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Abstract: The analysis of site seismic amplification characteristics is one of the important tasks
of seismic safety evaluation. Owing to the high computational cost and complex implementation
of numerical simulations, significant differences exist in the prediction of seismic ground motion
amplification in engineering problems. In this paper, a novel prediction method for the amplification
characteristics of local sites was proposed, using a state-of-the-art convolutional neural network
(CNN) combined with real-time seismic signals. The amplification factors were computed by the
standard spectral ratio method according to the observed records of seven stations in the Lower
Hutt Valley, New Zealand. Based on the geological exploration data from the seven stations and
the geological hazard information of the Lower Hutt Valley, eight parameters related to the seismic
information were presumed to influence the amplification characteristics of the local site. The CNN
method was used to establish the relationship between the amplification factors of local sites and
the eight parameters, and the training samples and testing samples were generated through the
observed and geological data other than the estimated values. To analyze the CNN prediction ability
for amplification factors on unrecorded domains, two CNN models were established for comparison.
One CNN model used about 80% of the data from 44 seismic events of the seven stations for training
and the remaining data for testing. The other CNN model used the data of six stations to train and
the remaining station’s data to test the CNN. The results showed that the CNN method based on the
observation data can provide a powerful tool for predicting the amplification factors of local sites
both for recorded positions and for unrecorded positions, while the traditional standard spectral
ratio method only predicts the amplification factors for recorded positions. The comparison of the
two CNN models showed that both can effectively predict the amplification factors of local ground
motion without records, and the accuracy and stability of predictions can meet the requirements.
With increasing seismic records, the CNN method becomes practical and effective for prediction
purposes in earthquake engineering.

Keywords: amplification factor; ground motion; 1-D convolutional neural network; site amplification

1. Introduction

The seismic amplification effects in earthquake-prone areas need to be considered
in building or structure designs. The relationship between the site condition and seismic
ground motion has been researched for over one hundred years [1]. Pioneer researchers
gathered a great deal of observational evidence to establish this relationship in the earlier
studies [2]. Subsequently, many researchers [3–10] attempted to evaluate the amplification
characteristics of strong ground motions at a given site according to the acceleration records.
For unrecorded locations, it is common to rely on the regression relationship obtained
from the recorded results. This approach is regarded as reliable because the earthquake
records [11] include all the influences of the earthquake source, transmission path and
site features. However, for many local site amplification zones with no ground motion
records, a simple regression relationship based on a large-sized site and inadequate data
seems unreasonable.
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To overcome the lack of strong motion data to estimate the amplification factors at
many local zones, an alternative to the seismic record method needs to be developed. The
microtremor-based method, which is an empirical method, was first used by Kanai [12] and
further developed by Nakamura [13] for the site amplification analysis of cases without seis-
mic records. By measuring the ambient noise or microtremors, the method can obtain the
experimental transfer functions and predict the amplification factors of the site. Although
the microtremor-based method can improve the surface amplification prediction for the
area without seismic records, the research shows that there are significant differences in the
predictions of the amplification characteristics under strong earthquakes. Signal processing
has also become a key to prediction. The existing methods of processing signal data include
wavelet transform methods [14–16], Fourier transform methods [17] and so on. As an
alternative to the seismic record method, some researchers [18,19] have used site response
simulations based on the wave propagation theory and numerical methods to estimate
the transfer functions and predict ground motions in particular regions. Compared with
the empirical methods, numerical simulations [20] based on the wave propagation theory
can establish an analytical model for the seismic response of a local site and adjust the
parameters to predict the amplification factor of the site. However, simulation models still
employ some major simplifications at present. Considering the heterogeneous structures
of a local site [21,22], seismologists [23–25] usually establish more realistic 2-D or 3-D wave
propagation models to predict the ground motion and site amplification factors. These
2-D or 3-D models can reflect the effect of more site geology information. However, it is
difficult to model seismic ground motions and predict site amplification in simulations
of engineering problems, due to the high computational cost and complex simulation
technology [26–28]. To improve prediction of the surface amplification characteristics in
local areas, including basin regions, more and more local site stations have been estab-
lished around the world for obtaining seismic observation records. Since the number of
earthquake observation records in local domains has been increasing over the years, many
researchers across the world prefer to develop amplification prediction models in a specific
local site.

Whether employing regression data from the observation records or computational
simulations with predefined functions to predict the ground motion amplification factors,
the aim is to develop reasonable prediction models or equations for the surface ground
motion amplification factors in complex local sites. Due to the complex local geologi-
cal conditions, unpredictable site conditions and other factors of seismic propagation it
is difficult for traditional regression methods to achieve predictions consistent with the
observations [25]. To establish a reasonable regression relationship for a local site, more
effort is needed to seek more accurate methods for predicting ground motion characteris-
tics. With the continuous rapid development of artificial intelligence methods, more and
more scholars are committed to applying various machine learning techniques to ground
motion prediction [29]. These methods are applied to the problems solved by traditional
regression methods. Recently, new algorithms, such as the Bayesian method, clustering
methods and neural network methods have been gradually developed for ground motion
predictions [30,31]. For example, a new method of seismic site classification was proposed
using HVSR [32] curves and a neural network [33]. For the aspect of attenuation prediction,
Kuok and Yuen [29] proposed an effective generalized learning network for nonparametric
spatial modeling to predict the ground motion attenuation law for Wenchuan earthquake in
China. The M5 tree method [6], heterogeneous Bayesian learning and the back-propagation
neural network (BPNN) were used by Mu and Yuen [34] and Kaveh and Kim [6,29], re-
spectively, to predict the ground motion, improving the previous learning algorithm and
providing a solid support for the automatic prediction of basin ground motion. As a new
machine learning algorithm, the convolutional neural network (CNN) with convolution
layers overcomes the disadvantages of traditional BPNNs. Compared with the typical
machine learning models such as BPNNs, the CNN has dimension reduction [35] and
strong feature extraction ability, fuses multiple inputs and converges fast. Furthermore,
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it can extract some important features more effectively. In the feature extraction stage,
the CNN can learn directly from the original input data and optimize the features in the
training stage, then grasp the feature information more accurately. As real seismic records
in a local domain contain many kinds of potential seismic characteristics, the combination
of multiple features when training a CNN is likely to result in a better method. It can be
seen that using the CNN method to predict the amplification characteristics of ground
motion offers a new direction in this research field.

In this paper, based on the growing number of ground motion data for the densely dis-
tributed local stations and the detailed geology data for Lower Hutt Valley, New Zealand,
the CNN method was applied to establish novel prediction models to predict the surface
seismic amplification factors in this local area. The seismic observation records of 44 earth-
quakes from seven stations were selected, and seven CNN models were created. The CNN
models were used to identify the surface amplification factors for the basin with strong
earthquake observation data.

2. Materials and Methods
2.1. Geological Condition

The Lower Hutt Valley is a middle-sized sedimentary basin located in the Wellington
Metropolitan area, New Zealand. The valley is about 10 km wide and 35 km long and is
surrounded by hills in the east and the north, while it is open to Wellington Bay in the west.
Figure 1a displays a location map of the valley, and a detailed map of a small zone 10 km
long and 5 km wide is shown in Figure 1b.
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According to the geological exploration data provided by New Zealand’s Institute
of Geological and Nuclear Sciences (GNS), a local site in the Lower Hutt Valley with a
length of 8400 m and a width of 5600 m was selected. There were four irregular layers of
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sediments over the bedrock. The S-wave velocity varied from 175 m/s to 300 m/s in the
top layer, 300 m/s to 330 m/s in the second layer, 330 m/s to 500 m/s in the third layer
and 500 m/s to 1500 m/s in the bottom layer. The S-wave velocity of the bedrock layer was
1500 m/s. As shown in Figure 1b, 7 accelerometers were located in the selected zone: the
accelerometer stations BMTS, LHES, FAIS, TAIS, PGMS and SOCS were located in the soft
soil zone and the station LHRS in the hard rock zone. The details of the soil and bedrock
characteristics for the seven stations are listed in Table 1. The 1-D soil layer histogram
of the seven stations was extracted from the 3-D geological structure of the lower Hutt
gorge, as shown in Figure 2. As the soil properties are directly related to the amplification
characteristics of the surface, the first-order frequencies and the equivalent shear wave
velocities of the 1-D soil layer at each station were calculated. The results are shown in
Table 1.

Table 1. Station information.

Station Latitude (S) Longitude (E) Thickness of
Soil Layer (m) V30 (m/s)

LHRS 41◦12′17” 174◦53′35” 0.000 1500.000
BMTS 41◦11′29” 174◦55′34” 93.330 200.830
LHES 41◦12′42” 174◦54′12” 217.780 215.330
FAIS 41◦12′27” 174◦56′24” 62.220 206.000
TAIS 41◦10′35” 174◦58′12” 280.000 235.000

PGMS 41◦13′28” 174◦52′46” 130.670 236.000
SOCS 41◦12′15” 174◦54′57” 311.110 240.170
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Figure 2. Borehole records. (a) LHRS; (b) BMTS; (c) LHES; (d) FAIS; (e) TAIS; (f) PGMS; (g) SOCS.

According to the geological hazard information network of New Zealand (https:
//www.geonet.org.nz, accessed on: 27 June 2021), the NS and EW components of the
earthquake records from the bedrock to the soil layers of the 7 stations were used, as shown
in Table 1. Since each station had two horizontal components in the seismic records, the
records first needed to be processed. Figure 3 shows the two horizontal components (SV
and SH) at each station.

https://www.geonet.org.nz
https://www.geonet.org.nz
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The original data of the horizontal observation records provided by the New Zealand
geological disaster information network were recorded in two horizontal directions, where
horizontal axis 1 was along the north direction (H1) and horizontal axis 2 along the west
direction (H2). The angle between the X-direction of the Lower Hutt basin model and the
geographical east-west direction was about 50◦. The horizontal observation records H1
and H2 for the basin can be decomposed into SV and SH directions. The acceleration time
history in the SH direction can be determined by Equation (1):

SH = H1COS40◦ − H2COS50◦ (1)

2.2. Preparation of the Data
2.2.1. Amplification Factor

To estimate the surface amplification of the soil response with respect to the bedrock
response, frequency-dependent seismic amplification factors were used to compute the
soil effect of this valley surface. The standard spectral ratio [35] was used to calculate
the amplification factors of the site location. This is defined as the spectral ratio of a
sedimentary site with respect to a nearby bedrock reference site. A high-pass filtering
program (JMTEST) method was used to smooth selected acceleration time histories, and
then a fast Fourier transform (FFT) computer program was employed to obtain Fourier
spectra of the acceleration time history at each soil station and bedrock station. For each
earthquake, the spectral ratio of the Fourier spectra at each soil station to the spectrum at
the bedrock station was used to estimate the frequency-dependent amplification factors,
AFF (amplification Fourier factors) [5], from Equation (2):

AFF =
FSH

sur f ace

FSH
bedrock (2)

where FSH is the Fourier amplitude spectrum in the SH (S-wave horizon) direction at the
soil surface or bedrock.

Then, for each group of acceleration time histories at soil stations, a mean frequency-
dependent amplification factor was computed from the average AFF at a given frequency
value [36], using Equation (3):

AFF =

n
∑

i=1
AFFi

n
(3)
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2.2.2. Surface Amplification Factors at Lower Hutt Valley

The seismic response records of 44 earthquakes in the Lower Hutt Valley were selected
to calculate the amplification factors for all 6 soil stations, according to Equations (1) and (2).

The amplified spectra were obtained by calculating the ratio of the acceleration records
of the six stations in the soft layer vs. the bedrock station (LHRS), and parts of the results
are shown in Figure 4. The amplification factors at the six stations were also obtained by
calculating the average of the amplified spectrum. Table 2 shows some of the average
amplification factors calculated using Equation (2).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 23 
 

i
i=1

n

n

AFF
AFF =


 

(3)

2.2.2. Surface Amplification Factors at Lower Hutt Valley 
The seismic response records of 44 earthquakes in the Lower Hutt Valley were se-

lected to calculate the amplification factors for all 6 soil stations, according to Equations 
(1) and (2). 

The amplified spectra were obtained by calculating the ratio of the acceleration rec-
ords of the six stations in the soft layer vs. the bedrock station (LHRS), and parts of the 
results are shown in Figure 4. The amplification factors at the six stations were also ob-
tained by calculating the average of the amplified spectrum. Table 2 shows some of the 
average amplification factors calculated using Equation (2). 

 

 
Figure 4. Sediment-to-rock Fourier spectral ratios (FSRs) of stations. 

Table 2. Amplification factors for earthquakes at 7 stations. 

Station 
Magnitude 

LHRS BMTS LHES FAIS TAIS PGMS SOCS 

M4.5  1.00  1.78  2.56  1.90  3.10  1.95  3.04  
M5.8  1.00  2.01  2.81  1.91  3.65  2.06  3.24  
M5.1  1.00  1.61  3.42  1.81  2.98  2.06  3.27  
M4.0  1.00  1.26  2.09  1.42  2.72  1.50  2.38  
M4.3  1.00  — 2.78  1.93  3.06  2.20  3.33  
M4.8  1.00  2.96  2.45  — 2.70  2.21  3.85  
M4.5  1.00  2.77  2.08  — 2.50  1.99  2.86  
M4.0  1.00  2.49  2.36  — 2.45  2.48  2.93  
M4.7  1.00  1.55  2.31  2.28  3.06  2.05  2.57  
M4.6  1.00  3.10  2.39  2.13  2.71  2.27  3.16  

0 3 6 9 12 15

5

10

FS
R

Frequency(Hz)

20201207-M4.5
FAIS Station15

0 3 6 9 12 15

15

10

FS
R

Frequency(Hz)

20201207-M4.5
TAIS Station

5

0 3 6 9 12 15

15

10

FS
R

Frequency(Hz)

20201207-M4.5
PGMS Station

5

0 3 6 9 12 15

10

15

FS
R

Frequency(Hz)

20201207-M4.5
SOCS Station

5

Figure 4. Sediment-to-rock Fourier spectral ratios (FSRs) of stations.

Table 2. Amplification factors for earthquakes at 7 stations.

Station
Magnitude LHRS BMTS LHES FAIS TAIS PGMS SOCS

M4.5 1.00 1.78 2.56 1.90 3.10 1.95 3.04
M5.8 1.00 2.01 2.81 1.91 3.65 2.06 3.24
M5.1 1.00 1.61 3.42 1.81 2.98 2.06 3.27
M4.0 1.00 1.26 2.09 1.42 2.72 1.50 2.38
M4.3 1.00 — 2.78 1.93 3.06 2.20 3.33
M4.8 1.00 2.96 2.45 — 2.70 2.21 3.85
M4.5 1.00 2.77 2.08 — 2.50 1.99 2.86
M4.0 1.00 2.49 2.36 — 2.45 2.48 2.93
M4.7 1.00 1.55 2.31 2.28 3.06 2.05 2.57
M4.6 1.00 3.10 2.39 2.13 2.71 2.27 3.16
M4.3 1.00 1.86 2.76 1.91 2.87 2.45 3.42
M4.8 1.00 1.71 2.38 1.89 — 1.98 —
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2.3. 1-D Convolutional Neural Network

As shown in Figure 5, a standard CNN model usually includes the input layers,
convolution layers, a fully connected layer and an output layer. The input data were
transferred through a series of layers (two convolution layers, activation function, loss
function). Finally, the mapping calculation obtained the amplification factors. Specifically,
the input of the 1-D CNN was either a 1 × N or an N × 1 array. As shown in Figure 5, an
N × 1 array was passed through a series of convolution layers and the fully connected
layer. Then, the amplification factors for the local ground motion were obtained in the
output layer.
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As shown in Figure 6, the convolution process was to multiply each element in the
convolution kernel with the corresponding element in a sub-region (e.g., green box or blue
dotted box) of the input data of the convolution layer and to sum the products to obtain
an element in the feature map. Each time, the sub-region moved down by one step, and
the process was repeated until all elements of the input data were involved. Finally, the
convolution operation formed a new array (i.e., the feature map).

The activation function has a non-linear ability that gives the neural network better
learning capabilities. Commonly used activation functions include the sigmoid, tanh, ReLU
(rectified linear unit) and LeakyReLU functions, as shown in Figure 7. The LeakyReLU
activation function was used in this study, as it is much faster than the sigmoid function
and the tanh function.
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Loss Function

The loss function was employed to evaluate the convergence of the trained CNN. It
was embedded in the output layers. In this paper, the convergence of the network training
process was evaluated by the validation samples. The loss function (RMSE, root mean
squared error) was as given in Equation (4).

RMSE =

√√√√ 1
N

N

∑
t=1

(predictedt − label)2 (4)
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where N is the number of validation samples.

2.4. Design of the Models

In this section, a novel method based on the CNN model was established to predict the
ground motion amplification. Compared with the traditional classical regression model that
can usually use only two variables for the regression task, the CNN can use multivariate
regression techniques to predict the results.

2.4.1. Parameters of the Models

In this section, the CNN method was established to predict the local site amplification
based on earthquake observation records. The sampling data used in the proposed CNN
models involved 44 seismic events. The input data of the samples were extracted from
40 seismic incidents recorded at 7 stations (Table 3). The geological exploration data of the
7 stations were provided by New Zealand’s Institute of Geological and Nuclear Sciences
(GNS) and the observation records were downloaded from the New Zealand’s geohazard
information network (GeoNet) (https://www.geonet.org.nz, accessed on: 27 June 2021).
The output data of the samples were directly computed using Equation (2) from the
downloaded observation records. A series of input variables of the proposed CNN model
were specified: the station latitude, longitude, magnitude, focal depth, epicentral distance,
soil layer thickness, V30 (equivalent shear wave velocity at a calculated depth of 30 m in
the overlying soil layer) and the observation records of the bedrock PGAr (peak ground
acceleration of rock). Based on a number of the input variables and output variables of the
samples, an effective and reasonable CNN model was trained, and a CNN-based prediction
method was obtained. With the trained CNN model, the ground motion amplification
factors of the Lower Hutt Valley could be predicted, and the amplification characteristics
of this engineering site could be investigated.

Table 3. Design of CNN-FSPA.

CNN-FSPA

Total 44 earthquakes (274)
Training 40 earthquakes (246)

Validation 40 earthquakes (246)
Testing 4 earthquakes (28)

A 1-D CNN structure was established using the ‘Deep Learning Toolbox’ of MATLAB
(MathWorks Inc., Natick, MA, USA), including convolution layers, activation layers (leaky
ReLU activation function) and one fully connected layer (FC). The convolution kernel size
and layer number were adjusted according to different situations. The CNN structure
was designed according to the ground motion situation considered in this study. The
weights of the CNN and the internal parameters were adjusted to achieve the best local site
amplification prediction effect. The data were preprocessed and then input into the CNN
for network training. Part of the dataset was used for network training, and the other part
was used for testing. Furthermore, padding was employed to preserve the information on
the edges.

2.4.2. Description of the Models

Figure 8 shows the location map of the 7 stations (blue points) and 5 selected un-
recorded location points (yellow points). The CNN models were based on the sample
datasets obtained from the nearest 44 earthquake records collected from the 7 stations.
Two kinds of CNN prediction models were trained, with sample parameters as shown in
Tables 3 and 4.

https://www.geonet.org.nz
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Table 4. Design of CNN-PSPA.

CNN-PSPA

Total All Stations
(274)

All Stations
(274)

All Stations
(274)

All Stations
(274)

All Stations
(274)

All Stations
(274)

Training Non-SOCS
(237)

Non-PGMS
(233)

Non-TAIS
(235)

Non-FAIS
(242)

Non-LHES
(235)

Non-BMTS
(232)

Validation (237) (233) (235) (242) (235) (232)
Testing
(PSPA)

SOCS
(37)

PGMS
(41)

TAIS
(39)

FAIS
(32)

LHES
(39)

BMTS
(42)

(1) CNN-FSPA (full-station predicted amplification) model: in this model, 40 of the
44 earthquake records were used for training and the remaining 4 for testing the model.
The detailed information of CNN-FSPA is shown in Table 3.

(2) CNN-PSPA (part-station predicted amplification) models: in these models, data
from 6 of the 7 stations were used for training and the data from the other station were
used for testing. A total of 6 CNN sub-models were built, namely, non-SOCS, non-PGMS,
non-TAIS, non-FAIS, non-LHES and non-BMTS. The detailed information of CNN-PSPA is
shown in Table 4.

In the CNN-FSPA model, the comparisons between the observed value and the pre-
dicted value were used for testing the CNN’s prediction abilities. In the CNN-PSPA models,
the trained model was used to analyze the prediction error of the site amplification factors
of unrecorded locations. The station data that were not included in the training samples,
were used for testing the prediction abilities of the CNN-PSPA models for prediction of
unrecorded locations.

3. Results and Discussion

In the following, the amplification factors of the seven stations obtained using Equa-
tion (3) were used to conduct an error analysis between the real values and predicted values
of the amplification factors. The error of the amplification factor is defined in Equation (5).

error =
|predicted− observed|

observed
× 100% (5)

3.1. Comparisons with BPNN Models

The CNN models were trained for predicting the site amplification factors of the
Lower Hutt Valley. To demonstrate the advantages of the CNN models in predicting the
site amplification factors, traditional BPNN models were also trained on similar data for
comparison. These models were named BPNN-FSPA and BPNN-PSPA.
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3.1.1. Effect of Parameters on Different Models

First, the differences between the CNN and BPNN models were considered for study-
ing the effect of the parameters. The four groups of training parameters for the CNN and
BPNN models are listed in Table 5. In the BPNN models, the tests referred to different
hidden layers, as shown in Table 5. The errors of the prediction results are shown in
Figure 9 for the CNN models and Figure 10 for the BPNN models.

Table 5. Four tests with different parameters.

Models
CNN BPNN

Kernel Size Kernel Number Hidden Layer Size

Test 1 [2 1] [3 1] 190 310 5

Test 2 [2 1] [3 1] 190 320 6

Test 3 [2 1] [3 1] 198 320 7

Test 4 [2 1] [3 1] [4 1] 190 320 322 8
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Figure 9. Errors of CNN predictions.

Figure 9 shows that with different model parameters, the prediction results for the
CNN models did not differ much, and the training effect was relatively stable. In contrast,
the BPNN training results appeared to be quite variable for all the tests and were extremely
unstable with respect to the different model parameters, as shown in Figure 10. Figure 10
also shows that Test 1 had the worst testing results and the highest error rate. Furthermore,
the variability of the red histogram was the largest, showing that Test 2 was the most
unstable. Test 3 was relatively stable and its error rate was the lowest. Furthermore, in the
non-FAIS model, the training effect was encouraging, except in Test 1. Among the four
tests, the most stable BPNN model was the non-SOCS model.
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As shown from the analyses of the CNN models and BPNN models, the parameters
could be further optimized for the two kinds of models. Compared to the BPNN models,
the CNN models had better accuracy and stability with different model parameters. To
ensure the accuracy and stability of the prediction results, the BPNN should avoid the Test
1 parameters with a high error rate and the Test 2 parameters with poor stability.

3.1.2. Comparisons of Prediction Results

From Figures 9 and 10, the worst and the best CNN and BPNN models, respectively,
were selected for comparison. The best CNN model, except for CNN-FSPA, was the non-
FAIS model with Test 2 parameters and the best BPNN model, except for BPNN-FSPA, was
the non-LHES model with Test 3 parameters. The worst CNN model was the non-BMTS
model with Test 4 parameters and the worst BPNN model was the non-TAIS model with
Test 4 parameters. The prediction results and errors for four earthquakes (M4.5, M5.6, M5.1
and M4.0) at four stations (FAIS, LHES, BMTS and TAIS) are shown in Table 6.

Table 6. Comparisons of CNNs and BPNNs.

Model Magnitude
CNN-PSPA BPNN-PSPA

Observed
(FAIS)

Predicted
(FAIS) Error Observed

(LHES)
Predicted
(LHES) Error

Best
testing

M4.5 2.86 2.48 13.2% 2.05 2.51 18.3%
M5.6 1.89 1.98 4.7% 2.55 2.69 5.2%
M5.1 1.90 1.93 1.7% 2.80 3.04 8.3%
M4.0 1.81 2.12 17.3% 3.42 2.53 26.0%

Model Magnitude Observed
(BMTS)

Predicted
(BMTS) Error Observed

(TAIS)
Predicted

(TAIS) Error

Worst
testing

M4.5 2.79 1.99 28.6% 2.34 3.85 64.4%
M5.6 2.45 2.30 6.1% 3.56 7.30 104.8%
M5.1 1.78 1.77 0.7% 3.10 4.61 48.6%
M4.0 2.01 1.81 9.9% 3.65 5.33 45.9%

As shown in Table 6, all the errors of the CNN models were lower than those of the
corresponding BPNN models for the same earthquakes. In addition, the worst testing
model (non-BMTS) of the CNNs had an error rate of 25.0% and the corresponding non-TAIS
model of the BPNNs had an error rate of 81.6%.



Appl. Sci. 2021, 11, 11650 13 of 22

It can also be seen from Table 6 that the error difference between the best and the worst
predictions of the CNNs was much lower than for the BPNNs. Comparisons between the
best and worst of the CNN-PSPA models showed that the errors of the results did not differ
much. Furthermore, the earthquakes with magnitude 5.1 gave the best results, with little
fluctuation in this CNN-PSPA. The CNNs showed better stability and less sensitivity to the
parameters. In contrast, the difference between the best and worst tests of the BPNNs was
significant. The worst of the BPNNs showed both a larger variance and the largest error of
104.8%, appearing in the M5.6 earthquakes. The BPNN-PSPA test for a magnitude of 5.6
showed the difference between the worst test with the largest error rate of 104.8% and the
best test with the smallest error rate of 5.2%. It can be seen that the BPNN models were
very unstable and were adversely affected by changing the parameters. The CNN models
outperformed the corresponding BPNN models in terms of test stability.

Both the stability and the accuracy analyses showed that the CNNs were significantly
better than the BPNNs.

3.2. Prediction Results of the CNN-FSPA Model

As the last section stated, the CNN models showed better prediction ability for the
site amplification factors than the traditional BPNN models. In the following two sections,
the CNN-FSPA and CNN-PSPA models are discussed in detail with regard to parameter
optimization and prediction results. Based on the optimized parameters, the comparatively
better prediction model was trained for predicting the site amplification factors of the
Lower Hutt Valley.

3.2.1. Testing of Different Parameters

The CNN-FSPA model was trained using 40 earthquakes for training and 4 earth-
quakes for testing. The average test errors of the CNN-FSPA model for different CNN
parameters are listed in Table 7.

Table 7. No padding and padding of the CNN models.

No Padding Padding

Kernel Size Kernel
Number Error Kernel Size Kernel

Number Error

[2 1] 192 18.3% [2 1] 192 19.7%

[2 1]
[3 1]

190
320 13.0% [2 1]

[3 1]
190
320 12.6%

[2 1]
[3 1]
[4 1]

190
320
330

13.3%
[2 1]
[3 1]
[4 1]

190
320
330

12.8%

Table 7 shows that by varying the models with and without padding, it was found that
the models with more than one convolutional layer showed lower error rates and better
predictions than their counterparts without padding. The prediction results of the CNNs
with different convolutional layers and convolutional kernels are also listed in Table 7. For
the CNNs with one convolutional layer, the errors of the test results were 18.3–19.7%. For
the CNNs with two convolutional layers, the error rate was 12.6–13.0%. For the CNNs
with three convolutional layers, the error rate was slightly higher at 12.8–13.3%. Overall,
the testing error could be reduced by about 1% using the padding function of the CNN
models with two or three convolutional layers.

The test with the lowest error was selected to give the training parameters for deter-
mining the CNN structure. The specific structural parameters of the CNNs are shown
in Table 8. There were five layers with two convolutional layers in this test. In the first
convolutional layer, 190 convolutional kernels with a size of 2 × 1 were used to process the
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input data. In the second convolutional layer, the number of convolutional kernels was 320
with a size of 3 × 1.

Table 8. Structural parameters of the 1-D CNNs.

Layer Type Kernel No. Kernel
Size Stride Padding Activation

1 Input None None None None None
2 Convolution (C1) 190 2 × 1 1 1 Leaky ReLU
3 Convolution (C2) 320 3 × 1 1 1 Leaky ReLU
4 FC None None None None None
5 Output None None None None None

Selection of the appropriate parameters according to the actual data had a significant
effect on the training of the CNN model.

3.2.2. Comparisons with Recorded Results

With the two convolutional layers shown in Table 8, the CNN-FSPA model gave better
prediction results than the other models with different parameters. Therefore, the selected
CNN-FSPA model was used to predict the amplification factors of the seven known station
locations. The prediction results for earthquakes with magnitudes of 4.0, 4.5, 5.1 and 5.6
are listed in Table 9. The comparisons of the predicted and observed results are also shown
in Table 9 and Figure 11.

Table 9. Prediction results for the CNN-FPSA.

Station Earthquakes Observed Predicted Error Average
Error

LHRS

M4.5 1.00 1.02 2.0%

8.5%

M5.6 1.00 0.99 1.0%
M5.1 1.00 1.02 2.0%
M4.0 1.00 1.03 2.9%

BMTS

M4.5 2.45 1.79 26.9%
M5.6 1.78 1.89 5.8%
M5.1 2.01 1.76 12.4%
M4.0 1.61 1.55 3.7%

LHES

M4.5 2.05 2.23 8.1%
M5.6 2.56 2.69 5.1%
M5.1 2.81 2.93 4.1%
M4.0 3.42 2.66 22.2%

FAIS

M4.5 2.86 2.30 19.6%
M5.6 1.90 1.95 2.6%
M5.1 1.91 1.94 1.5%
M4.0 1.81 1.88 3.7%

TAIS

M4.5 3.56 3.08 13.5%
M5.6 3.10 3.15 1.6%
M5.1 3.65 3.23 11.5%
M4.0 2.98 2.37 20.5%

PGMS

M4.5 1.83 2.10 12.9%
M5.6 1.95 2.04 4.4%
M5.1 2.06 2.02 1.9%
M4.0 2.06 1.72 16.5%

SOCS

M4.5 2.50 2.61 4.2%
M5.6 3.04 3.00 1.3%
M5.1 3.24 3.16 2.5%
M4.0 3.27 2.57 21.4%
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Figure 11. Comparison of predicted and observed results.

Table 9 shows that the total average prediction error was 8.5%, which is relatively
low. In addition, it can clearly be seen from Table 9 that most of the prediction errors for
small earthquakes such as M4.0 and M4.5 were rather high, probably due to the effect of
anomalous amplification of seismic waves by the soil layer. In contrast, the predictions of
the middle-sized earthquakes such as M5.1 and M5.6 were better. Furthermore, it can be
observed that the stations FAIS, PGMS and SOCS (but not the bedrock station LHES) had
low prediction errors. This indicates that the CNN-FSPA model had good testing results
for those three stations.

As shown in the Figure 11, the scatter points were evenly and regularly distributed around
the black oblique line. This shows that this model was able to provide a good prediction.

3.3. Prediction Results of CNN-PSPA Models

The CNN-PSPA models were also trained for predicting the site amplification factors
of the Lower Hutt Valley. The CNN-PSPA models included six sub-models, described in
Section 2.4.2. Unlike the trained CNN-FSPA model, which included the information for
the testing samples, the trained CNN-PSPA models did not include the information for
the testing samples. Since there was no information for test location at all in the training
samples, the errors of the prediction results at test locations could be regarded as similar
to those for the other unrecorded locations used for the reliability analysis of this type of
model. In the following, the six CNN-PSPA models are used to discuss their prediction
ability via error analysis. The errors of the amplification factors were also computed using
Equation (4).

3.3.1. Optimal Parameters for CNN-PSPA Models

Since the accuracy and the stability in the training of the CNN models were mainly
dependent on the parameters of the convolutional layers and convolutional kernels, error
values computed with different parameters were used to optimize the CNN-PSPA models.
In order to construct a more optimal CNN-based model, four groups with different convo-
lutional kernel sizes and kernel numbers were selected for evaluating the prediction errors.
The average errors of the six CNN-PSPA models with different parameters are shown in
Table 10. The differences in the average error between the maximum and minimum for
each CNN-PSPA model are also listed in Table 10.
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Table 10. Results for CNN-PSPA with different parameters.

Models Predicted
Station Kernel Size Kernel

Number Ave. Error Error
Fluctuation

non-SOCS SOCS

[2 1] [3 1] 190 310 16.5%

8.7%
[2 1] [3 1] 190 315 18.5%
[2 1] [3 1] 190 318 14.2%
[2 1] [3 1] 190 320 22.9%

non-PGMS PGMS

[2 1] [3 1] 190 320 23.1%

9.1%
[2 1] [3 1] 196 310 19.0%
[2 1] [3 1] 196 320 24.5%
[2 1] [3 1] 198 320 15.4%

non-TAIS TAIS

[2 1] [3 1] [4 1] 190 320 322 16.5%

4.3%
[2 1] [3 1] [4 1] 190 320 325 18.6%
[2 1] [3 1] [4 1] 190 320 330 17.9%
[2 1] [3 1] [4 1] 192 320 330 20.8%

non-FAIS FAIS

[2 1] [3 1] 190 315 22.4%

9.8%
[2 1] [3 1] 190 320 12.6%
[2 1] [3 1] 196 320 13.2%
[2 1] [3 1] 190 326 17.9%

non-LHES LHES

[2 1] [3 1] 188 320 22.1%

9.9%
[2 1] [3 1] 190 320 12.2%
[2 1] [3 1] 192 320 16.0%
[2 1] [3 1] 196 320 21.6%

non-BMTS BMTS

[2 1] [3 1] 190 320 21.1%

3.9%
[2 1] [3 1] 192 320 22.4%
[2 1] [3 1] 192 330 25.0%
[2 1] [3 1] 196 320 23.6%

Table 10 shows that the average error values varied with the different parameters for
all of the six CNN-PSPA models. The error differences of the six models ranged from 14.3%,
15.5%, 17.9%, 12.6%, 12.6%, and 21.2% to 23.0%, 24.5%, 23.9%, 22.5%, 22.1%, and 25.0%.
Regarding the errors of the six models, the maximum change was 9.9% in the non-LHES
model, and the minimum change was 3.9% in the non-BMTS model.

The non-BMTS model was the least sensitive to the CNN parameters, while the non-
LHES model was the most influenced by the parameters. From Table 10, the optimal
values of the six models were extracted from the four group parameters for subsequent
predictions. Among the six CNN-PSPA models, the best prediction model was the non-
LHES model, which had a relative error of 12.2%. The model with the biggest error of
all the six models was the non-BMTS model, which had an average error of 21.1%. The
accuracy and stability of the trained CNN-PSPA models remained at a reasonable level for
different network parameters.

Table 10 shows that the sensitivity of the test results was inversely proportional to the
error rate of the results. For example, the non-LHES model had the highest error fluctuation
among the six CNN-PSPA models when trained with different parameters, but it had the
lowest error value among the models. Compared to the five other models, it was more
sensitive to the parameters within the control range. However, the models with higher
errors did not fluctuate as much. This led to stable prediction results by the CNN-PSPA
model, even with different training parameters.

3.3.2. Comparisons with Observed Results

The non-LHES model, with the best test results among all the six CNN-PSPA models,
was selected for predicting all the site amplification factors of 39 earthquakes at the LHES
station location, where five earthquake records were not included. The prediction results
for the 39 earthquakes are listed in Table 11. The site amplification factors obtained from
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the observation records are listed in Table 11 for comparison. By comparing with the
corresponding observation results, the errors were also calculated for all the incidents, as
shown in Table 11.

Table 11. Prediction results for non-LHES.

Number Earthquake Epicentral
Distance (km)

Depth
(km)

CNN-PSPA
Average

ErrorObserved
(LHES)

Predicted
(LHES) Error

1 M4.0 104 40 3.42 2.51 26.5%

12.7%

12.2%

2 M4.0 86 31 2.18 2.41 10.6%
3 M4.1 113 11 3.03 2.38 21.5%
4 M4.1 84 10 2.78 2.50 10.1%
5 M4.1 57 12 3.04 2.45 19.4%
6 M4.1 42 12 2.36 2.49 5.5%
7 M4.2 113 6 3.83 2.70 29.5%
8 M4.2 15 26 2.32 2.60 12.1%
9 M4.3 72 11 2.73 2.45 10.3%
10 M4.3 79 16 2.09 2.23 6.7%
11 M4.3 85 32 2.39 2.28 4.6%
12 M4.4 98 10 2.60 2.51 3.5%
13 M4.4 76 5 2.71 2.50 7.7%
14 M4.4 87 28 2.47 2.28 7.7%
15 M4.5 16 24 2.67 2.30 13.9%
16 M4.5 106 36 2.05 2.39 16.5%
17 M4.5 85 30 2.45 2.30 6.1%
18 M4.5 79 7 3.20 2.55 20.3%
19 M4.5 86 30 2.55 2.31 9.4%

20 M4.6 116 32 2.31 2.42 4.8%

11.7%

21 M4.6 82 12 3.31 2.63 20.5%
22 M4.7 81 33 2.36 2.21 6.4%
23 M4.7 57 13 3.23 2.59 19.8%
24 M4.8 72 11 2.59 2.39 7.7%
25 M4.8 74 12 2.78 2.39 14.0%
26 M4.8 84 54 2.76 2.59 6.2%
27 M4.8 74 9 2.91 2.42 16.8%
28 M5.0 86 36 2.63 2.34 11.0%
29 M5.0 50 13 2.73 2.28 16.5%
30 M5.0 76 8 2.99 2.43 18.7%
31 M5.1 78 5 2.81 2.52 10.4%
32 M5.2 121 8 2.90 2.66 8.3%
33 M5.4 82 34 2.14 2.24 4.7%
34 M5.5 74 17 2.38 2.15 9.7%
35 M5.5 91 15 3.65 2.97 18.6%
36 M5.6 85 7 2.56 2.42 5.5%
37 M5.6 82 13 2.58 2.38 7.8%
38 M5.8 85 37 2.11 2.48 17.5%
39 M6.2 104 34 2.57 2.81 9.3%

Table 11 shows that the total average prediction error was 12.2%, which was relatively
low. In addition, it can clearly be seen from Table 11 that most of the prediction errors for
small earthquakes such as M4.0 and M4.5 were rather high, probably due to the effect of
anomalous amplification of seismic waves by the soil layer. In contrast, the predictions
for the medium-sized earthquakes such M5.1 and M5.6 were better. Furthermore, low
prediction errors for stations FAIS, PGMS and SOCS (but not the bedrock station LHES)
were observed. This indicates that the CNN-FSPA model showed good training for those
three stations. Compared with the CNN-FSPA model in Table 9, the average error of the
CNN-PSPA model was slightly higher by 3.7%.
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In addition, the errors for small earthquakes with large epicenter and source depths,
such as earthquakes with serial numbers 1, 3, 7 and 16, were significantly higher than those
for other earthquakes. However, for medium earthquakes with large epicentral distances
and focal depths, such as earthquakes with serial numbers 20, 32 and 39, errors were lower
and predictions were satisfactory.

3.3.3. Comparison with CNN-FSPA Model

To estimate the ability of CNN-PSPA prediction models, all the six trained models
(non-SOCS, non-PGMS, non-TAIS, non-FAIS, non-BMTS and non-LHES) were used to
predict the site amplification factors at the corresponding stations. For example, the trained
non-SOCS model predicted the site amplification factor at the SOCS station. The test-
sample data were selected using the four earthquakes that were also used to test the
CNN-FSPA model. All error values for the site amplification factors at the six soil stations
were calculated from the six trained CNN-PSPA models. The corresponding errors for the
same four earthquakes at the six station locations based on the trained CNN-FSPA models
were also predicted for comparisons. All the errors of the predicted values for these seven
CNN models are listed in Table 12.

Table 12. Errors for CNN-FSPA and CNN-PSPA.

Magnitude Predicted
CNN-PSPA CNN-FSPA

Models Error Error

M4.5

SOCS non-SOCS 21.7% 4.2%
PGMS non-PGMS 29.9% 12.9%
TAIS non-TAIS 37.9% 13.5%
FAIS non-FAIS 16.8% 19.6%

BMTS non-BMTS 12.1% 26.9%
LHES non-LHES 16.5% 8.1%

M5.6

SOCS non-SOCS 16.6% 1.3%
PGMS non-PGMS 21.7% 4.4%
TAIS non-TAIS 1.8% 1.6%
FAIS non-FAIS 4.7% 2.6%

BMTS non-BMTS 21.0% 5.8%
LHES non-LHES 5.5% 5.1%

M5.1

SOCS non-SOCS 10.2% 2.5%
PGMS non-PGMS 16.5% 1.9%
TAIS non-TAIS 13.5% 11.5%
FAIS non-FAIS 1.7% 1.5%

BMTS non-BMTS 20.8% 12.4%
LHES non-LHES 10.4% 4.1%

M4.0

SOCS non-SOCS 10.0% 21.4%
PGMS non-PGMS 21.3% 16.5%
TAIS non-TAIS 12.7% 20.5%
FAIS non-FAIS 17.3% 3.7%

BMTS non-BMTS 12.2% 3.7%
LHES non-LHES 26.5% 22.2%

Table 12 shows that since the prediction errors of the CNN-FSPA model were lower
than those of the CNN-PSPA model, the CNN-FSPA model was significantly better than the
CNN-PSPA model. This phenomenon shows that the more station data that are included
in the CNN training, the better the CNN model is trained. The included test information
could influence the accuracy and credibility of the prediction results. Table 12 also shows
that although the trained CNN-PSPA model had higher errors than the trained CNN-FSPA
model in any prediction, it had relatively smaller differences, demonstrating that reliable
amplification factors could be obtained even using the trained CNN-PSPA model.
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Table 12 also shows that, as for the predictive regularities of the CNN-FSPA models,
the CNN-PSPA predictions for the medium-sized earthquakes such as M5.1 and M5.6
were better than those for micro-earthquakes such as M4.0 and M4.5. The non-FAIS model
showed outstanding predictive power for medium earthquakes, even though it exhibited
a relatively high error for the micro-earthquakes such as M4.0 and M4.5. In contrast, for
the CNN-FSPA model, it should be noted that the non-FAIS and non-BMTS models for
M4.5 and the non-TAIS model for M4.0 unexpectedly exhibited higher error rates than the
CNN-PSPA model.

3.4. Comparisons of Unrecorded Locations

To predict the amplification characteristics of unrecorded locations, five randomly
selected site points, other than those shown in Figure 8, named A, B, C, D and E, were
used to predict their amplification factors. With the earthquakes with magnitude M5.0 as
an example, the seven trained CNN models with the best testing results, namely, CNN-
FSPA, non-SOCS, non-PGMS, non-TAIS, non-FAIS, non-BMTS and non-LHES, were used
to calculate the amplification factors of the five points. The prediction results of the
amplification factors at these five unrecorded points by the seven CNN-models are shown
in Figure 12.
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Figure 12. Prediction of the amplification factors of unrecorded points by seven models.

Figure 12 shows that the amplification factors varied in the order E > D > C > A > B. As
shown in Figure 12, all the five points, A, B, C, D and E, exhibited a large amplification factor
when the CNN-FSPA model was used for prediction. If only the CNN-PSPA model (which
showed better training) was used for prediction, the prediction results of the non-FAIS and
non-LHES models for the five points were similar.

However, the predicted amplification factor using the CNN-PSPA model was still
rather small compared to that of the CNN-FSPA model. The reason for this was its
insufficient training quantity and incomplete learning. Therefore, the task of predicting the
amplification factor of unknown points should be performed in a series of steps. These
inspiring results could provide a reference for seismic intensity setting in practical projects.

For discussing the differences in the prediction results, the relative error of two types
of CNNs was used, as given by Equation (6):

ErrorPSPA =
|ValueCNN−PSPA −ValueCNN−FSPA|

|ValueCNN−FSPA|
× 100% (6)

where ErrorPSPA denotes the difference rate between the CNN-PSPA and the CNN-PSPA,
and ValueCNN−PSPA and ValueCNN−FSPA are the predicted amplification factors of the
CNN-PSPA model and CNN-FSPA model, respectively. The error values of the predicted
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amplification factors of CNN-PSPA for the five points (A, B, C, D and E) for an earthquake
with M5.0 are shown in Table 13.

Table 13. Relative errors of CNN-PSPA.

Points

Models CNN-PSPA

Non-
SOCS

Non-
PGMS

Non-
TAIS

Non-
FAIS

Non-
LHES

Non-
BMTS

A 26.8% 8.6% 10.5% 24.9% 24.9% 20.6%

B 9.8% 24.8% 6.1% 15.8% 16.7% 19.3%

C 13.0% 18.5% 4.9% 16.7% 26.6% 14.5%

D 8.2% 12.6% 2.2% 5.2% 8.6% 8.6%

E 5.0% 3.9% 12.7% 14.4% 0.9% 6.2%

Compared with the CNN-FSPA model, the CNN-PSPA models clearly showed a
high error rate at point A, indicating that more attention is required. In addition, for the
predictions in Table 13, it can be seen that the amplification factors of points D and E
showed good predictions and small fluctuations in each model. Therefore, the CNN-FSPA
model could predict the amplification factor of an unrecorded location well.

4. Conclusions

In this paper, a 1-D CNN method was used to predict the ground motion amplification
of the Lower Hutt Valley. Based on a relatively small sample dataset, two kinds of CNN
models were established and applied, to predict the amplification factors of the local zone.
The prediction results were inspiring.

Based on the above results, the following conclusions were drawn.
Compared with BNPP models, the trained CNN models were influenced little by

different training parameters, leading to a more stable trained model.
The CNN-FSPA model could effectively predict the station amplification factors from

the existing data; the accuracy was 91.5%, which was 15.8% higher than that of the corre-
sponding BPNN-FSPA model.

Both CNN-FSPA and CNN-PSPA models could effectively predict the amplification
factors of local ground motion.

The comparisons of the CNN-FSPA and CNN-PSPA models showed that, by increasing
the number of earthquakes and the training samples, a prediction model of the ground
surface amplification could be established based on strong earthquake observations.

5. Discussion

(1) For the data processing, we used the Fourier transform method, and also tried other
data processing methods such as the wavelet transform method, to find more accurate data
processing methods for subsequent research.

(2) Since it is difficult for numerical simulations to contain all the seismic information,
in this study we used a combination of seismic records and CNN to predict the amplification
factors with an increased quantity of seismic data. In the future, we will also use a
combination of simulations and observed data to improve the prediction accuracy via
migration learning.

(3) The current trend is to use deep learning to solve some prediction problems. With
the construction of regional station networks and the increase in training samples, we will
continue to collect seismic information from other sites, such as Ashighara Valley and Ohba
Valley in Japan, the Volvi basin in Greece and so on. Therefore, using machine learning to
predict earthquakes has good prospects for development.
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