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Abstract: For the service life estimation of metallic components under cyclic loading according to
strain-based approaches, a simulation of the elastic-plastic stress–strain path at the point of interest is
necessary. An efficient method for determining this stress–strain path is the use of the load–notch-
strain curve, as this is also implemented within the FKM guideline nonlinear. The load–notch-strain
curve describes the relationship between the load on the component and the local elastic-plastic
strain. On the one hand, this can be estimated from loads or theoretical elastic stresses by using notch
root approximations. On the other hand, this can be determined in a finite element analysis based on
the elastic-plastic material behaviour. This contribution describes how this latter option is carried
out in general and how it can be optimised in such a way that the FEA requires significantly less
calculation time. To show the benefit of this optimisation, a comparative calculation on an exemplary
geometry is carried out.

Keywords: service life estimation; load–notch-strain curve; notch strain approach; finite element analysis

1. Introduction

The assessment of fatigue strength is one of the most important aspects in the design of
safety-related components. As an alternative or as a supplement to experimental strength
assessments, analytical assessments can be performed. Various calculation approaches
exist for this purpose; these can be distinguished into stress- and strain-based concepts [1,2].
The latter, which are also called local strain approaches or the notch strain concept, assume
elastic-plastic material behaviour in the component, and use the local stresses and strains
calculated as basic load quantities.

The notch strain concept, also known as the local strain approach, can be found in
many variants throughout the literature [1–5]. These differ primarily in the procedures
used to determine the local stresses and strains; e.g., the notch root approximations [6–16],
and in the so-called load parameters (also known as mean stress parameters or damage
parameters) used to evaluate the damage of individual stress–strain hystereses [17–24].
Both can have a significant influence on the calculation result of a component’s fatigue
life. In addition, the calculation procedures used for the notch strain approach—regardless
of how it is expressed—can only be applied with the help of computational algorithms,
since, for example, numerical solution procedures need to be used. Therefore, the calcula-
tion result also depends to a certain extent on the user-specific implementation of these
calculation algorithms.

In order to use local strain approaches for a reliable analytical component assessment,
the above-mentioned diversity of variants and dependency of the calculation result on
the implementation tend to be disadvantages. Calculation results are not comparable. To
overcome this weakness, the “Rechnerischer Festigkeitsnachweis für Maschinenbauteile
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unter expliziter Erfassung nichtlinearen Werkstoffverformungsverhaltens” (Analytical
strength assessment for components under explicit consideration of nonlinear material be-
haviour [25]) guideline was developed in Germany. In this guideline, the above-mentioned
diversity of variants in the calculation algorithms is reduced to two variants with different
levels of complexity. Both variants are also described in such detail that the deviations
in the calculation results of different users are reduced to a minimum. In addition, the
calculation algorithm is provided with a safety factor concept that allows the assessment
of component fatigue lives for low probabilities of failure. The described guideline was
developed by the German research association “Forschungskuratorium Maschinenbau”
(FKM), and subsequently will be referred to as the “FKM guideline nonlinear”. As the
guideline is only available in the German language at present, the calculation model for
the fatigue strength assessment will be briefly explained below. More detailed information
can be found in [25,26].

The FKM guideline nonlinear allows two different calculation procedures for fatigue
strength assessment that differ in their estimation of the local stresses and strains and the
load parameter used.

• On the one hand, the local elastic-plastic stresses and strains can be estimated using
the notch root approximation according to Neuber [27] with the extension according to
Seeger and Heuler [28]. For each closed hysteresis detected from the local stress–strain
paths estimated in this way, a load parameter PRAM is calculated using Equation (1):

PRAM =
√
(σa+k · σm) · εa · E if (σa+k · σm) ≥ 0

PRAM = 0 if (σa+k · σm) < 0
(1)

where σa is the stress amplitude, σm is the mean stress, εa is the strain amplitude of
the detected hysteresis, E is Young’s modulus, and k is a correction factor that takes
into account the mean stress sensitivity of the material. The load parameter PRAM is a
modification of the widely used approach according to Smith, Watson, and Topper [17].
This modification extends the Smith, Watson, and Topper approach using the material-
dependent mean stress sensitivity, as originally suggested by Bergmann [19,29]. With
the help of the PRAM values for the individual hysteresis and a corresponding PRAM
Wöhler curve, damage accumulation can be carried out, and the component service
life can be calculated.

• On the other hand, the local stresses and strains can be estimated using the notch root
approximation according to Seeger and Beste [30–32]. The evaluation of the damage
of the individual hysteresis is carried out with the PRAJ load parameter, which is a
refined version of the PJ parameter according to Vormwald [21,24]:

PRAJ= 1.24 · ∆σeff
2

E
+

1.02√
n′
· ∆σeff · ∆εeff −

∆σeff
E

(2)

This is motivated by the fracture mechanics of short cracks, and is thus able to take
into account the sequence effects of different load sequences through crack opening
and closing effects.

The calculation procedure based on PRAM is less complex in terms of the calculation
algorithm, and therefore easier to implement. However, the variant using PRAJ has the
advantage that load sequence effects can be taken into account, which promises a better
accuracy, especially for load sequences with changing statistic characteristics.

Both described calculation procedures within the FKM guideline nonlinear have in
common the fact that notch root approximations are used as standard approaches for
determining the local stresses and strains. As an alternative approach, the use of finite
element analyses (FEA) with elastic-plastic material behaviour is also permitted. However,
detailed instructions on how to proceed with such an analysis in order to calculate the local
stresses and strains both efficiently and accurately are lacking. While another contribution
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by the authors deals with the efficient implementation of notch root approximations to
determine local stresses and strains [33], this article focuses on the aspect of using FEA.

The FEA with elastic-plastic material behaviour has the advantage that all influences
of the geometry (stiffness distribution, cross-section changes) can be considered in the
analysis. Compared to the notch root approximation, this procedure promises a higher
accuracy in the determination of the local stresses and strains independent of the considered
geometry, and thus a higher accuracy in the service lives calculated with the notch strain
concept. A disadvantage of this is the significantly higher calculation effort required in
terms of computational resources and calculation time compared to FEA with linear-elastic
material behaviour and a subsequent notch root approximation, especially when finite
element models with many elements are considered—e.g., for complex geometries.

This is also the reason why the standard use of FEA with elastic-plastic material
behaviour to determine local stresses and strains has not yet found its way into regulations
for the assessment of fatigue strength. Rather, this sort of finite element analysis is only
used in individual cases [34–40], in which the calculation time only plays a subordinate
role, or for the development of notch root approximations themselves [7,14,15,41,42], where
the stresses and strains determined in this way are used as a reference for those estimated
with notch root approximations. Recommendations for the efficient design of finite element
analyses with which input data for strain-based strength assessments can be generated can
only be found in rudimentary form—see, e.g., [43].

This paper therefore presents a procedure for determining load–notch-strain curves
(Section 2) using FEA. The focus is placed in particular on the following aspects of how to
increase the efficiency of the calculation:

• The discretisation of the used material law;
• The way in which nodal results are calculated;
• A reduction in the number of applied load steps.

The mentioned aspects have an effect on the determined local stresses as well as the
local strains, which makes it difficult to assess their relevance to the calculated service life.
For this reason, the influence of the aforementioned aspects is rated based on the calculated
service lives for both constant and variable amplitude loading. The above-mentioned FKM
guideline nonlinear is used for the calculation of these component service lives.

Even though the well-documented calculation algorithm of the FKM guideline nonlin-
ear is used for the efficiency rating, the procedure recommended in this paper for deter-
mining the load–notch-strain curve can easily be applied to other variants of strain-based
concepts, and is not explicitly linked to the use of the FKM guideline nonlinear.

2. Determination of Local Stresses and Strains for the Notch Strain Approach Using FEA

In this section, the necessary basics for understanding this contribution are described.
Section 2.1 explains the elastic-plastic deformation behaviour of metallic materials that
forms the basis for the following investigations. Subsequently, Section 2.2 introduces the
load–notch-strain curve and its application in the strain-based concept, and Section 2.3
describes the principal determination of the load–notch-strain curve with FEA.

2.1. Cyclically Stabilised Uniaxial Material Behaviour

For service life estimations carried out by means of the notch strain approach, the local
stress–strain path is determined under consideration of elastic-plastic material behaviour [1,2].
The uniaxial relationship between stress σ and strain ε under cyclic loading is described by
a material law. For the simplification of a cyclically stabilised deformation behaviour, the
cyclic stress–strain curve can be described with the approach according to Ramberg and
Osgood [44], independent from the prehistory of cyclic loading (see Equation (3)).

ε =
σ

E
+
( σ

K′
) 1

n′ (3)
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The approach of Ramberg and Osgood is also used in the FKM guideline nonlinear [25].
Young’s modulus E is a fixed value in [25] depending on the material group involved—for
example, E = 206 GPa for steel. The cyclic material parameters K′ and n′ can either be
determined experimentally or estimated. In the FKM guideline nonlinear, the estimation
method according to Wächter et al. [45,46] is given for estimating the parameters of the
cyclic stress–strain curve from the tensile strength Rm. For steel materials, this estimation
is summarised in Equations (4) and (5):

n′ = 0.187 (4)

K′ =
3.1148 MPa ·

(
Rm

MPa

)0.897

(
min

[
0.338; 1033 ·

(
Rm

MPa

)−1.235
])n′ (5)

Other approaches for describing the uniaxial cyclically stabilised material behaviour
might also be utilized; e.g., a bilinear [2] or multilinear approach, or the modified Ramberg–
Osgood approach according to Pei and Dong [47]. However, these approaches will not be
considered in more detail in the following investigations, since the focus is on the FKM
guideline nonlinear.

The simplified assumption of cyclically stabilised material behaviour is often made
within analytical fatigue assessments using strain-based concepts; e.g., [2,48–51]. This
is mainly motivated by the fact that the number of material parameters required for the
material model used can be kept within a reasonable range for a practical application.
Throughout the literature, however, there are various complex approaches that promise
to represent the physical cyclic material behaviour more accurately—see, e.g., [51–53].
Assuming a cyclically stabilised material behaviour, the deformation of the material during
initial loading is described by Equation (3). The stress–strain path at load reversal is
described according to Masing’s behaviour [54], with the initial load curve doubled in
stress and strain—see Equation (6) and Figure 1A. The doubled initial load curve is referred
to as a hysteresis branch below.

∆ε =
∆σ
E

+2 ·
(

∆σ
2 · K′

) 1
n′

(6)
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Figure 1. Cyclically stabilised material behaviour: (A) Masing’s behaviour; (B) local stress–strain path at constant ampli-
tude loading.

In the local stress–strain diagram, a new coordinate system for the range of stress ∆σ
and strain ∆ε is placed in each reversal point of the stress–strain curve and a new hysteresis
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branch starts from there, which follows Equation (6). Its length depends on the level of
stress. Figure 1B schematically shows the stress–strain path for constant amplitude loading.

If the loading on a material shows variable amplitudes, the rules of material memory
(memory rules) must also be taken into account; these describe at which points of the
course the stress–strain path changes from an initial load curve to a hysteresis branch, and
vice versa. The memory rules have a considerable influence on the stress–strain path, and
thus on the size of the closed hysteresis and the position of the hysteresis in the stress–strain
diagram. The model used for the description of memory effects and the simulation of
qualitatively correct local stress–strain paths was developed by various contributions—see,
e.g., [55–61]. The separation into three easily understandable memory rules, which are also
used in the FKM guideline nonlinear [25], is described in the work of Bergmann, Clormann,
and Seeger [29,62]; see Figure 2.
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2.2. Simulation of Local Stress–Strain Paths and Load–Notch-Strain Curve

To estimate the service life of a component according to the notch strain approach, it is
necessary to convert the sequence of the external load (e.g., forces or moments) into a path
of local elastic-plastic stresses and strains at the point of interest of the component. The
dependency of local stresses and strains follows the principles given in Section 2.1 as long
as the material is loaded in a uniaxial stress state. For multiaxial stress states, more or less
complex hypothesis and material models need to be used. The FKM guideline nonlinear
assumes that multiaxial proportional loading may also be described by the same principles
as those for uniaxial loading (Section 2.1) if equivalent stresses according to the von Mises
hypotheses are used [63,64]. Since equivalent stresses are always positive, a sign needs
to be added in this case [65]. The FKM guideline nonlinear suggests using the sign of
hydrostatic stress σH:

σV =
sign(σH)√

2

√
(σ xx−σyy

)2
+(σ xx−σzz

)2
+(σ zz−σyy

)2
+6(τ 2

xy+τ
2
yz+τ

2
zx

)
(7)

σH =
1
3
· (σxx+σyy+σzz) (8)

For now, only components may be evaluated using the FKM guideline nonlinear [25]
with uniaxial and multiaxial proportional loadings. This is due to the fact that neither the
procedure described below of using a load–notch-strain curve to determine the stress–strain
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path cannot be applied to nonproportional loads, nor is a satisfactory consideration of the
effects occurring under nonproportional loads, such as nonproportional hardening [66],
or life extension or shortening, cf. e.g., [67], implemented within the FKM guideline
nonlinear yet.

For the application of a strain-based approach, besides the material behaviour, the
dependency between the load (e.g., force, moment) and the local stress and strain needs to
be known so that the local stress–strain path can be determined. Different procedures are
available for determining the local stress–strain path:

• Reversal point to reversal point with FEA: The most obvious option is to transfer the
component into a finite element model, to deposit an elastic-plastic material behaviour
according to Section 2.1, and apply the load-time history to the component in order to
obtain the local stress–strain path. Since FEAs with elastic-plastic material behaviour—
and especially with complex component geometries—still require large computing
capacities and thus lead to high computing times, this procedure is only recommended
for very short load-time histories. Section 5 illustrates this procedure with an example.

• Reversal point to reversal point with notch root approximation: Significant time can
be saved by using notch root approximations. These make it possible to estimate
stresses and strains with elastic-plastic material behaviour from external loads or
local elasticity-theoretical stress. The principle procedure is as follows [68]: the
elastic-plastic stress–strain path is obtained by applying a notch root approximation
to each reversal point of the load sequence or the elasticity-theoretical stress history,
considering the memory rules [29,62] and Masing’s behaviour [54].

• Use of a load–notch-strain curve: With the previously described methods, a notch root
approximation or an FEA must be carried out for each reversal point of the load-time
history. This leads to a high calculation effort for long load-time histories, which can
be shortened by using the so-called load–notch-strain curve. The load–notch-strain
curve describes the relationship between the external load or local elasticity-theoretical
stress and the local elastic-plastic strain. If the previously mentioned assumption of
cyclically stabilised material behaviour is made, the relationship between an external
load and the local elastic-plastic stresses and strains is always the same for a single
load branch. The load–notch-strain curve can be regarded as a type of template. The
load–notch-strain curve may therefore be determined before the simulation of the
local stress–strain path itself using either a notch root approximation or FEA. For
longer load-time histories with a large number of reversal points, this procedure is
much less time-consuming than a point-by-point FEA or a point-by-point notch root
approximation. The idea of using a load–notch-strain curve instead of a point-by-point
calculation can most likely be traced to Williams et al. [48], and was advanced by
the work of [29]. In the following, the procedure for determining and using the load–
notch-strain curve is described using the procedure of the FKM guideline nonlinear.

For the application of the FKM guideline nonlinear, the load-time history is classified,
which means that only a discretised load–notch-strain curve is required. The class width
for the discretisation is determined by dividing the largest load Lmax by the number of
classes. The FKM guideline nonlinear suggests using a total of 100 classes between L = 0
and L = Lmax; whereas in Figure 3A, a class number of 4 is used for didactic reasons. In
the classification, the load at each reversal point is shifted to the next largest class limit in
terms of absolute value; see the red points in Figure 3A.

In order to simplify the representation and make it independent of different units of
load, as well as to correspond to the format of the FKM guideline nonlinear, the load–notch-
strain curve is represented in this paper as the relationship between the linear-elastic stress
and the notch strain. The same is true for the load-time history, which is also understood
to be local linear-elastic stress. However, the load–notch-strain curve can also be used as a
relation between external load and notch-strain.
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Subsequently, the load–notch-strain curve for the initial load is determined as discrete
points for each class of linear-elastic stresses—i.e., the elastic-plastic stress and strain
must be calculated for each class of linear-elastic stress. Figure 3B shows the qualitative
calculation of the elastic-plastic strains and stresses with a notch root approximation. From
the four elasticity theoretical stresses σel,1...4 at the class limits, which lie on a straight
line with the slope of the elastic modulus E in the stress–strain diagram (Hooke’s law),
the elastic-plastic stresses, which must lie on the cyclic stress–strain curve of the material
(shown in red), are inferred. The load–notch-strain curve is obtained by plotting the
elasticity-theoretical stress amplitudes at the class limits σel,1...4 over the corresponding
strains εI,1...4 for the initial load.

Due to Masing’s behaviour, the local stress–strain path after load reversal does not
follow the shape of the initial load curve (Equation (3)); instead, it follows the double
initial load curve, the so-called hysteresis branch (Equation (6)). Therefore, in addition
to the load–notch-strain curve for the initial load, the load–notch-strain curve for the
hysteresis branch must also be determined. Within the load sequence, maximum stress
ranges ∆σel, which correspond to twice the maximum elasticity-theoretical stress σel,max,
can occur. The load–notch-strain curve for the hysteresis branch is therefore determined
for elasticity-theoretical stresses of up to 2·σel,max, and is shown in green in Figure 3B.

The local elastic-plastic stress–strain path can now be determined without much
computational effort. In Figure 4A, the path is determined up to the first reversal point.
Since this is the first load on the material, the load–notch-strain curve for the initial load is
used. The amplitude of the first flank corresponds to the stress of the fourth class σel = σel,4.
The corresponding elastic-plastic strain ε1 is determined with the load–notch-strain curve
and corresponds to the strain εI,4. The local stress–strain curve begins at the origin and
continues to the strain ε = ε1. The corresponding stress σ and the course of the σ-ε path are
determined with the material law—see Equation (3).
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Figure 4B shows the calculation up to the next reversal point. Due to Masing’s
behaviour at load reversal, the load–notch strain curve for the hysteresis branch is used.
The stress range of the flank corresponds to the eighth class’s stress ∆σel = σel,8. The
associated elastic-plastic strain ∆ε2 is determined with the load–notch-strain curve. The
local stress–strain curve is continued with a hysteresis branch (Equation (6)) with a stress
range of ∆ε2. The determination of the local curve for the third flank is conducted in
Figure 4C analogous to Figure 4B.

The simulation of the local stress–strain path is carried out in connection with the
Rainflow–HCM algorithm [62], whereby the material memory is also taken into account
when using a load–notch-strain curve, cf. [29].

Subsequently, the local stress–strain path is examined for closed hystereses, and these
are evaluated with a load parameter in order to estimate the service life of the component.
Since the focus of this contribution is the determination of the load–notch-strain curve, the
service life estimation is not discussed in detail.

The FKM guideline nonlinear uses the notch root approximation according to Neu-
ber [27] extended by Seeger and Heuler [28] or the one according to Seeger and Beste [30–32]
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in order to convert linear-elastic stresses to elastic-plastic strains (for the calculation of
load–notch-strain curve). Both notch root approximations depend on the knowledge of
the limit load factor Kp to account for the global deformation behaviour occurring due
to net section plasticity [28]. The limit load factor describes how much the elastic limit
load can be increased before plastic collapse occurs when the plastic limit load is reached.
The yield initiation load is the load that leads to the yield point being reached in the case
of elastic-ideal-plastic material behaviour. The plastic limit load is the load that occurs
when the load is increased above the elastic limit load until the entire component cross-
section is plastified and plastic collapse occurs. Kp may be determined either analytically
for simple geometries or by using FEA with elastic-ideal-plastic material behaviour for
complex geometries [28]. While using FEA for the determination, the load for the plastic
collapse of the component in question needs to be approximated. This means that the
load is increased until no more equilibrium is found for the finite element problem. The
calculation times up to this point can become quite large. This is especially noteworthy
since the quantity Kp is only used to correct the approximation methods of the previously
mentioned notch approximations.

As an alternative to the notch approximations in connection with the Kp variable,
which is difficult to determine, FEA with elastic-plastic material behaviour can also be used
directly, this time using the material behaviour according to Equation (3). This procedure
is described below.

2.3. Determination of Load–Notch-Strain Curves Using Finite Element Analyses

In case the load–notch-strain curve is determined using FEA, the material behaviour
of the simulation is defined according to Ramberg and Osgood (Equation (3)).

As described in Section 2.2, the load–notch-strain curve represents the relationship
between the external loads or elasticity-theoretical stresses and the elastic-plastic strains at
each class limit. The most obvious way to determine these elastic-plastic strains is to apply
the loads at the class limits to the FE model step by step.

FEA is now conducted for each class of linear elastic stresses and the corresponding
loads are applied at the class limits. If the loads or theoretical elastic stresses are plotted
against the elastic-plastic strain, the load–notch-strain curve for the initial load can be
obtained, as described in Section 2.2. Analogous to this procedure, the load–notch-strain
curve for the hysteresis branch is determined; however, the double initial load curve is
used as the material law (Equation (6)). The number of load steps corresponds to twice the
number of classes.

In total, the number of load steps that need to be calculated using FEA to determine
the load–notch-strain curves for the initial load and hysteresis branch corresponds to three
times the number of classes. In the case of the recommended number of classes of 100, as
defined in the FKM guideline nonlinear [25], 300 load steps with elastic-plastic material
behaviour need to be calculated.

3. Possibilities for the Efficient Design of FEA for the Calculation of the
Load–Notch-Strain Curve

An FEA with elastic-plastic material behaviour requires a significantly longer calcula-
tion time compared to an FEA with purely elastic material behaviour. The calculation of
the load–notch-strain curves via the method described in Section 2.3 is therefore associated
with considerable effort, which makes the application appear less attractive compared to
the notch root approximation. This section therefore describes the following influences on
the quality and efficiency of the simulative determination of load–notch-strain curves:

• The relationship between the load–notch-strain curve for the initial load and the
hysteresis branch;

• The definition of the material law in the FE software;
• The optimisation of the FE meshing through the calculation of nodal stresses;
• The number of load steps to be simulated and interpolation.
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Some of the listed aspects provide several possible variants for the calculation. These
are subjected to a quality and efficiency evaluation in Section 4 in an attempt to give the
user a recommendation for the most efficient and, at the same time, accurate calculation of
the load–notch-strain curve.

3.1. Relationship between the Load–Notch-Strain Curve for the Initial Load and the Hysteresis Branch

Between the load–notch-strain curve for the initial load and the load–notch-strain
curve for the hysteresis branch, there exists a relationship by which the load–notch-strain
curve of the initial load can be inferred from the load–notch-strain curve of the hysteresis
branch without simulation. By halving the ranges of the elasticity-theoretical stress ∆σel and
the strain ranges ∆ε of every second class of the load–notch-strain curve of the hysteresis
branch, the load–notch-strain curve of the initial load is obtained [48]; see Equations (9)
and (10), where nC is the number of classes. Figure 5 illustrates this procedure, following
the descriptions given in Section 2.2. Due to this connection, it is only necessary to carry
out the FEA with the double stress–strain curve according to Equation (6) for the hysteresis
branch; the load–notch-strain curve for the initial load can be calculated from this. Thus,
one-third of the load steps to be simulated are unnecessary.

σel,i =
∆σel,2·i

2 with i = 1, . . . , nC (9)

εi =
∆εi
2 with i = 1, . . . , nC (10)
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3.2. Definition of the Material Law in the FE Software

As described in Section 3.1, it is sufficient to determine the load–notch-strain curve
for the hysteresis branch by simulation. For the material in the FE model, the material
behaviour according to Equation (6) must be stored as nonlinear hardening. Since only
single-sided increasing stresses are simulated in the FEA, it is irrelevant whether kinematic
or isotropic hardening is used, since in both cases the same stress–strain path results up to
the first load reversal point [69]. In commercial FE programs (such as the Ansys Workbench
software used in the following), the material law is often not specified as a function, but as
a path of linear sections. The number of supporting points of the material law nM has an
effect on the calculation time and accuracy of the load–notch-strain curve.

The material law is specified in the FE programme up to a stress range of twice the
tensile strength ∆σ = 2·Rm, as this normally covers all stress ranges that occur. At the end
of the FEA, whether the limits of the material law have been exceeded must be checked
and, if necessary, the material law must be adjusted. The stresses and corresponding strains
are specified with constant spacing in the stress direction.
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The required calculation time and the accuracy with which the material law is rep-
resented in comparison to Equation (6) depend on the number of support points nM
(index M for material behaviour). The more support points are used, the more accurately
Equation (6) is approximated, but the computational effort is also expected to increase.

∆σk =
2 · Rm

nM
· k with k = 1, . . . , nM (11)

∆εk =
∆σk

E
+2
(

∆σk

2 ·K′
) 1

n′
with k = 1, . . . , nM (12)

3.3. Optimisation of the FE Meshing

Another approach to increase the efficiency of determining the load–notch-strain
curve is to optimise the meshing of the FE model. The finer the mesh in the area of the
point of interest in the component is, the more accurately the stresses and strains can be
determined. In contrast, the simulation time increases with finer meshing.

By meshing the component, it is divided into discrete sections—the so-called finite
elements. These finite elements consist of element nodes, which lie at the edge of the
elements, and integration points, also called Gauss points, which—as a rule—lie inside the
elements. The integration points are the positions in the element at which the result values
determined by integration are valid. In Figure 6A, a hexahedral serendipity solid element
with quadratic shape function is shown schematically. The Gauss points are marked in red
and the element nodes in green. Since the result variables at the element nodes are usually
of interest, these are calculated from the results at the Gauss points with interpolation
or extrapolation [70]. Only this type of element (Ansys Solid 186 [71]) is used for the
investigation in Sections 4 and 5 in the area of the surface to be evaluated. However, to
make sure that other common element types lead to qualitatively similar results, the results
are checked using the following other element types as examples:

• Hexahedron elements with linear shape function and full integration (Ansys Solid 185 [72]);
• Tetrahedron elements with linear shape function and full integration (Ansys Solid 185 [72]);
• Tetrahedron elements with quadratic shape function and reduced integration (Ansys

Solid 187 [73]).
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The exemplary investigation shows: with appropriate mesh quality, all types of elements
mentioned above lead to qualitatively the same results. Fully integrated elements with a
quadratic shape function, however, are not recommended due to the investigations in [74].

This procedure is common in Ansys Workbench when using linear material behaviour,
and the extrapolation provides a good estimate of the results gained at the element nodes.
In the case of nonlinear material behaviour, the extrapolation of the results to the element
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nodes can lead to large errors [70]. These errors become larger the greater the distance
between the integration point and the element node is; i.e., if the element is larger, this
is also the error that occurs. Therefore, when plastic deformation occurs in the element,
often no extrapolation is carried out; instead, the results gained at the integration points
are copied to the element nodes [70]. This leads to an underestimation of the stresses and
strains on the surface of the component and thus to an overestimation of the service life.

The strain gradient in the notch root is relatively large in the direction vertical to the
component surface. It is possible to determine the stresses and strains at the element nodes
as accurately as possible if the Gauss points are as close as possible to the element nodes in
the area of the component surface. On the one hand, this can be achieved by using a finer
mesh at the expense of computing time. On the other hand, shell elements can be applied
to the solid elements of the model at the surface of the component if only the stresses at the
component’s surface are of interest. Since shell elements are 2D elements, the Gauss points
are on the surface; see Figure 6B. This is expected to reduce the error caused by copying or
extrapolating the results and to converge the result variables to a fixed value, even when a
coarser mesh is used.

3.4. Reduction in the Number of Load Steps to Be Simulated

Another way to reduce the simulation time is to decrease the number of load steps to
determine the load–notch-strain curve for the hysteresis branch. If the number of simulated
load steps is reduced, not every class a value for the load–notch-strain curve is calculated.
In order to still be able to use the same algorithm for the fatigue life calculation with
the same number of discrete load classes, the missing intermediate class values must be
determined by interpolation or regression of the calculated load steps. For the interpolation
or regression, three procedures are presented in the following:

1. Interpolation by polygonal chain (polynomials of 1st degree);
2. Regression with power function following the approach of Ramberg and Osgood

(Equation (3));
3. Interpolation with spline (polynomials of 3rd degree).

All three methods have in common the relationship ∆ε(∆σel) between the elastic-
plastic strain range and the elastic stress range results, which is used to describe the
load–notch-strain curve. The discretised load–notch-strain curve for the hysteresis branch
is obtained by inserting the elastic stress ranges at the class limits in this relationship.

3.4.1. Linear Interpolation by Polygonal Chain

A simple possibility for interpolation between the calculated results is to form a
polygonal chain of 1st-degree polynomials. For the number of load steps nH (with index
H for the hysteresis branch) calculated to determine the load–notch-strain curve, nH+1
support points result for the linear interpolation, since in addition to the support points
∆εFEA,2 . . . ∆εFEA,nH+1 at ∆σel,FEA,2 . . . ∆σel,FEA,nH+1 from the FEA, point ∆εFEA,1 = 0 at
∆σel,FEA,1 = 0 is available as a support point. The polygonal chain consists of nH sections
to calculate the strain range ∆εL (index L for linear interpolation), which is defined in a
sectionwise manner; see Equation (13). Slopes ai and offsets bi can be calculated directly
from the FEA results using Equations (14) and (15).

∆εL,i(∆σel)= ai · (∆σel − ∆σel,FEA,i)+bi if ∆σel,FEA,i ≤ ∆σel ≤ ∆σel,FEA,i+1
with i = 1, . . . , nH

(13)

ai =
∆εFEA,i+1 − ∆εFEA,i

∆σel,FEA,i+1 − ∆σel,FEA,i
(14)

bi = ∆εFEA,i (15)
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Figure 7 shows the procedure for two simulated load steps nH = 2. As a result of
the FEA, the strains ∆εFEA,2 and ∆εFEA,3 are obtained for the applied loads ∆σel,FEA,2 and
∆σel,FEA,3. The values for the load–notch-strain curve at the class limits are taken from
the interpolated red curve by inserting the elasticity-theoretical stresses ∆σel at the class
limits into Equation (13). As the number of simulated loads increases, the interpolated
load–notch-strain curve approaches the true curve.
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3.4.2. Regression with Power Function

As an alternative to the interpolation with a polygonal chain, the load–notch-strain
curve can be described by a power function. The power function is chosen based on the
material law according to Ramberg and Osgood [44]; see Equation (3). Ball [15] also used
this approach, and was thus able to describe load–notch-strain curves from FEA with a
functional relationship in a good approximation. As described in Section 3.2, only the
determination of the load–notch-strain curve for the hysteresis branch is necessary. This is
described with Equation (16) following Equation (6), with which the range of the strain
∆εP (index P for power function) is calculated:

∆εP(∆σel) =
∆σel

E
+2
(

∆σel
2 · c

) 1
d

(16)

The aim is now to determine the parameters c and d. For this purpose, the front part—
Hooke’s law described by the modulus of elasticity E—is subtracted from the stress range
∆εP. The remaining power approach represents a linear course by double logarithmic scaling.
A comparison with the results from the FEA in Figure 8 obviously does not show a linear
course. This can be explained by the approximation to the net section plasticity [28,75].

A linear regression through all the simulated load steps results in the red curve, which
shows deviations from the simulated ones in all areas. In particular, the load steps for small
loads ∆σel deviate strongly from a linear course; thus, it makes sense to exclude them for a
regression. If only load steps above a proposed limit value of log(∆εFEA − ∆σel,FEA/E) ≥ −4
are considered in the regression, the load steps of the medium and high loads can be well
approximated (see the black curve). The large deviation found for small loads only appears
very large due to the logarithmic scaling applied.
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Figure 9 shows the load–notch-strain curves with both regressions in a linear represen-
tation. In the range of low loads, there is no apparent difference between the load–notch-
strain curves; in the range of high loads, the load–notch-strain curve with consideration
of the limit value of log(∆εFEA-∆σel,FEA/E) ≥ −4 reproduces the results of the FEA signif-
icantly better. Therefore, this limit value was used in the following. More details on the
regression and the determination of the parameters c and d are given in Appendix A.
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The stress ranges at the class limits for the load–notch-strain curve of the hysteresis
branch are then determined using Equation (16). For the load–notch-strain curve for the
initial loading, proceed as in Section 3.2 or use Equation (17):
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εP(σel) =
σel
E +

(σel
c
) 1

d (17)

The advantage of this approach is that the load–notch-strain curve is not described by a
sectionwise-defined function. This makes it possible, for example, to estimate load–notch-strain
curves from the existing FEA results when the load requirements change, even if the new
maximum load Lmax is slightly higher than the maximum simulated load. This is not readily
possible with sectionwise-defined functions. The disadvantage of this is that the load–notch-
strain curve does not necessarily run through the FEA results due to the linear regression.

3.4.3. Interpolation by Spline

Similar to interpolation with 1st-degree polynomials, sectionwise-defined 3rd-degree
polynomials are used in the spline interpolation; see Equation (18):

∆εS,i(∆σel)= ai · (∆σel − ∆σel,FEA,i)
3+bi · (∆σel − ∆σel,FEA,i)

2+ci · (∆σel − ∆σel,FEA,i)+di

if ∆σel,FEA,i ≤ ∆σel ≤ ∆σel,FEA,i+1

with i = 1, . . . , nH

(18)

A boundary condition for determining the parameters ai, bi, ci, and di is, among other
things, the slope at the origin of the load–notch-strain curve with the modulus of elasticity
E. Details of the determination of the parameters are given in Appendix B. Despite using
this boundary condition, in cases where there are very few load steps nH from FEA, the
case may be that the strains calculated through spline interpolation are smaller than the
linear-elastic strains. Although this is mathematically possible through spline interpolation,
it does not make physical sense. For this reason, Equation (19) is used:

∆εS(∆σel) =

{
∆σel

E if ∆εS < ∆σel
E

∆εS if ∆εS ≥ ∆σel
E

(19)

Figure 10 shows a schematic load–notch-strain curve derived from two simulated load
steps using spline interpolation. This is compared with the true load–notch-strain curve. The
values for the load–notch-strain curve at the class limits are taken from the interpolated red
curve by inserting the elasticity-theoretical stresses ∆σel at the class limits into Equation (18).
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4. Evaluation of Quality and Efficiency

In this section, the previously described methods for determining load–notch-strain
curves with the help of FEA were examined to determine their quality and efficiency.
For this purpose, quality and efficiency criteria were first defined, and a database with
different component geometries, load types, and material parameters was created. Then,
using the methods presented in Section 3, load–notch-strain curves were generated for the
components from the database and evaluated with the quality and efficiency criteria.

4.1. Quality and Efficiency Criteria

In order to evaluate the methods described, the load–notch-strain curves generated
with the methods described in Section 3 are compared to a reference load–notch-strain
curve. The reference load–notch-strain curve is regarded as the “true” load–notch-strain
curve and is determined by FEA with a very fine mesh.

Alternatively, experimentally determined load–notch-strain curves or experimentally
determined fatigue lives could also be used as a reference. However, this has the decisive
disadvantage that certain simplifying assumptions made by the FKM guideline nonlinear
cannot be exactly reproduced by real components or specimens. These include, for example,
the description of the material behaviour by the approach according to Ramberg and
Osgood or the assumption of a cyclically stabilized material behaviour. Furthermore, the
comparison of calculated and experimental results is expected to show a bias in most cases.
This bias, however, is due to the calculation concept itself and the accuracy of the FKM
guideline nonlinear, and not the procedure for estimating the load–notch-stain-curve that
shall be examined in this contribution.

The approximated load–notch-strain curves generated using the methods described
in Section 3 aim to reproduce the true curve as accurately as possible. Since the simplified
generated load–notch-strain curve and the reference curve each consist of pairs of values
from elastic stress and notch strain, and the associated local stress is also used as an input
value for service life calculation in addition to the notch strain, a quality evaluation based
on the load–notch-strain curve alone does not lead to meaningful results as a basis for
a recommendation. The more interesting result for a user is the effect on the calculated
service life. Therefore, the latter is used for the quality evaluation. For the service life
calculation, the previously mentioned algorithms of the FKM guideline nonlinear [25] are
used. For the load–notch-strain curve, the curves determined with FEA are used. The
calculation procedure—reduced to the most necessary steps—is shown schematically in
Figure 11 and explained briefly below.

On the one hand, information about the component, such as the geometry and tensile
strength of the material, are required as input variables. On the other hand, the load-
time history and load configuration, meaning the vector of all forces and/or moments,
must be known. The starting point for describing the material behaviour is the tensile
strength. From this, the corresponding cyclic material properties K′ and n′ are estimated
with the method according to Wächter et al. [45,46]; see Equations (4) and (5). The quality
ratings in this contribution are limited to estimated cyclic properties for the material group
steel. However, a significant deviation in the findings determined in this manner to other
material groups is not expected. With the cyclic material properties estimated in this way,
the material law can be inputted into the FEA to determine the load–notch-strain curve.
The geometry is then transferred to the FEA, loads are applied according to the specified
load configuration, and the load–notch-strain curve is determined as described above,
considering the maximum load occurring in the load-time history.

In addition, the load parameter Wöhler curve is estimated from the tensile strength,
which also takes into account the influences of geometry and load type by considering
support factors due to stress gradients and size effects. Thus, the service life is determined
for a failure probability of 50%. Since the service lives are only used for a qualitative
comparison, the application of the safety concept contained in the FKM guideline nonlinear
is not necessary. The safety factors are set to 1.
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Another input variable is the load on the component. Two load-time histories are used
in this paper to compare the service lives:

• A load sequence with a constant amplitude;
• A normally distributed load sequence with irregularity factor I = 0.7 [76].

Figure 12A shows the load sequence with a constant amplitude, and Figure 12B shows
a section of 0.01% of the reversal points of the normally distributed load sequence [76],
which contains the maximum load. By using a constant amplitude loading and a variable
amplitude loading, the two most relevant load cases are considered in the quality rating.
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From the load–notch-strain curve and the load-time history, the local stress–strain
paths are simulated using the principles described in Section 2.2, and the closed hystereses
are determined. For each closed hysteresis, a load parameter PRAM (see Equation (1)) is cal-
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culated, and a load parameter spectrum is created. The second possible damage parameter
PRAJ [25] (see Equation (2)) is not considered for carrying out the quality assessment. Since
this is a comparison of two calculated service lives that differ only in the load–notch-strain
curve used, no qualitatively different results are expected if PRAJ is used.

Using linear damage accumulation, a service life is calculated from the load parameter
spectrum and the load parameter Wöhler curve. For the quality assessment, this procedure
is carried out once with a reference load–notch-strain curve and once with load–notch-
strain curve using the methods described in Section 3. Afterwards, the resulting service
lives are put into relation. The boundary conditions used for determining the reference
load–notch-strain curve and the load–notch-strain curve with the methods from Section 3
are given in each section of the quality assessment.

The efficiency criterion is the comparison of the sum of all computation times on
all computation kernels used to determine the reference load–notch-strain curve or the
load–notch-strain curve with the methods given in Section 3. The sum of all the computing
times is referred to as CP-Time (computing time).

4.2. Database

An extensive database is created for a quality and efficiency evaluation. For this
purpose, load–notch-strain curves are determined for different geometries with different
load configurations and notch geometries. These geometries can be classified as follows,
see Figure 13:

• Flat specimen with notches on both sides loaded with tension or bending, and stress
concentration factors Kt = 1.5, 3, and 5;

• Circular specimen with notches loaded with tension, bending, or torsion; and stress
concentration factors Kt = 1.5, 3, and 5;

• Planetary carrier loaded with planetary pin forces.
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Kt,tension = 1.5; (B) round specimen with Kt,tension = 1.5; (C) planetary carrier from [69].

In the investigations detailed in the following sections, different parts of the database
are utilised.
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As mentioned before, the investigations are limited to the material group of steel. In the
FEA, E = 206 GPa is used as the modulus of elasticity. For the tensile strengths, Rm = 400 MPa,
800 MPa, and 1200 MPa are chosen. The first two values are taken as relevant lower and
average strengths for steels, while the upper value corresponds to the upper limit of the
range of validity of the FKM guideline nonlinear [25]. As described in Section 4.1, the cyclic
properties are estimated from the tensile strength using Equations (4) and (5).

The load sequences shown in Figure 12 are varied by using different maximum values
of the load spectrum. The height of the maximum values is chosen in such a way that
approximately the same service life results in a constant amplitude loading Nconst. for
different geometries. In order to compare the data for the different geometries, the loads L
are expressed in the form of linear-elastic stresses in the following. Table 1 summarises the
number of cycles with the corresponding symbols for the stress range of the linear-elastic
stress. For the high load Lmax,3, the stress range at constant amplitude loading is ∆σel,max,3,
which, under the previously described boundary conditions, results in a calculated service
life of Nconst. ≈ 102 cycles. To illustrate the loads, they are plotted on an exemplary load–
notch-strain curve; see Figure 14. At the low load Lmax,1, the stress range of the theoretical
elastic stress ∆σel,max,1 features a large elastic strain part and a small plastic strain part,
whereas at the high load Lmax,3, the plastic strain part dominates.

Table 1. Examined maximum values of the load spectra.

Maximum Value of the Spectrum Lmax Linear-Elastic Stress Range Cycles Nconst.

Low load Lmax,1 ∆σel,max,1 ≈105

Medium load Lmax,2 ∆σel,max,2 ≈103

High load Lmax,3 ∆σel,max,3 ≈102
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The load steps are applied in the simulation in equidistant steps so that the last load
step corresponds to the maximum load Lmax. The load steps LI,k used for determining the
load–notch-strain curve for the initial load are based on Equation (20) with the number of
load steps nI (index I for initial load). Similarly, the load steps LH,k used for determining
the load–notch-strain curve for the hysteresis branch are based on Equation (21) with the
number of load steps nH. For the specifications of the FKM guideline nonlinear, nI = 100



Appl. Sci. 2021, 11, 11656 20 of 35

and nH = 200 are used, resulting in a total of 300 load steps that need to be calculated for
the reference load–notch-strain curve:

LI,k =
Lmax

nI
· k with k = 1, . . . , nI (20)

LH,k =
2 · Lmax

nH
· k with k = 1, . . . , nH (21)

4.3. Relationship between the Load–Notch-Strain Curve for the Initial Load and the Hysteresis Branch

Due to the relationship between the load–notch-strain curve for the initial load and
the hysteresis branch, it is not necessary to determine the load–notch-strain curve for the
initial load; see Section 3.1. This does not result in any loss of quality, but the efficiency
can be increased because the number of load steps that need to be calculated is reduced by
one-third. In the following sections, this insight is used, and only the determination of the
load–notch-strain curve for the hysteresis branch is discussed.

4.4. Definition of the Material Law in the FE Software

In order to determine the influence of the number of support points nM for the
material law on the load–notch-strain curve, load–notch-strain curves are generated on
a flat specimen notched on both sides while varying the number of support points in the
material law. The flat specimen with a stress concentration factor Kt = 3 and a tensile
strength Rm = 800 MPa is loaded in tension; see Section 4.2. The reference load–notch-strain
curve is determined with the same boundary conditions and nM = 200 support points for
the material law.

The service lives for constant amplitude loading Nconst.,nM and variable amplitude
loading Nvar.,nM serve as quality criteria, and the computing CP− TimenM serves as the
efficiency criterion. Figure 15 shows the comparative values related to the value at nM = 200
support points for a low load Lmax,1 and a high load Lmax,3.
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Both the service life at constant and variable amplitude loading are underestimated for
only few support points nM, regardless of the load level, resulting in a conservative service
life estimation in the applied case. At low loads, the service life converges more quickly to
a constant value than it does at high loads, where no influence of the number of support
points on the service life can be seen from nM = 50 support points on. The greater the
number of support points is, the longer the simulation time is. In the case considered here,
this results in time savings of about 10% when using nM = 50 support points compared to
nM = 200 support points.

In Figure 16, the influence of the number of support points nM for the material law
on the service life with variable amplitude loading is examined for all flat specimens
of the database under tensile loading at high load Lmax,3; see Section 4.2. Here, too, it
can be seen that the material law is described precisely enough for 50 and more support
points nM for all examined specimens. It may be concluded that from 50 support points
onwards, no significant influence on the service life and thus on the load–notch-strain curve
results. With less than 50 support points nM, especially the slightly notched specimens
react strongly to the poorly described material law.
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As a recommendation for the user, nM = 50 support points are therefore suggested to
describe the material law. In order to exclude the influence of inaccuracies in the material
law in the following sections, the value nM = 100 is used below.

4.5. Optimisation of the FE Meshing

The influence of the mesh fineness on the quality and efficiency was determined,
considering:

• Copying the results from the Gauss points to element nodes;
• The extrapolation from the Gauss points to element nodes;
• The use of additional shell elements on the surface.

These are investigated on a flat specimen under axial load—see Section 4.2. The
specimen consists of steel with a tensile strength of Rm = 800 MPa and a stress concentration
factor of Kt = 3. When extrapolating the result variables to the element nodes, the largest
errors occur with large plastic deformations. Therefore, a single load is applied with the
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high load Lmax,3 described in Section 4.2. The meshing of the specimen is conducted
exclusively with hexahedron elements with a quadratic element shape function (Ansys
Solid186 [71]). Other element types are also suitable for meshing the component, but these
are not considered here. The user is advised to check the quality of the mesh themselves
in any case in order to obtain converged stresses and strains and to exclude singularities.
The meshing in the notch root is described by the number of elements nE over 90◦; see
Figure 17. For the elements in the notch root, edge lengths of almost the same length are
used, meaning that a change in the number of elements nE over 90◦ also leads to a change
in the number of elements in the other directions. In addition, shell elements are added
in the notch root at the component surface. In Ansys Workbench, the addition of shell
elements made possible through the surface coating function [77]. Shell elements with
a linear element shape function (Ansys Shell181 [78]) or with a quadratic element shape
function (Ansys Shell281 [79]) are used according to the element shape function of the solid
elements used.
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Figure 18 shows the influence of the mesh and the evaluation method used on the
strain range ∆ε and the service life at constant amplitude loading Nconst.. It can be observed
that with increasingly finer meshing, the determined load–notch-strain curve and thus the
calculated fatigue life asymptotically approach a limit value. This limit value is to serve as a
reference for the evaluation of the optimizations shown below in the determination of the
load–notch-strain curve. Due to the asymptotic approach to the limit value, no practice-
relevant difference between the load–notch-strain curves or calculated fatigue lives can be
determined above a certain mesh fineness. This mesh quality is reached at the number of
elements per 90◦ nE = 70, and will be used as a reference in the following. The influence of
the meshing and the evaluation method in Figure 18A can be summarised as follows:

• In blue, strain ranges are shown, which are determined by copying the result variables
from the Gauss points to the element nodes. The strain ranges are underestimated, but
with finer meshes, and with the associated shift of the Gauss points in the direction of
the surface of the area to be analysed, they approach a constant value. This behaviour
occurs both when assuming a purely elastic (dashed line) and an elastic-plastic (solid
line) material behaviour.

• When using the extrapolation approach (red line), the strain range ∆εel converges
towards a fixed value with a significantly coarser mesh. In the case of elastic-plastic
material behaviour, after extrapolation in Ansys Workbench, the relationship between
stress and strain no longer agrees with the material law according to Equation (6). If the
strain ranges from the FEA are used, the curve is almost the same as the strain ranges
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determined by copying the result variables from the Gauss points to the element
nodes (blue curve). The extrapolation has no significant influence. Alternatively,
for comparison the strain ranges can be calculated from the stress from FEA using
Equation (6), shown as the red curve. Due to the extrapolation, the elastic-plastic
strain range ∆ε converges faster than it does for copying, but the strain ranges are
clearly overestimated with a coarse mesh.

• By using shell elements on the surface and copying the FEA results (green line) the
same behaviour occurs for elastic and elastic-plastic material behaviour: the strain
ranges converge towards a constant value even with a coarse mesh.

• When using shell elements on the surface and the additional application of extrapola-
tion (grey line), the strain range converges more slowly, especially with elastic-plastic
material behaviour. With elastic-plastic material behaviour, the strains are calculated
from the stress as before.
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The tendencies shown are also reflected in a consistent manner in the comparison of
the service lives at constant amplitude loading in Figure 18B, which are calculated from the
results of the simulation with elastic-plastic material behaviour. In the standard procedure
in Ansys Workbench involving copying the results at the Gauss points to the element nodes,
a mesh with nE > 70 is needed in this case to determine the service life with an error of less
than 1%. By using extrapolation, a mesh with nE = 30 is sufficient to fulfil this condition. A
great advantage can be gained for the meshing results from the use of shell elements on
the surface. Together with extrapolation, a mesh with nE = 15 is sufficient. On the other
hand, it is recommended to copy the results at the Gauss points, as this means that a mesh
with nE = 5 is already sufficient, even if the service life thereby approaches the converged
solution from the unsafe side.
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The use of shell elements on the surface along with copying of the results at the
integration nodes to the element nodes offers no great advantage in calculations with
elastic material behaviour. With elastic-plastic material behaviour, however, a converged
result with a significantly coarser mesh can be determined. The resulting time saving
increases the efficiency in determining the load–notch-strain curve immensely.

4.6. Reduction in the Number of Load Steps to Be Simulated

In this section, the methods for reducing the number of load steps to be simulated
from Section 3.4 are compared with each other. For this purpose, load–notch-strain curves
for the hysteresis branch with different numbers of load steps nH = 2, 3, 4, 5, 7, 10, and
20 are determined in the simulation, while the values at the class limits are determined
using one of the approaches described in Section 3.4. A reference load–notch-strain curve is
calculated with nH = 200 load steps, whereby the simulation directly calculates the values
at the class limits of the load–notch-strain curve for the hysteresis branch.

For the evaluation of the node results, the previously recommended shell elements are
used on the surface. However, to be able to exclude deviations resulting from a too-coarse
mesh, a finer mesh than the one recommended is used. For example, for the flat sample
used in Section 4.5, instead of the recommended number nE = 5, the number nE = 20 is used.

However, the results shown in this section are equally valid with and without the use
of shell elements on the surface for the evaluation of the node results. In both cases, the
meshing is chosen in such a way that converged stresses and strains can be assumed.

4.6.1. Comparison of the Methods on a Notched Flat Specimen

A first comparison of the methods to describe the load–notch-strain curve is carried
out on the flat specimen made from steel notched on both sides with a tensile strength of
Rm = 800 MPa and a stress concentration factor Kt = 3 under tensile loading.

Figure 19 shows the ratios of the service lives with variable amplitude loading Nvar.
(see Figure 12) from load–notch-strain curves with nH load steps and service lives from
the reference load–notch-strain curve (nH = 200 load steps). As the number of load steps
increases, the service life converges to the service life with 200 load steps. The number of
support points is considered good if the service life deviates less than 1% from the service
life from the reference load–notch-strain curve. Table 2 summarises the number of load
steps from which this condition is fulfilled.

The linear interpolation connects the results of the load steps with the 1st-degree
polynomials. The quality of the service life estimation with linear interpolation depends
on the load level. The higher the load is, the more load steps are needed to approximate
the load–notch-strain curve with linear interpolation sufficiently well.

The smallest maximum deviations among the examined approaches occur in the
regression with the power function. However, the power function converges more slowly
than the spline interpolation with the converged solution. Depending on the geometry,
load height, and material, it may be that the condition |Nvar.,n/Nvar.,200 − 1| ≤ 1% is
never fulfilled regardless of the number of load steps nH used. For example, the service life
of a flat specimen with Kt = 1.5 and Rm = 400 MPa at a high load under variable amplitude
loading converges with the power function to a service life that is 3% less than the service
life with 200 directly calculated load steps. This is due to the fact that the regression no
longer runs exactly through the FEA results with more than two support points. Thus, the
true stresses and strains—i.e., the stresses and strains calculated in the FEA—are not used.

The spline interpolation method converges to the exact solution with the smallest
number of load steps nH for variable amplitude loading. The overview of the approaches
on the flat specimen with Kt = 3 and Rm = 800 MPa at a tensile load shows that the spline
interpolation is best suited to simulate the load–notch-strain curve.
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Table 2. Number of load steps nH for a flat specimen under tension loading with different approaches.

Constraint Load
Minimum Number of Load Steps nH

Linear
Interpolation

Power
Function

Spline
Interpolation∣∣∣Nvar.,nH

Nvar.,200
− 1
∣∣∣ ≤ 1%

Low Lmax,1 3 2 2
Medium Lmax,2 10 5 4

High Lmax,3 20 7 4

4.6.2. Influence of Material Behaviour and Stress Concentration Factor on the Quality of
the Spline Interpolation Method

In Figure 20, the service lives under variable amplitude loading with load–notch-strain
curves of a flat specimen with Kt = 1.5, 3, and 5 and Rm = 400, 800, and 1200 MPa under a
tensile load are compared with the service lives from reference load–notch-strain curves
determined with nH = 200 load steps. Table 3 again summarises the number of load steps
nH necessary to fulfil criterion |Nvar.,n/Nvar.,200 − 1| ≤ 1%. Figure 20 and Table 3 show
that with a higher load, more load steps nH are necessary. For all cases investigated, a total
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of nH = 5 load steps is sufficient. It can be seen that the deviations increase with lower
tensile strengths Rm and lower stress concentration factors Kt, and that more load steps nH
are necessary. Accordingly, the largest deviations occur at Rm = 400 MPa and Kt = 1.5.
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Table 3. Number of load steps nH for a flat specimen under tension loading with spline interpolation.

Constraint Load Rm Kt = 1.5 Kt = 3 Kt = 5

∣∣∣Nvar.,nH
Nvar.,200

− 1
∣∣∣ ≤ 1%

Low
400 MPa 4 2 2
800 MPa 2 2 2

1200 MPa 2 2 2

Medium
400 MPa 4 4 4
800 MPa 4 4 2

1200 MPa 4 3 2

High
400 MPa 5 5 4
800 MPa 5 4 4

1200 MPa 5 4 2
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4.6.3. Influence of Geometry and Load Type on the Quality of the Spline Interpolation Method

In Figure 21 and Table 4, the remaining geometries described in Section 4.2 are ex-
amined with the obviously worst case of Rm = 400 MPa and Kt = 1.5 at a high load. For
the planet carrier, the notch sharpness results from the geometry. Additionally, for the
other geometries and load types, good service life estimations result from a total of nH = 5
load steps.
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Table 4. Number of load steps nH for different geometries with spline interpolation.

Constraint Specimen Load nH

∣∣∣Nvar.,nH
Nvar.,200

− 1
∣∣∣ ≤ 1%

Flat specimen Tension 5
Bending 5

Round specimen
Tension 5
Bending 4
Torsion 5

Planet carrier - 4

4.7. Summary and Recommendations for the User

In Section 3, methods for improving the efficiency of the determination of load–notch-
strain curves in an FEA with elastic-plastic material behaviour were described; these were
subsequently examined in Section 4 using a database with regard to their quality and efficiency.
In this section, a summary of the results and a resulting recommendation for the user are given.

The correlation between the load–notch-strain curve for the hysteresis branch and the
initial load must always be taken into account. With these, the efficiency of the load–notch-
strain curve determination can be increased without a loss of quality, as the determination
of the load–notch-strain curve for the initial load by means of FEA is no longer necessary.

The material behaviour is entered in the FE software as a discretised curve. The inves-
tigations in Section 4.4 show that the number of support points used for the description of
the material behaviour influences the quality and efficiency of the load–notch-strain curve
determination, and thus also the service life estimation. In addition, a decrease in quality is
observed with an increasing load height at the same number of support points. As a good
compromise between quality and efficiency, the recommended number of support points for
the material law is nM = 50 up to a stress range of twice the tensile strength ∆σ = 2·Rm.
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The type of evaluation of the node results in the FEA with elastic-plastic material
behaviour has a great influence on the efficiency and quality of the load–notch-strain curve
determination. The standard procedure of many FE programs is to copy the results at the
Gauss points to the element nodes. An example calculation on a flat specimen notched on
both sides shows that the load–notch-strain curves generated in this way do not converge
to a constant service life even with fine meshing, and the service lives are on the unsafe
side. When using an extrapolation method, as is common in calculations with elastic
material behaviour, a converged service life can be achieved in the example even with
coarser meshing.

In the case where only the stresses and strains on the surfaces of components are of
interest, the use of shell elements on the component surface brings immense advantages
for increasing efficiency. Due to the shell elements, Gauss points are available on the com-
ponent surface, whereby load–notch-strain curves with the same quality can be calculated
with a significantly coarser meshing. The simulations on a notched flat specimen show
that (at least with the ANSYS Workbench program used) copying the results of the Gauss
points to the element nodes is preferable to extrapolation.

In Section 4.6, methods for estimating the load–notch-strain curve from only a few
simulated load steps are presented and compared. The linear interpolation method is
mentioned only because of its simplicity. In order to exclude the influence of the load–
notch-strain curve on the service life, a relatively high number of load steps must be
applied in the simulation compared to the other methods, meaning that the efficiency is
only increased to a small extent.

The regression of the load–notch-strain curve with the power function has advantages
and disadvantages. The advantage is that the load–notch-strain curve is described by
a function that is not defined in sections. This means that if the maximum value of the
spectrum changes slightly after the FEA is completed, the load–notch-strain curve can also
be estimated for other, even slightly higher, maximum values. For sectionwise defined
functions, on the other hand, no load–notch-strain curve may be generated for a maximum
value of the spectrum that is higher than the maximum applied load in the FEA. The
biggest disadvantage of regression with the power function is that the regression does
not directly reach the results of the FEA, but only approximates them. As a result, the
calculated service life with the estimated load–notch-strain curve does not converge with
the service life of the completely simulated load–notch-strain curve.

The best results were achieved with—and, therefore, the recommended method is—
the spline interpolation method. In all the cases examined, it is sufficient to apply only five
load steps to determine the load–notch-strain curve for the hysteresis branch, as opposed
to one load step for each class limit. With the recommended number of classes being 200
for the load–notch-strain curve of the hysteresis branch from the FKM guideline nonlinear,
this would mean that 200 simulated load steps are needed.

5. Comparative Calculation

Finally, in comparative calculations on a notched specimen, four procedures for
determining the service life at variable amplitudes are compared:

1. As a reference for the calculation time, the load–notch-strain curves are determined
as described in Section 2.3 without taking into account the methods described for
increasing efficiency in Section 3. The load–notch-strain curves for the initial load
and the hysteresis branch are determined separately in FEA. This means that for the
100 classes recommended by the FKM guideline nonlinear [25], nI = 100 load steps
are simulated for the load–notch-strain curve of the initial load, and nH = 200 load
steps are simulated for the load–notch-strain curve of the hysteresis branch. The
material law is modelled with nM = 200 support points. Section 4.5 demonstrated
that the procedure of copying the results at the Gauss points to the element nodes
does not give a converged result even with a fine mesh. Therefore, stresses and
strains at the element nodes are determined by extrapolation, whereby a mesh with
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nE = 30 is sufficient. Outside the notch area, the meshing deviates from Section 4.5; see
Figure 15. There, the specimen is meshed with hexahedral elements outside the notch.
Tetrahedral elements are used for the comparison, which means that the meshing in
the rest of the specimen is almost independent of the meshing in the notch.

2. In Section 2.2, it is claimed that the general use of load–notch-strain curves, as opposed
to recalculating the complete load sequence in an FEA with elastic-plastic material
behaviour, results in an immense time advantage. To substantiate this, 0.01% of the
reversal points of the load sequence from Section 4.1 are applied to the flat specimen
and the CP-time is then extrapolated linearly. The section of the load sequence is
chosen to include the maximum value of the spectrum; this is shown in Figure 12B.
Since the complete load sequence is not calculated, no life estimation can be performed
afterwards. The material law is deposited with nM = 50 interpolation points, and the
meshing and evaluation of the node results are selected as in the first case.

3. In the third case, load–notch-strain curves are determined for the service life estima-
tion with the methods mentioned without the use of shell elements on the surface.
This means that the load–notch-strain curve for the hysteresis branch is calculated
from nH = 5 load steps with spline interpolation, and the load–notch-strain curve is
derived from this. The material law is deposited with nM = 50 support points, and
the meshing and evaluation of the node results are selected as in the first case.

4. In the fourth case, the procedure is the same as that used in the third case, except that
shell elements are used on the component surface, which means that a coarser mesh
with nE = 5 can be used.

For these four cases, the load–notch-strain curves and subsequently the service lives
are determined on a flat specimen with Rm = 800 MPa and Kt = 3, and a high collective
maximum value Lmax,3.

Table 5 summarises the boundary conditions of the individual cases examined. The
comparison of the CP-Times is used to evaluate the efficiency. These are related to the
CP-Time of the direct load–notch-strain curve determination (1st case). The time taken to
perform the spline interpolation is neglected, as this is <0.1 s. It is obvious that due to the
calculation time, the calculation reversal point to reversal point cannot be applied for longer
load time histories. By using the presented methods without shell elements, the CP-Time
can be reduced to 0.023 times the original time. With the use of shell elements, even a
reduction to 0.005 times is possible. A comparison of the three calculated service lives
(point 1, 3, and 4) shows only a minor deviation. Therefore, the quality of the calculated
service lives is independent of the optimisation, but the gain in efficiency is tremendous.

Table 5. Summary of comparative calculation.

Parameter Direct without
Efficiency Methods

Point to Point
in FEA

Efficient without
Shell Elements

Efficient with
Shell Elements

Specimen Flat specimen; Kt = 3
Tension; High load Lmax,3

800 MPa
Load

Tensile strength Rm

Support point material law nM 200 50 50 50
Number of Elements per 90◦ nE 30 30 30 5
Method load–notch-strain curve direct No load–notch-strain curve Spline interpolation Spline interpolation

Load steps initial load nI 100 -
-

- -
Load steps hysteresis branch nH 200 5 5

Elements notch root 27,300 27,300 27,300 120
Elements total 55,585 55,585 55,585 13,284

CP-Time 8217 s ≈2 × 108 s *1 188 s 44 s
CP−Time

CP−Timedirect
1 ≈24,000 0.023 0.005

Nvar.
Nvar., converged ∗2 0.985 - *1 0.978 1.014

*1 Only 283 reversal points (0.01% of the load sequence) are simulated, and the CP-Time is extrapolated linearly. Therefore, no service life
can be calculated. *2 The converged service life Nvar.,converged is taken from the reference calculation provided in Section 4.5.
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6. Conclusions

The load–notch-strain curve describes the relationship between the load on the com-
ponent and the locally occurring strain when elastic-plastic material behaviour is taken
into account. It is a practical tool for the efficient determination of the local stress–strain
path, which is required for a service life estimation according to the notch strain approach.
This contribution describes how the load–notch-strain curve can be calculated using an
FEA with elastic-plastic material behaviour and how the efficiency of this procedure is
increased. The following points must be considered in order to carry out the determination
of the load–notch-strain curve for the application of the FKM guideline nonlinear [25] as
efficiently and accurately as possible with FEA:

1. The loads in the simulation are applied with a constant distance.
2. It is sufficient to determine the load–notch-strain curve for the hysteresis branch, from

which the load–notch-strain curve for the initial load is derived.
3. The material law should be stored in the FE programme with nM = 50 support points.
4. By using shell elements on the surface of the component in the area to be analysed,

the Gauss points are shifted to the surface. This makes it possible to use a relatively
coarse mesh despite the elastic-plastic material behaviour.

5. When using spline interpolation, it is possible to determine the load–notch-strain
curve for the hysteresis branch with only nH = 5 load steps with a good accuracy.

The standard procedure in the FKM guideline nonlinear for determining the load–
notch-strain curve is the estimation with the help of a notch root approximation. For both
permitted notch root approximations, an FEA with elastic material behaviour must be
carried out. In addition, the limit load factor Kp must be determined using an FEA with
elastic-ideal-plastic material behaviour. The time required to determine the limit load factor
makes the use of notch root approximations less attractive.

In contrast, this contribution shows that the determination of load–notch-strain curves
in an FEA with elastic-plastic material behaviour using methods for increasing the efficiency
is a good alternative to notch approximation methods in terms of quality and efficiency.
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Appendix A

This section describes the regression used to determine the parameters c and d for the
power approach described in Section 3.4.2. As shown in Figure 8, when log(∆εFEA−∆σel,FEA/E)
is plotted against log(∆σel,FEA) using a double logarithmic scale, the curve can be described
using a linear scale for log(∆εFEA − ∆σel,FEA/E) ≥ −4. For the linear regression, the loga-
rithm of Equation (A1) and the support points from the FEA are used; see Equation (A2). The
substitutions in Equations (A3)–(A6) result in a linear equation in the form of Equation (A7).

∆εP(∆σel) =
∆σel

E
+2
(

∆σel
2 · c

) 1
d

(A1)
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log
(

∆εFEA −
∆σel,FEA

E

)
=

1
d
· log(∆σel,FEA)−

1
d
· log(2 · c) + log(2) (A2)

y = log
(

∆εFEA −
∆σel,FEA

E

)
(A3)

a =
1
d

(A4)

x = log(∆σel,FEA) (A5)

b = − 1
d
· log(2 · c) + log(2) (A6)

y = a · x + b (A7)

The parameters a and b are obtained by the method of least squares using Equa-
tions (A8) and (A9) and n pairs of values x and y:

a =
n ·∑n

i=1 xi · yi− ∑n
i=1 xi ·∑n

i=1 yi

n ·∑n
i=1 x2

i−(∑n
i=1 xi

)2 (A8)

b =
∑n

i=1 x2
i ·∑

n
i=1 yi− ∑n

i=1 xi ·∑n
i=1 xi · yi

n ·∑n
i=1 x2

i−(∑n
i=1 xi

)2 (A9)

The parameters c and d are obtained by transforming Equations (A4) and (A6):

d =
1
a

(A10)

c =
1
2
· 10

1
a ·(log(2)−b) (A11)

In the regression, only pairs of values from ∆σel,FEA and ∆εFEA from FEA that ful-
fil the condition log(∆εFEA − ∆σel,FEA/E) ≥ −4 are considered. In the case that less
than two load steps are necessary to perform a linear regression to fulfil the condition
log(∆εFEA − ∆σel,FEA/E) ≥ −4, all load steps for which ∆εFEA − ∆σel,FEA/E > 0 are used.
This last restriction is necessary because in the range of low loads, a negative difference
∆εFEA − ∆σel,FEA/E can occur due to numerical inaccuracies during the FEA. Since the
logarithm can only be applied to values greater than zero, only data pairs for which
∆εFEA − ∆σel,FEA/E > 0 applies are considered.

Appendix B

In this section, the determination of the parameters ai, bi, ci, and di for the spline
interpolation in Section 3.4.3 is described. Boundary conditions are defined for the individ-
ual sections of the function: to avoid jumps occurring in the load–notch-strain curve, the
strain ranges at the beginning of each section must match those at the end of the previous
section, and the strain ranges at the end of each section must match those at the beginning
of the following section; see Equations (A12) and (A13). These conditions correspond to the
boundary conditions of interpolation with a polygonal chain; see Section 3.4.1. In addition,
Equation (A14) guarantees a kink-free transition at the support points, and Equation (A15)
generates a two-times continuously differentiable function:

∆εS,i(∆σel,FEA,i) = ∆εFEA,i with i = 1, . . . , nH (A12)

∆εS,i(∆σel,FEA,i+1) = ∆εFEA,i+1 with i = 1, . . . , nH (A13)

∆ε′S,i(∆σel,FEA,i+1) = ∆ε′S,i+1(∆σel,FEA,i+1) with i = 1, . . . , nH (A14)

∆ε′′S,i(∆σel,FEA,i+1) = ∆ε′′S,i+1(∆σel,FEA,i+1) with i = 1, . . . , nH (A15)
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In order to determine the parameters ai, bi, ci, and di with a linear system of equations,
two further boundary conditions must be defined. At the left edge of the load–notch-
strain curve, the modulus of elasticity E is specified as the gradient; at the right edge, the
load–notch-strain curve should end with a point of inflection. This results in:

∆ε′S,1(∆σel,FEA,1= 0) =
1
E

(A16)

∆ε′′S,n
(
∆σel,FEA,nH+1

)
= 0 (A17)

With the linear system of equations in Equation (A18), the vector b containing the
parameters bi is calculated:

A · b = g (A18)

The matrix A and the vectors b and g are defined as follows:

hi = ∆σel,FEA,i+1 − ∆σel,FEA,i with i = 1, . . . , nH (A19)

A =



1 0.5
h1 2 (h 1+h2) h2

. . .

hnH−1 2 (h nH−1+hnH

)
hnH

1

 (A20)

b =


b1
b2
...

bnH

0

 (A21)

g =


g1
g2
...

gnH
0

 (A22)

g1 =
3
2

(
∆ε2 − ∆ε1

h1
2 − 1

E · h1

)
(A23)

gi= 3
(

∆εi+1 − ∆εi

hi
− ∆εi − ∆εi−1

hi−1

)
with i = 2, . . . , nH (A24)

The remaining parameters ai, ci, and di are calculated with Equations (A25)–(A27):

ai =
bi+1 − bi

3 hi
with i = 1, . . . , nH (A25)

ci =
bi+1 − bi

hi
− 2 bi+bi+1

3
hi with i = 1, . . . , nH (A26)

di = ∆εi with i = 1, . . . , nH (A27)
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