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Abstract: The effect of chemical activators on the properties of activated carbon from sago waste
was conducted in this study by using ZnCl2, H3PO4, KOH, and KMnO4 chemical solutions. The
carbonized sago waste was added to each chemical solution, boiled at 85 ◦C for 4 h, and heated
at 600 ◦C for 3 h. The porosity, microstructural, proximate, and surface chemistry analyses were
carried out using nitrogen adsorption with employing the Brunauer Emmett Teller (BET) method
and the Barret-Joyner-Halenda (BJH) calculation, scanning electron microscopy by using energy
dispersive spectroscopy, X-ray diffractometer, simultaneous thermogravimetric analysis system, and
the Fourier-transform infrared spectroscopy. The results showed that the activated carbon prepared
using ZnCl2 acid had the highest specific surface area of 546.61 m2/g, while the KOH activating
agent surpassed other chemicals in terms of a refined structure and morphology, with the lowest
ash content of 10.90%. The surface chemistry study revealed that ZnCl2 and KOH activated carbon
showed phenol and carboxylate groups. Hence, ZnCl2 acid was suggested as activating agents
for micropore carbon, while KOH was favorable to producing a mesopore-activated carbon from
sago waste.

Keywords: sago waste activated carbon; activating agents; acid treatment; base treatment; porous
properties; structural properties; thermal decomposition; surface groups

1. Introduction

Activated carbon has an amorphous, fullerene-like structure, with a large and small
amount of oxygen and hydrogen, respectively [1]. This structure leads to an increase
in its surface area, a high degree of porosity [2,3], and a wide spectrum of oxygenated
functional groups [4,5]. Activated carbon has attracted attention due to its large application
and environmental benefits. Furthermore, the adsorption of heavy metals [6–8], organic
compounds [9], dyes [10,11], CO2 capture [2,12,13], catalyst [14,15], ammonia, and methane
storage [16–18], were some common applications. The use of activated carbons as materials
for electrochemical double-layer capacitors (EDLC) has made them suitable for industrial
applications [19–21].

Lignocellulosic precursors and biomass sources were the main raw materials for
activated carbon production. However, the need for abundant, renewable, and low-cost raw
material, has motivated many studies to explore materials used in production. The studies
on activated carbon were the third-highest since 2005, after graphene and carbon nanotubes,
related to carbon materials [22]. Several precursors were obtained from biomass, waste,
various parts of plants, cotton stalk [6], peanut shell [7], nutshells [9], pineapple waste [11],
oil palm shell [17], and coffee beans [19]. In addition, chemical and physical activation are
the two most important methods that activate carbonaceous materials [22], though thermal
activation [23] and microwave radiation [24] methods have also been reported. Other
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studies summarized several parameters in the manufacture of activated carbon [22,25,26],
and chemical activation agent is an important key. These agents include zinc chloride
(ZnCl2), potassium hydroxide (KOH), phosphoric acid (H3PO4), sulfuric acid (H2SO4), and
sodium hydroxide (NaOH). Also, H2O2 [27], potassium carbonate (K2CO3) [28], CaCl2 [29],
KMnO4 [30,31], formamide [32] and other acid salts [33] have been used as activating
agents. The high rate of studies on activated carbons mentioned above promotes this study
on the effect of activating agents on the properties of activated carbon.

Presently, sago waste is used as a raw material to produce activated carbon. It (Metrox-
ylon sago) is an endemic plant in Indonesia, with approximately 1.2 million ha of sago forest,
which is 50% of the total sago forest in the world. Indonesia has about 219,978 ha of sago
starch production area by 2017, with a total production of 489,643 tons [34]. Furthermore,
the plant is the main source of carbohydrates for coastal communities in eastern Indonesia,
and it is included in local food commodities. On the other hand, behind the high produc-
tion of sago in Indonesia, its waste causes environmental pollution [35]. However, sago
waste is rich in lignocellulosic fibers, namely cellulose 36.2%, hemicellulose 15.18%, and
lignin 12.34% [36,37], making them suitable as activated carbon raw material.

The fabrication of activated carbon using sago as its raw material has been studied
previously, either from its waste [31,38–41], palm bark [42,43], or pulp hydrogel [44]. In
addition, the activated carbon has been synthesized using several chemical activating
agents, which include H2SO4, ZnCl2, KOH, and KMnO4, with a variety of chemical
concentrations, activation temperature conditions, and agitation time. However, none of
these studies focused on the effect of activator variations. Therefore, this study aims to
determine the effect of activators on the properties of activated carbon from sago waste.
In this study, ZnCl2 and H3PO4 were used as a chemical acid activator, while KOH and
KMnO4 as base chemical treatments. Then, the porosity, microstructural, proximate, and
surface chemistry analyses helped to understand the properties of the activated carbon
from sago waste and its prospective application. In addition, this study also aims to
elevate the potentials of sago waste from the local community consumptions to a higher
economic value.

2. Materials and Methods
2.1. Material Preparations

For the purpose of this study, sago waste was extracted from the remains of starch
production, traditionally practiced by the community in Maribu Village, Jayapura Regency,
Papua Province, Indonesia was used. The chemical solution KOH, KMnO4, ZnCl2, and
H3PO4 were used as activating agents, with a concentration of 20% (w/v) each, and pH
values of 12.1, 9.1, 4.2, and 2.2, respectively. Other supporting materials include HCl 1 M,
distilled water, and filter paper. The main instruments for the activation process consisted
of a digital pH sensor (PASCO PS-2102), a test sieve (B-ONE size 100 mesh), a magnetic
stirrer (DLAB MS-H280-Pro), an electronic balance (OHAUS SP202 AM), a digital oven
(B-ONE OV-45), and a muffle furnace (FNC-7.2).

2.2. Activated Carbon Fabrication

The sago waste raw material was washed and dried using clean water and oven,
respectively, at 90 ◦C for 2 h. Furthermore, the dried precursor was carbonized at 400 ◦C
for 2 h using a furnace. The carbon sago waste was crushed and sieved to obtain a fine
carbon bulk. Then 5 g of the prepared carbon waste sago was added to a 25 mL chemical
solution, for each activating agent. The mixed solutions were boiled at 85 ◦C for 4 h to
enhance the activation process and then filtered. The precipitate was heated at 600 ◦C
for 3 h [45]. Subsequently, the carbon that was activated using acid treatment (ZnCl2 and
H3PO4) was repeatedly washed with warm distilled water (70 ◦C) until a constant pH of 7
was achieved [41], whereas the carbon that was activated using base treatment (KOH and
KMnO4) was added to 3 mL of 0.1 M HCl and washed with warm distilled water [46], with
repeated washes until a neutral pH was attained. The samples were dried in an oven at
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110 ◦C for 2 h to obtain the activated carbon products. In the end, the final products were
measured to calculate the yield, by the following equation [45]:

Yield (%) =
Final weight o f activated carbon
Initial weight o f dried sago waste

(1)

2.3. Activated Carbon Characterization

The porous characteristic was determined by nitrogen adsorption using Quantachrome
Nova 4200e instrument. Also, the Brunauer Emmett Teller (BET) method was used to
characterize specific surface areas, together with the Barret-Joyner-Halenda (BJH) calcu-
lation to predict the pore volume. The scanning electron microscope (Jeol JSM IT 200)
with energy dispersive spectroscopy (EDS) was used to analyze the morphology and the
element composition. Meanwhile, the X-ray diffraction (SHIMADZU XRD-7000) systems
were used to identify the microcrystalline structure of the samples. Furthermore, the
thermal decomposition behavior was investigated by Simultaneous Thermogravimetric-
Differential Thermal-Differential Scanning Calorimetry Analysis (TGA-DTA-DSC) using
NEXTA STA (Hitachi STA200RV) system. Meanwhile, the Fourier-transform infrared (FTIR)
spectroscopy (The PerkinElmer spectrum IR 10.6.1) was used to determine the functional
groups in the activated carbon materials.

3. Results
3.1. Porous Properties

Figure 1 illustrates the effect of the chemical activating agents on the adsorption-
desorption isotherms of activated carbon from sago waste. The activated carbon prepared
with acid activating agents (ZnCl2 and H3PO4) indicated a Type I isotherm according to
the IUPAC classification [47]. This is evidenced by a sharp increase in nitrogen adsorption
at low pressures, followed by a long plateau region at higher pressures, indicating a
micro-porosity behavior. However, a narrow hysteresis can be seen due to the existence
of mesopores [45]. Conversely, the activated carbon prepared with base treatment (KOH
and KMnO4) indicated a Type IV or Type II isotherm with a clear hysteresis at high
pressures. Consequently, this indicates a progressive development of mesopores, as well as
a distribution of pore sizes.
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Figure 1. Effect on chemical activating agent on the adsorption-desorption isotherms of activated
carbon from sago waste.

Table 1 depicts the porous properties of activated carbon from sago waste prepared
using various chemical activating agents. It revealed that the mesopore volume (VMes.) of
activated carbon prepared with base treatment (45.7% and 37.7%) was higher than those
treated with acid (33.3% and 25.2%). These results prove that the carbon with acid treatment
contracts microporosity, while those with base treatment show mesoporosity behavior.



Appl. Sci. 2021, 11, 11640 4 of 11

However, the carbon with acid treatment has a higher total pore volume and nitrogen
adsorbed compared to those with base treatment, resulting in a larger pore development
due to an increase in char burn-off, confirmed by a lower yield value [3].

Table 1. Porous properties of activated carbons from sago waste prepared using various chemical activating agents.

Activating
Agent

VMic. VMes. VTotal. VMes./VMic. Surface Area Average Pore
Diameter Yield

(cm3/g) (%) (cm3/g) (%) (cm3/g) (%) (m2/g) (nm) (%)

H3PO4 0.194 (66.7) 0.097 (33.3) 0.291 50.01 480.23 4.21 22.39
ZnCl2 0.225 (74.8) 0.076 (25.2) 0.301 33.78 546.61 3.32 23.34

KMnO4 0.152 (62.3) 0.092 (37.7) 0.244 60.53 274.92 4.30 29.98
KOH 0.101 (54.3) 0.085 (45.7) 0.186 84.16 374.03 5.12 30.5

3.2. Structural Properties

The structural properties of the activated carbon were examined through its crystalline
structure and morphology images. Figure 2 shows the X-ray diffraction profiles of the
activated carbons from sago waste prepared with various activating agents. The carbon
samples demonstrated broad diffraction peaks at around 2θ of 23◦, while those prepared
with KOH activating agent showed slight peaks at around 2θ of 43◦, with no sharp peaks.
Furthermore, the two broad bands centered around 2θ of 23◦ and 43◦ were associated with
the diffraction of the 002 and 100/101 planes, respectively [48]. In addition, the washing
after the activation is an important process, in order to avoid residue from the activating
agent solution, which prompts additional peaks [41].
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Figure 2. X-ray diffraction patterns of activated carbons from sago waste prepared using various 
chemical activating agents. 
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Figure 2. X-ray diffraction patterns of activated carbons from sago waste prepared using various
chemical activating agents.

Figure 3 shows morphology images taken from scanning electron microscopy with
10,000× magnification. All samples show a combination of micropores and mesopores,
verified the porosity properties that were previously analyzed. Figure 3b shows that
activated carbon from the ZnCl2 treatment has more dominant micropores, as confirmed
by the lowest VMes./VMic. of 33.78%. The mesopore is clearly seen in Figure 3a,c as
the VMes./VMic. value increase for H3PO4 (50.01%) and KMnO4 (60.53%). Furthermore,
the activated carbon from the KOH treatment from Figure 3d has more heterogeneous
pores, yielding the highest VMes./VMic. value of 84.16%. The acquired energy dispersive
spectroscopy (EDS) provides elemental composition data for each sample, which are
summarized in Table 2. It can be seen that the elemental composition for each activator
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agent was only less than three percent, even almost undetectable for KMnO4 and KOH.
This confirmed that the sample washing process has been successful.
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Figure 3. Scanning electron micrographs (10,000×) of activated carbons from sago waste prepared
using (a) H3PO4, (b) ZnCl2, (c) KMnO4, and (d) KOH. (Bar length = 1 µm).

Table 2. Elemental composition of activated carbons from sago waste prepared using various
chemical activating agents.

Element
Mass (%)

H3PO4 ZnCl2 KMnO4 KOH

C 75.88 ± 0.05 76.52 ± 0.03 57.06 ± 0.05 81.30 ± 0.04
O 21.28 ± 0.07 21.56 ± 0.05 42.93 ± 0.10 18.70 ± 0.07
P 2.84 ± 0.01 - - -

Zn - 0.09 ± 0.00 - -
Cl - 1.83 ± 0.02 - -
K - - 0.01 ± 0.01 not detected

Mn - - not detected -

3.3. Thermal Decomposition

Figure 4a shows thermogravimetric curves in activated carbons from sago waste,
indicating gradual mass loss during the thermal investigation. Meanwhile, Table 3 depicts
the moisture, volatile matter, fixed carbon, and ash percentage in reference to the curves.
The samples showed three mass loss steps, where the first step below 70 ◦C indicated mass
losses up to 17% due to the physically adsorbed water on the material, during storage.
The decomposition product of the second mass loss steps, in the period between 100
to 400 ◦C, are assigned to the surface groups that formed during the activation process.
Furthermore, the third mass loss steps at high temperatures are assigned to carbon skeleton
decomposition. Rapid weight loss at temperatures of 400 to 600 ◦C indicated the typical
activated carbon behavior, due to the formation of ash as a result of devolatilization [49,50].
However, the carbon prepared with KOH activating agent showed the lowest moisture,
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ash, and the highest fixed carbon contents of 0.92 %, 10.90 %, and 43.78, respectively.
The low moisture content may be the reason for the low total pore volume of the sample
prepared with KOH [8]. In addition, the activated carbon samples prepared from KOH have
unique decomposition profiles with intense exothermic peaks from the thermogravimetric
derivative curves. This is related to organic matter thermal decomposition, which means
the last mass loss step may be related to the carbon skeleton of the sample, leading to low
ash content.
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Figure 4. (a) Thermogravimetric and (b) thermogravimetric derivative curves for activated carbons from sago waste
prepared using various chemical activating agents.

Table 3. Proximate analyses of activated carbons from sago waste prepared using various chemical
activating agents.

Activating
Agent

Proximate Analysis (Weight %)

Moisture Volatile Matter Fixed Carbon Ash

H3PO4 15.20 52.64 2.56 29.60
ZnCl2 13.60 48.90 40.90 23.80

KMnO4 17.04 42.92 14.02 26.02
KOH 0.92 44.40 43.78 10.90

3.4. Surface Groups

Figure 5 illustrates the Fourier-transform infrared spectra of activated carbon from
sago waste with various activating agents, and Table 4 shows the list of Fourier-transform
infrared peaks and their assignments. There is a broad absorption around wavenumber
3650–2500 cm−1 for ZnCl2 and KOH activated carbon, indicating O-H bonds. This may be
due to the occurrence of phenol and carboxylate functional groups [51]. The pattern was
confirmed by the presence of C-O stretching vibration of phenol structure at 1072 cm−1,
and 1135 cm−1 for ZnCl2 and KOH activated carbon, respectively. However, due to the
absence of O-H bonds in H3PO4 and KMnO4 activated carbon, the prominent band of the
C-O functional group was interpreted as ether at wavenumber 1164 cm−1 and 1163 cm−1,
respectively [52]. In addition, the samples exhibited a broad absorption band in the area
1555–1540 cm−1, indicating a stretching vibration of the C=C aromatic ring structure [53].
In the fingerprint area, there were several absorption peaks assigned to C-H bending from
the alkanes group at a wavenumber less than 1000 cm−1. Furthermore, the presence of
functional groups on the carbon of four different activating agents were also confirmed,
this includes O-H, C=C, C-O, and C-H groups, indicating hydroxyl, aromatic, carboxyl,
and alkane, respectively [52].



Appl. Sci. 2021, 11, 11640 7 of 11

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 11 
 

C-O functional group was interpreted as ether at wavenumber 1164 cm−1 and 1163 cm−1, 
respectively [52]. In addition, the samples exhibited a broad absorption band in the area 
1555–1540 cm−1, indicating a stretching vibration of the C=C aromatic ring structure [53]. 
In the fingerprint area, there were several absorption peaks assigned to C-H bending from 
the alkanes group at a wavenumber less than 1000 cm−1. Furthermore, the presence of 
functional groups on the carbon of four different activating agents were also confirmed, 
this includes O-H, C=C, C-O, and C-H groups, indicating hydroxyl, aromatic, carboxyl, 
and alkane, respectively [52]. 

4000 3500 3000 2500 2000 1500 1000 500

KOH 

Wavenumber (cm-1)

1135.14

1553.28

2660.12

KMnO
4
 

674.98
709.09

1131.16

1546.37 752.19

1163.98

486.75

ZnCl
2
 

Tr
an

sm
itt

an
ce

 (a
.u

) 2660.37

575.98890.43
1072.10

1554.97 457.58

H
3
PO

4
 

486.25

1554.86

1164.08
1035.59

673.98
709.21

752.25

 
Figure 5. The Fourier-transform infrared spectra of activated carbons from sago prepared using 
various chemical activating agents. 

Table 4. The Fourier-transform infrared peaks identification of activated carbons from sago 
prepared using various chemical activating agents. 

Wavenumber (cm−1) 
Assignment 

H3PO4 ZnCl2 KMnO4 KOH 
- 2660 - 2660  ν (O-H) carboxylates group 

1554 1554 1546 1553  ν (C=C) aromatic group 
1164 - 1163 -  ν (C-O) ether group 

- 1072 - 1135  ν (C-O) phenol group 
673; 486 890; 575 674; 486 -  ν (C-H) akanes group 

4. Discussion 

Figure 5. The Fourier-transform infrared spectra of activated carbons from sago prepared using
various chemical activating agents.

Table 4. The Fourier-transform infrared peaks identification of activated carbons from sago prepared
using various chemical activating agents.

Wavenumber (cm−1)
Assignment

H3PO4 ZnCl2 KMnO4 KOH

- 2660 - 2660 ν (O-H) carboxylates group
1554 1554 1546 1553 ν (C=C) aromatic group
1164 - 1163 - ν (C-O) ether group

- 1072 - 1135 ν (C-O) phenol group
673; 486 890; 575 674; 486 - ν (C-H) akanes group

4. Discussion

There is a strong development of porosity on activation of a lignocellulosic precursor
with the chemical agents [54]. Consequently, a degree of activation produces the max-
imum volumes of micropores, namely include 0.101, 0.152, 0.225, and 0.194 cm3/g for
KOH, KMnO4, ZnCl2, and H3PO4, respectively. Treatment with ZnCl2 acid impregnation
produces activated carbon with the highest surface area of 546.61 m2/g, the strong base
KOH successfully fabricated the fined structure and morphology, with the highest fixed
carbon and the lowest ash content of 43.78% and 10.90%, respectively. KMnO4 and H3PO4
activating agents showed poor performance with a low fixed carbon value of 2.56% and
14.02%, and a high moisture content of 15.20% and 17.04%, respectively.

The morphology images showed that ash was dominant over pores, and the carbon
prepared from the KMnO4 activating agents had no peak in the X-ray diffraction pattern.
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Furthermore, the KMnO4 impregnation damaged the carbon structure, as indicated by the
absence of the amorphous phase of carbon. This result can be confirmed from the element
composition results, where KMnO4 activated carbon has a very small carbon composition
of 57.06 %. This may yield that the KMnO4 is not effective enough to activate sago waste
carbon. The surface chemistry was influenced by the chemical activating agent. Both ZnCl2
and KOH activated carbon revealed phenol and carboxylate groups, while the H3PO4 and
KMnO4 showed vibration from the ether group. The carbon prepared from KOH also
demonstrated an intense aromatic ring, due to acid washing, and thorough rinsing with
distilled water [55].

The acid-activating agents tend to develop more micropore, while the base treatment
develops fine mesopore-activated carbons. Generally, activated carbon has a pore structure
in the form of microporous, mesoporous, and macroporous. The activated microporous
carbon is more effective against pollutants in the form of gas, mesoporous carbon is effective
for liquid, while macroporous carbon is not efficient for both forms [56]. The pore structure
of activated carbon characteristics is highly important, it may direct potential application
of activated carbon from sago waste in the future.

The commercial-grade activated carbon has a surface value between 500–1500 m2/g [57].
Thus, the highest value obtained from this study can be categorized into commercial
activated carbon. Therefore, this study suggested ZnCl2 and KOH as suitable activators
for sago waste precursor material. Further study on the effect of activation temperature
and contact time on ZnCl2 and KOH activators may elevate the pore size of the activated
carbon [55].

5. Conclusions

This study demonstrates the effect of chemical activating agents on the activated
carbon from sago waste. This study suggests ZnCl2 and KOH as favorable activating
agents among others. The ZnCl2 acid activating agent surpassed other chemical activators
in terms of a higher specific surface area of 546.61 m2/g, with a relatively high carbon
content of 40.90%. The micropore characteristic suggests that this material has potential
gaseous pollutant adsorbent application. The base KOH activating agent outperformed
other chemicals in terms of a mesopore carbon, with a fined structure and morphology,
with the lowest ash content of 10.90%. Heavy metal adsorbent from polluted liquid can be
its potential application.
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