliability, thereby utilizing
an interpretable feature correction method to further improve the accuracy of model
training. We previously proposed a deep CNN architecture (i.e., RSSCNet) [8] for remote
sensing scene classification tasks, and then used the Local Interpretable Model-Agnostic
Explanation (LIME) [9] to analyze misclassified cases. Finally, we confirmed that the image
quality will affect the classification performance of deep learning models.

The primary difference between this and the previous study [8] is that this study
proposes an automated image quality enhancement strategy as a preprocessing procedure
that can improve the RSSCNet model’s generalization ability. However, the previous
study [8] only performed a manual image correction process for the four misclassified
images by the RSSCNet model. This manual image correction process [8] is postprocessing,
labor-intensive, and time-consuming procedure.

The main contribution of this study is to explore the impact of different image quality
improvement methods on the classification results of deep learning models. Through image
processing procedures such as noise reduction, sharpening, partial color area uniformiza-
tion, and color channel adjustment, a set of automated image quality methods is proposed.
Our objective is to enhance the current method and use XAI technology to analyze and
demonstrate the importance of the image quality improvement strategy recommended by
this study for building a deep learning model with high generalization performance.

2. Materials and Methods
2.1. Dataset

This study uses two image datasets: the RSSCN7 [10] and WHU-RS19 image datasets [11].
Table 1 summarizes the characteristics of these datasets.

Table 1. The main characteristics of the applied databases.

Datasets Images per Class Classes Total Images Image Sizes Year

RSSCN7 400 7 2800 400 × 400 2015
WHU-RS19 ~50 19 1005 600 × 600 2012

The RSSCN7 image dataset is a public dataset released by Wuhan University in 2015.
There are seven different scene categories: includes grassland, fields, industrial areas,
rivers/lakes, forests, residential areas, and parking lots. The overall dataset contains a total
of 2800 images. Each of these categories contains 400 images with four different telemetry
sampling rates, and the sizes of all images are 400 × 400 pixels, as shown in Figure 1.
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Figure 1. Sample images of RSSCN7 dataset: (1) grass, (2) field, (3) industrial area, (4) river/lake,
(5) forest, (6) residential area, and (7) parking lot.

The WHU-RS19 image dataset is extracted from satellite images derived from Google
Earth. The spatial resolution of these satellite images is up to 0.5 m, and the spectral bands
are red, green, and blue (RGB). The image dataset contains 19 scene categories, which
includes airports, beaches, bridges, commercial areas, deserts, farmland, football fields,
forests, industrial areas, grasslands, mountains, parks, parking lots, ponds, ports, train
stations, residential areas, rivers, and viaducts; there are about 50 images corresponding to
each category. The entire data set has a total of 1,005 images, and the original image sizes
are 600 × 600 pixels, as shown in Figure 2.

Figure 2. Sample images of WHU-RS19 dataset: (1) airport, (2) beach, (3) bridge, (4) commercial area,
(5) desert, (6) farmland, (7) football field, (8) forest, (9) industrial area, (10) meadow, (11) mountain,
(12) park, (13) parking lot, (14) pond, (15) port, (16) railway station, (17) residential area, (18) river,
and (19) viaduct.

2.2. Image Quality Enhancement Strategy

To explore the effect of different image quality enhancement strategies on the perfor-
mance of the deep learning classification model, this study uses a series of pixel enhance-
ment methods to validate the image quality improvement of the original image dataset and
discusses the noise reduction, sharpening, partial color uniformity, and color to improve
the effectiveness of image processing procedures such as channel adjustment. Finally, a
set of optimized image quality enhancement methods was developed. The entire research
process is shown in Figure 3.
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Figure 3. Flowchart of the study design.

2.2.1. Image Denoising and Sharpening Processing

This study first analyzes the effectiveness for the testing of image denoising and
sharpening processing. Unsharp masking (USM) is a commonly used technique to sharpen
the edge of the image; it can improve the contrast of image edge detail. In this study, we
subtract the Gaussian smoothed version from the original image and retain the value of
the constant area in a weighted manner to realize the sharpening function, when X′ is the
enhanced image, X is the original image, Y is the Gaussian smoothed image, and a and b
are the weights of images, the formula is expressed as follows:

X′ = a · X + b ·Y (1)

We use the Gaussian Blur function to generate a Gaussian blurred image as an USM,
and then we mix the original image with the blurred image in a ratio of 1.5: −0.5 to make
the blurred image perform the reverse operation. The unsharp mask and the original image
are combined to produce an image that is more obvious than the original image edge,
which strengthens the model’s ability to detect the edges during training. The original
image and the sharpened image are compared, as shown in Figure 4.

Figure 4. (a) Original image. (b) Improved image using Gaussian Blur.

Next, we validate the image data with the sharpening processing. The sharpening
method is from the Non-local Means Denoising algorithm [12], which is an image noise
reduction algorithm. When compared with the local algorithms such as the Gaussian Blur
and anisotropic diffusion, the Non-local Means Denoising algorithm only uses the range
near the target pixel to smoothen the image and remove the image noise. In the local
averaging algorithm, each target pixel is defined as a block of a specified size, and all pixels
in the entire image are weighted according to the similarity between the surrounding block
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of the pixel and the target pixel block. Similar block images are averaged, so that the pro-
cessed image has less noise, and the retained image texture is more evident. Although this
denoising method will take more time, the effect of denoising is better, thereby obtaining
the edge details of the image with smaller loss. In the set block size, this paper uses 16 × 16
as the average pixel range size, as shown in Figure 5.

Figure 5. (a) Original image. (b) Improved image using fastNlMeansDenoisingColored.

2.2.2. Image Color Enhancement Processing

In this study, the three methods described below will be tested for color enhance-
ment of images: Contrast Limited Adaptive Histogram Equalization (CLAHE), Multi-Scale
Retinex with Color Restoration (MSRCR), and Multi-Scale Retinex with chromaticity preser-
vation (MSRCP).

First, we evaluate the CLAHE [13] method to perform the image quality tests. The
histogram equalization method is different from the traditional image processing technol-
ogy; it calculates the image histogram, then crops the histogram and perform equalization.
Increasing the overall contrast of the image during equalization will also increase the
noise contrast in the input image. Through the adaptive histogram equalization method,
the input image is divided into small image fragments, which are enhanced by applying
CLAHE to the regional fragments instead of the entire image; the mathematical formation
for the histogram limit of each region is given as:

β =
M
N

(
1 +

α

100
(Smax − 1)

)
(2)

where M is the pixels in each region, N is the dynamic range in region, Smax is the maximum
allowable slope, and α is the clip factor set between 0 to 100. Using this formula, we can
obtain the clip limit, β, which limits the change in image contrast.

Next, we use the bilinear interpolation to seamlessly stitch the generated adjacent
image blocks to limit the contrast of the uniform area, thereby avoiding an increase in noise
to produce better image quality output. It can be seen from Figure 6 that the light, shadow,
and contrast of the forest image have been improved after CLAHE correction, and it is
easier to recognize with the human eye.
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Figure 6. (a) Original image. (b) Improved image using CLAHE.

Then, we assess the MSRCR; this method is based on the Multi-Scale Retinex (MSR) [14].
In the MSR enhancement process, the image may be distorted due to the increase of noise,
and the color of the local details of the image may be distorted. Hence, the true color of
the object cannot be shown, and the overall visual effect will be worse. To deal with this
problem, Jobsonet et al. [15] proposed to complete the algorithm with color restoration
steps. When adding the color restoration step into the MSR method, the color restoration
factor is used to adjust the defect of the color distortion caused by the contrast enhancement
of the local area of the image. They proposed modifying the MSR output by multiplying
the MSR output by the color restoration function of the chroma to adjust the difference
between the three-color channels in the original image. We highlight the information in the
relatively dark area and eliminate the defect of the image color distortion. After processing,
the local contrast of the image is improved, and the brightness will be similar to the actual
scenery; the algorithm for the MSRCR method can be is given below:

RMSRCRi(x, y) = Ci(x, y)RMSRi(x, y) (3)

Ci(x, y) = f
[
I ′i (x, y)

]
(4)

The function that provides best overall color restoration is below, where β is a gain
constant, α controls the strength of the nonlinearity:

Ci(x, y) = β log
[
αI ′i (x, y)

]
(5)

When we review the image with our visual perception, the image appears more
realistic. Figure 7 displays the original image and the image of the industrial area corrected
by MSRCR. It can be found that the MSRCR method corrected the white balance and color
problems in the original image. In addition, this study will simultaneously test the MSRCP
without color restoration but only retain the chromaticity.
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Figure 7. (a) Original image. (b) Improved image using MSRCR.

2.3. XRAI Technology

XRAI technology [16] combines patch identification [9] and the integrated gradi-
ents [17]. XAI uses the interpretable performance of the model to assist with the following:
extraction of distinctive textures and details from a large number of images, understanding
how to perform image classification analysis with appropriate decision-making between
images and models, and the determination of the images captured in the model. Whether
the texture feature is reasonable, we evaluate the correctness of the feature area in the
classification decision and improve the image quality when the prediction is wrong, thereby
ensuring the reliability of the classification. The XRAI technology used in this study divides
the image into many small overlapping areas, and then use the integrated gradient to obtain
the contribution of the non-zero gradient of the unsaturated zone to the importance of
model decision-making. The analysis results of the hot zone map can show the significant
area that has the greatest impact on the model decision-making, rather than a single pixel,
as shown in Figure 8. XRAI’s use of this larger significant area can often yield better
interpretation, and we can directly observe the effects of this interpretation of the image
feature texture after training.

Figure 8. (a) Original image. (b) XRAI shows the image feature hot zone.

2.4. Deep Learning Model

The neural network model used in this study is illustrated in Figure 9, utilizing the
RSSCNet method [8]. The main research direction in this study is to propose CNN telemetry
scene classification network architecture and use transfer learning technology to modify
the deep learning model to obtain better accuracy. There are two convolutional layers in
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RSSCNet: a global average pooling layer and three batch normalization layers [18]. The
activation function of the convolutional layers is ELU [19]. There are two fully connected
layers and a dropout layer; the filter size in the convolutional layer is 3 × 3 pixels, the
dropout rate is set to 0.5, the fully connected layer uses the L1 regularization, and the
parameter is set to 0.01.

Figure 9. RSSCNet classifier network architecture.

3. Results

The training equipment in this research is the Windows 10 system operating platform,
and the core processor used in the hardware configuration is AMD Ryzen™ 3 PRO 4350G
with 32 GB random access memory, and the NVIDIA GeForce GTX3060 12G graphics card
is used for the deep learning model training. The software uses the Python programming
language for development and design using Anaconda 4.4.10 (Python 3.8). The Tensorflow
software package used for model training is Tensorflow-GPU 2.4 version, and the CUDA
version is 11.1. In all experiments, the length and width of the image are both set to
256 pixels. This study utilizes the training set size designed based on related research [8].
For the RSSCN7 image dataset, 50% of the training dataset is used, and for the WHU-RS19
dataset, 40% of the training dataset is used.

In the experiment, 300 epochs of training will be carried out uniformly, and a two-
stage training strategy will be used to deliver a cyclical learning rate. In the first stage, the
SGD optimizer will be used to add the Nesterov momentum learning rates between 0.001
and 0.00001. We carry out one cycle of the cyclic learning strategy, and the second stage
uses the Adam optimizer to perform the decremental cyclic learning rates between 0.0001
and 0.00001 for training, as shown in Figure 10.
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Figure 10. Schematic of the two-stage cyclic learning rate training.

In this study, the training accuracy, test accuracy, overall accuracy, and test correct
cases were used for the performance evaluation of the model classification; the results of the
overall accuracy are compared to those obtained in other studies. The overall accuracy is
the ratio between the model’s correct predictions on full datasets and the overall numbers.
The overall accuracy ranged from 0 to 1, with a number closer to 1 indicating that the
model has better classification performance.

3.1. Effects of Image Denoising Methods

This study first discusses the difference in the impact of different denoising and
sharpening image correction methods on model training. In addition to using the original
image for training, we compare the application of the following methods: (1) the Gaussian
Blur USM added to the original image, (2) the fastNlMeans Denoising Colored denoising
method, (3) fastNlMeans Denoising Colored using USM added to the original image, and
(4) the simultaneous use of the Gaussian Blur and fastNlMeans Denoising Colored added
as a mask to the original image.

After all methods have undergone 300 iterations of training, the results of the RSSCN7
image dataset that are obtained are shown in Table 2; the table shows the test accuracy and
the number of correct classifications of the test images. Table 1 shows the image denoising
effect. The best denoising method is adding the fastNlMeans USM to the original image to
achieve the best accuracy. When compared with the training results of the original image
dataset with the total number of 1400 test image predictions, it is found that the number of
correctly predicted images has increased by 12.

Table 2. Effect of image denoising methods on RSSCN7 dataset.

Method Training Accuracy Test Accuracy Test Correct Cases

Original Image 1.0 0.9500 1330
Blur Sharpen 1.0 0.9536 1335

Denoising 1.0 0.9479 1327
Denoising Sharpen 1.0 0.9586 1342

Blur Denoising Sharpen 1.0 0.9550 1337

In addition, we tested five methods on the WHU-RS19 image dataset. From Table 3, it
can be seen that the correction method is realized when the original image is added to the
fastNlMeans Denoising Colored mask to obtain the best accuracy. When compared with
the original image prediction results, we realize that the number of correct predictions of
three images can be improved; thus, we ascertain that the use of the fastNlMeans Denoising
Colored mask method can improve the accuracy of the model prediction.
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Table 3. Effect of image denoising methods on WHU-RS19 dataset.

Method Training Accuracy Test Accuracy Test Correct Cases

Original Image 1.0 0.9768 589
Blur Sharpen 1.0 0.9768 589

Denoising 1.0 0.9768 589
Denoising Sharpen 1.0 0.9801 591

Blur Denoising Sharpen 1.0 0.9801 591

3.2. Effects of Image Enhancement Methods

Next, we discuss the effectiveness of using different color correction methods. The
experiment uses three different correction methods: CLAHE, MSRCR, and MSRCP. All
methods were trained by 300 epochs; the results of the RSSCN7 image dataset that were
obtained are shown in Table 4. The table shows the test accuracy and the correct number of
test images. It can be seen from Table 4 that the best test accuracy can be obtained by using
the CLAHE correction method. When compared with the training results of the original
image dataset, the total number is 1400. When considering the test image prediction, the
number of correctly predicted images increased by 12.

Table 4. Effects of image enhancement methods on RSSCN7 dataset.

Method Training Accuracy Test Accuracy Test Correct Cases

Original Image 1.0 0.9500 1330
CLAHE 1.0 0.9586 1342
MSRCP 1.0 0.9429 1320

Automated MSRCR 1.0 0.9500 1330

Furthermore, we compare the three methods utilizing the WHU-RS19 image dataset. It
can be seen from Table 5 that the best accuracy can be obtained with the CLAHE correction
method, and when compared with the original image dataset, the number of correct images
also improved.

Table 5. Effects of image enhancement methods on WHU-RS19 dataset.

Method Training Accuracy Test Accuracy Test Correct Cases

Original Image 1.0 0.9768 589
CLAHE 1.0 0.9784 590
MSRCP 1.0 0.9619 580

Automated MSRCR 1.0 0.9635 581

3.3. Effects of Color Spaces

After discussing the CLAHE image color fix method, we additionally validated
whether the application of the different color spaces in relation to the correction method
will have other different degrees of improvement. Therefore, we use the HSV and LAB,
which are two common color space methods to convert the image. After the color space
conversion, the CLAHE method is used for correction, and then the training prediction
is performed. Table 6 shows the results of RSSCN7 dataset that use of LAB or HSV color
spaces are not any better than the RGB color fix image for the CLAHE prediction.

Table 6. Effects of color spaces on RSSCN7 dataset.

Method Training Accuracy Test Accuracy Test Correct Cases

Original Image 1.0 0.9500 1330
RGB CLAHE 1.0 0.9586 1342
LAB CLAHE 1.0 0.9514 1332
HSV CLAHE 1.0 0.9507 1331
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3.4. Scene Classification Performance

Finally, we combine the best denoising sharpening method and the color correction
method to improve the image quality. The two best methods (Denoising Sharpen and
CLAHE) are simultaneously corrected, and then the images are trained and predicted.
Figure 11 shows the curves of the two-stage training process. As can be observed, the
accuracy and loss for both training and validation sets are in a good performance. The
overall execution time of the model training process of RSSCN7 dataset is 3085 s using an
NVIDIA GeForce GTX3060 graphics card.

Figure 11. Model training history of RSSCN7 dataset: (a) training and validation accuracy; (b) training and validation loss.

Table 7 shows the prediction performance of the RSSCN7 dataset; the test accuracy is
increased from 0.95 to 0.965 using the proposed method compared to the training results
of the original image dataset, and the number of images that are accurately predicted is
increased by 21.

Table 7. Effect of the proposed method on RSSCN7 dataset.

Method Training Accuracy Test Accuracy Test Correct Cases

Original Image 1.0 0.950 1330
Denoising Sharpen with CLAHE 1.0 0.965 1351

Additionally, we compared this method using the WHU-RS19 image dataset. The
above method can also be obtained for better model prediction accuracy when compared
to the original image training dataset. Figure 12 shows the model training history using the
proposed method in the study, with the results confirming that the model training process
is in a good performance. Using an NVIDIA GeForce GTX3060 graphics card, the overall
execution time of the model training process of WHU-RS19 dataset is 1075 s.

Figure 12. Model training history of WHU-RS19 dataset: (a) training and validation accuracy; (b) training and valida-
tion loss.
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Table 8 shows the prediction performance of the WHU-RS19 dataset. Using the
proposed method in this study, the test accuracy is increased from 0.9768 to 0.9801 compared
with the training results of the original image dataset.

Table 8. Effect of the proposed method on WHU-RS19 dataset.

Method Training Accuracy Test Accuracy Test Correct Cases

Original Image 1.0 0.9768 589
Denoising Sharpen with CLAHE 1.0 0.9801 591

Table 9 lists a comparative evaluation against several state-of-the-art classification
methods using the RSSCN7 dataset classification, including the proposed method. With
20% and 50% training ratios, our proposed methods achieved the best overall accuracy for
different training ratios.

Table 9. Comparison of the overall accuracy on the RSSCN7 dataset.

Method Year
Training Ratio

20% 50%

DBN [10] 2015 NA 77.00
GoogLeNet [20] 2016 82.55 ± 1.11 85.84 ± 0.92

CaffNet [20] 2016 85.57 ± 0.95 88.25 ± 0.62
VGG-16 [20] 2016 83.98 ± 0.87 87.18 ± 0.94

Deep Filter Banks [21] 2016 NA 90.4 ± 0.6
GCFs+LOFs [22] 2018 92.47 ± 0.29 95.59 ± 0.49

RSSCNet [8] 2020 93.51 ± 0.51 97.41 ± 0.27
EfficientNetB3-Attn-2 [23] 2021 93.30 ± 0.19 96.17 ± 0.23

RSSCNet w/improved image (our) 2021 93.76 ± 0.25 97.94 ± 0.18

Table 10 shows the results for the WHU-RS19 dataset; the proposed method outper-
forms other existing state-of-the-art methods, regardless of the training ratio.

Table 10. Comparison of the overall accuracy on WHU-RS19 dataset.

Method Year
Training Ratio

40% 60%

GoogeNet [20] 2015 93.12 ± 0.82 94.71 ± 1.33
CaffNet [20] 2016 95.11 ± 1.20 96.24 ± 0.56
VGG-16 [20] 2016 95.44 ± 0.60 96.05 ± 0.91

TEX-Net-LF [24] 2018 97.61 ± 0.36 98.00 ± 0.52
Two-Stream Fusion [25] 2019 98.23 ± 0.56 98.92 ± 0.52

SE-MDPMNet [26] 2019 98.46 ± 0.21 98.97 ± 0.24
RSSCNet [8] 2020 98.54 ± 0.37 99.46 ± 0.21

EfficientNetB3-Attn-2 [23] 2021 98.60 ± 0.40 98.68 ± 0.93
RSSCNet w/improved image (our) 2021 98.71 ± 0.23 99.58 ± 0.07

4. Discussion

After correcting the image dataset by different correction methods in this study, it can
be observed from the training results that through noise reduction, sharpening, and partial
image enhancement, the images are processed through a consistent pixel enhancement
method to achieve an automated method for optimal image quality. The automated quality
enhancement strategy helps to improve the accuracy of prediction. When accurate and
effective corrections are made, this process can be used to strengthen model training to
achieve better classification accuracy.

In addition to discussing the different image correction methods, this study also hopes
to yield an understanding of how the image feature texture enhancement is performed.
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Therefore, we use XRAI to visualize the feature regions of the hot zone map with the best
prediction results, using this technology to perform an analysis of river/lake images in the
RSSCN7 image dataset. As shown in Figure 13, the heatmap areas in the original image are
concentrated on both sides, and the main feature block cut outs are distributed on the outer
houses, which can explain the reason for the incorrect selection of the industry category.
However, after fixing by noise sharpening and color correction, the hot zone moves to the
central area, and the cropped main feature area also returns to the inner side of the lake,
and then the correct classification category is obtained in the revised prediction. Figure 14
is also a river/lake image but was determined to be an incorrect field. After correction
processing, the edge depth of the lakeside became strengthened and more evident. We can
see the characteristic heatmap generated by XRAI, which is the primary focus area. The
piece of land from the original outer edge was revised to the inner edge of the center of
the lake. We can understand the basis for the image classification determination and the
reason for accurate correction.

In addition, the error in the predicted parking lot images in the RSSCN7 image dataset
was reviewed via XRAI analysis. As shown in Figure 15, the hot area in the original image
did not capture the car grid of the parking lot, and only focused on the side eaves and trees
along the street, which were strengthened after correction. The light and shadow of the
edge of the car grid makes the parking lot grid more evident. Comparing with Figure 15a,
it can be seen that the characteristic hot zone of XRAI contains a large number of parking
lot grids from Figure 15b, and finally, the correct classification category is obtained in the
revised prediction.

Figure 13. Image (river/lakes category) with XRAI analysis. (a) Original image (predicted as
Industry); (b) improved image.
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Figure 14. Image (river/lakes category) with XRAI analysis. (a) Original image (predicted as field);
(b) improved image.

Figure 15. Parking lot image with XRAI analysis. (a) Original image (predicted as industry);
(b) improved image.

In this study, XRAI is used to visualize the heatmap based on the model prediction. We
try to understand where the feature texture in the image has an effective basis for decision-
making. Additionally, we evaluate the image to understand the feature texture of the image
block and verify the correlation of the model prediction category. When considering the
transfer of the salient feature position and the basis for the analysis and determination of
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the auxiliary verification using the image correction method, we can improve the model
prediction under the condition of intelligibility and obtain better prediction accuracy.

Tables 9 and 10 show the comparison of the overall performance on RSSCN7 and
WHU-RS19 datasets. The performance of the proposed method in this study is better than
the existing state-of-the-art approaches. This is because these existing methods exclusively
applied original images for model training. However, this study adopts an image quality
enhancement strategy in the deep learning model training. This image preprocessing
method can enhance the input images’ quality, train the deep learning model to extract
more effective image features, and improve the deep learning model’s overall performance.

5. Conclusions

Our research proposes a set of optimal image quality enhancement strategies after con-
ducting multiple sets of experiments through different combinations of image processing
procedures such as noise reduction, sharpening, partial image color area homogenization,
and color channel adjustment. After testing two public remote sensing scene image datasets
on scene image classification task, it was shown that the image quality enhancement strat-
egy proposed in this study can effectively improve the generalization performance of the
deep learning model after training.

This study uses the locally interpretable XRAI technology to analyze the significant
image location difference before and after the image quality enhancement strategy of the
original misclassified case. It also verifies the automated image quality enhancement
strategy proposed in this study, which can assist in training the deep learning model to
find the location of the image feature texture of the correct category, allowing the accuracy
of the model to be further improved.

Additionally, our objective is to develop a supervised deep learning model with high
generalization performance and well-designed model architecture, thereby improving the
data quality of the image dataset, which is an equally important factor.

In future work, we will apply region-based processing [4] to eliminate background
information and obtain faster convergence for model training and inference.
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