
applied  
sciences

Article

Estimation of the Critical Seismic Acceleration for
Three-Dimensional Rock Slopes

Qingfeng Meng 1,2, Xuyue Hu 1,*, Guanghui Chen 3, Peng Li 2,4 and Zhi Wang 5

����������
�������

Citation: Meng, Q.; Hu, X.; Chen, G.;

Li, P.; Wang, Z. Estimation of the

Critical Seismic Acceleration for

Three-Dimensional Rock Slopes. Appl.

Sci. 2021, 11, 11625. https://doi.org/

10.3390/app112411625

Academic Editor: Daniel Dias

Received: 5 November 2021

Accepted: 3 December 2021

Published: 7 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha 410114, China;
02058@msdi.cn

2 Zhongnan Engineering Corporation Limited of Powder China, Changsha 410014, China; 02489@msdi.cn
3 Institute of Civil Engineering, Central South University, Changsha 410083, China; guanghuichen@csu.edu.cn
4 National Energy Large Scale Physical Energy Storage Technologies R&D Center of Bijie High-tech Industrial

Development Zone, Bijie 404004, China
5 School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China;

wangzhi@zzu.edu.cn
* Correspondence: huxuyue62@163.com

Abstract: An analytical approach for the estimating of critical seismic acceleration of rock slopes
was proposed in this study. Based on the 3D horn failure model, the critical seismic acceleration
coefficient of rock slopes was conducted with the modified Hoek–Brown (MHB) failure criterion in
the framework of upper-bound theory for the first time. The nonlinear Hoek–Brown failure criterion
is incorporated into the three-dimensional rotational failure mechanism, and a generalized tangent
technique is introduced and employed to convert the nonlinear Hoek–Brown failure criterion into a
linear criterion. The critical seismic acceleration coefficients obtained from this study were validated
by the numerical simulation results based on finite element limit analysis. The agreement showed
that the proposed method is effective. Finally, design charts were provided for exceptional cases for
practical use in rock engineering.

Keywords: 3D horn failure model; critical seismic acceleration coefficient; Hoek–Brown failure
criterion; upper-bound theory; generalized tangential technology

1. Introduction

Slope stability is always an important topic of debate, not only in geo-mechanics, but
also in engineering practice. Many studies have adopted various failure mechanisms to
analyze the slope stability issues in recent years in some theoretical methods. For example,
He et al. investigated the soil slope displacement induced by the earthquake force based
on the log spiral failure model proposed with considering tensile strength cut-off in upper
bound theory [1,2]. Sahoo and Shukla [3] studied the stability of soil slopes incorporating
the horizontal and vertical seismic loads based on the cylindrical failure model proposed by
Majumdar [4] in the limit equilibrium method. It should be noted that these failure models
are all plan-strain failure mechanisms. However, recent researches show that the practical
slope collapse in a critical state is a three-dimensional failure, and the plane-strain failure
mechanisms will lead to conservative estimations for three-dimensional slope stability
issues.

Many 3D horn failure models were proposed to investigate the slope stability, e.g.,
3D one-block collapse failure model, 3D multi-block mechanism, and 3D horn failure
model [5–7]. The failure zone and stability number obtained using these analytical models
were more consistent than the plane-strain failure mechanisms when compared with the
experiments and numerical solutions [8]. In particular, the 3D horn failure model proposed
by Michalowski and Drescher was the most prevalent failure model used to investigate
slope stability [7]. The 3D horn failure model was composed of a rotation mechanism and
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a plane strain insert mechanism. In recent years, based on the 3D horn failure model, the
effects of seepage forces, inhomogenous soils, and pile reinforcement on slope stability
have been addressed [8–10]. Note that these researches are all limited to calculating soil
slope stability numbers with the Mohr–Coulomb failure criterion. However, according to
the test results [11–13], the strength envelops of almost all rock materials have the feature
of nonlinearity. At the same time, few pieces of research incorporated the nonlinear failure
criterion on the slope stability issues based on the 3D horn failure model. Moreover, even
though some studies have involved the effect of seismic loads on the soil or rock slopes
stability [4,9], rare researches conducted the estimation of the critical seismic acceleration
of rock slopes with the modified Hoek–Brown (MHB) failure criterion. Given this, this
study will fill the gaps of these researches.

In this work, the MHB failure criterion upper limit theory will be introduced to
study rock slopes’ critical seismic acceleration coefficient based on the 3D rotational failure
mechanism. The nonlinear Hoek–Brown failure criterion can be transformed into a linear
criterion by using the generalized tangent technique. The feasibility and validity of the
critical seismic acceleration coefficients obtained from this research will be verified by limit
analysis based on the finite element method. Finally, a design chart will be provided for
the particular situation of actual use in rock engineering.

2. MHB Failure Criterion

The Mohr–Coulomb failure criterion is a linear criterion that requires shear strength
parameters cohesion c and frictional angle ϕ to evaluate the stability problems. Due to
its simplicity, it has been widely used to investigate the stability of various geotechnical
engineering for many decades [14]. However, many previous studies show that the strength
of rock mass is a non-linear stress function. Therefore, the Mohr–Coulomb failure criterion
could not agree well with the rock mass failure envelope, especially for the stability
problems of rock slope where the rock mass is in a state of low confining stresses, making
the non-linear feature more prominent.

An alternative failure criterion for the stability problem of rock mass is the MHB
failure criterion involving the fitting of curves to the triaxial strength tests results of rock
mass [15]. Since the MHB failure criterion was introduced, it has been widely adopted to
analyze the stability of engineering structures, e.g., slope stability, strip footing stability,
and tunnel stability [16–18]. The MHB failure criterion can be described as follows:

σ1 = σ3 + σci

(
m

σ3

σ1
+ s
)a

, (1)

where σ1 and σ3 are the maximum and minimum effective principal stresses, respectively;
σci is the uniaxial compressive stress of the intact rock. Besides, the value of s, a, and m
can be calculated by the following equations:

m = mi exp
(

GSI − 100
28− 14Di

)
, (2)

s = exp
(

GSI − 100
9− 3Di

)
, (3)

a =
1
2
+

1
6

[
exp

(
−GSI

15

)
− exp

(
−20

3

)]
, (4)

where mi denotes the Hoek–Brown constant; GSI denotes the geological strength index;
Di denotes the disturbance factor of the intact rock. Hence, for the MHB failure criterion,
there is a total of four input parameters, namely, σci, GSI, mi, and Di. These four material
parameters for the MHB failure criterion could be obtained directly from Priest [19].

The generalized tangential technique conducted by Yang et al. was adopted to trans-
form the nonlinear criterion into a linear one to estimate the tunnel stability by the MHB
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failure criterion in this study, shown in Figure 1 [16]. It can be concluded that the tangential
line technique could provide an upper-bound solution for the stability issues due to the
tangential line exceeding the original non-linear envelope. The tangential line at point M
could be expressed as the following classic equation:

τ = ct + σntanϕt, (5)

where ct and ϕt are the tangential cohesion and tangential friction angle, respectively; ct
can be calculated as follows:

ct

σc
=

cos ϕt

2

[
ma(1− sin ϕt)

2 sin ϕt

] a
1−a
− tan ϕt

m

(
1 +

sin ϕt

a

)[
ma(1− sin ϕt)

2 sin ϕt

] a
1−a

+
s
m

tan ϕt, (6)
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Figure 1. Tangential line to the modified Hoek–Brown (MHB) yield criterion.

In Equation (6), the tangential cohesion ct is the mutative parameter with the change
of internal friction angle ϕt.

3. Problem Statements

Figure 2 presents the stability issue of the slope with the MHB failure criterion. The
geometry of the studied problem was denoted by the slope height H and the slope angle β.
In order to make the applicability of the calculation results more transparent, the following
assumptions were adopted:
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Figure 2. Simplified model for a rock mass slope. Point A and C are the end points of the sliding
surface; H is the slope height; β is the slope angle; kh is the horizontal seismic acceleration coefficient;
and Wγ is the work rate of the rock weight.
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(1) The ground surfaces were assumed to be horizontal, and the impact of pore water
pressure was not considered in this work.

(2) The failure model was presumed as a rotational body around the same axis through
O with the same angular velocity ω.

(3) The influence of seismic loads is assumed as a horizontal force acting on the
failure model.

The third assumption is the classical pseudo-static approach, which has been widely
used to conduct the seismic stability assessment of slopes with linear Mohr–Coulomb
failure criterion [20,21].

4. 3D Horn Failure Model

To assess the slope stability, many researchers have proposed various failure mecha-
nisms, such as the log spiral failure model and cylindrical failure model [1,3,4]. It should
be noted that these failure models were all plan-strain failure mechanisms. However,
recent published literatures showed that the practical collapse of slopes in the critical state
is a three-dimensional failure, and the plan-strain failure model will definitely result in
conservative (unsafe) estimations for three-dimensional slope stability issues. To solve
this shortcoming, Michalowski developed a 3D rotational failure mechanism that had the
shape of a curvilinear cone with an apex angle (see Figures 3 and 4) [6]. Figure 3 presented
the longitudinal section of the 3D horn failure model. Figure 4 presented the cross-section
of the 3D horn failure model. It can be seen in Figure 4 that the 3D horn failure model was
composed of two parts: (1) the plane-strain insert; and (2) the 3D horn section. The plane-
strain insert had the geometry of the logarithmic spiral and connected the two 3D horn
sections, which allowed a transition to the plane-strain case if there is no limitation to the
slope width. The 3D horn section was the end part of the failure mechanism. The 3D horn
failure model was bounded by two log-spirals (see Figure 3) by respecting normality rule:

r = r0e(θ−θ0) tan ϕt , (7)

r = r′0e−(θ−θ0) tan ϕt , (8)

where, r0 = OA and r′0 = O′A′ (see Figure 3). A detailed description of the 3D horn
failure model could be found in Michalowski’s study. In the light of the study, the 3D
horn failure model had been repetitively adopted in the estimation of the slope stability.
The effects of pore water pressure, inhomogeneous soils, pile reinforcement and seismic
loads on the slope stability in the linear Mohr–Coulomb failure criterion were investigated,
respectively [8–10]. However, rare research had estimated critical seismic acceleration of
rock slopes using the 3D horn failure model in the MHB failure criterion. Consequently,
this study will fill this gap.
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5. Critical Seismic Acceleration Based on the Upper Bound Theory

In the framework of the upper bound theorem, the critical seismic acceleration was
obtained by equating the total energy dissipation rate to the total work rate of external
forces, which was as follows:

D = Wγ + Wkh, (9)

where D denotes the energy dissipation rate, Wγ denotes the rate of work of the rock
weight, and Wkh is the rate of work done by seismic loads.

5.1. Work Rate of the Internal Energy Dissipation

From Figure 3, it can be seen that the energy dissipation rate consists of two parts and
can be expressed as:

D = D3D + Dinsert, (10)

where, Dinsert and D3D respectively denote the energy dissipation rate in the plane strain
insert part and the 3D horn part. The detailed derivation of the energy dissipation rate
could be described as follows.

(1) Calculation of D3D
The expression of D3D can be described as follows:

D3D = 2ωct cot ϕt

[∫ θB
θ0

∫ x∗1
0

sin2 θh
sin3 θ

cos θr2
0dxdθ

+
∫ θh

θB

∫ x∗2
0

sin2(θh+β)

sin3(θ+β)
cos(θ + β)r2

0e2(θh−θ0) tan ϕt dxdθ
]
,

(11)

where, x∗1 =
√

R2 − a2 and x∗2 =
√

R2 − d2; β is the slope angle; ct is the tangential cohesion
and can be obtained from Equation (6); ϕt is the tangential frictional angle (see Figure 2),
and it was an optimal parameter in this study; θ0, θB, and θh could be found in Figure 3.

(2) Calculation of Dinsert
The expression of Dinsert can be described as follows:

Dinsert = 2ωct cot ϕt

[∫ θB
θ0

∫ b
2

0
sin2 θ0
sin3 θ

cos θr2
0dxdθ

+
∫ θh

θB

∫ b
2

0
sin2(θh+β)

sin3(θ+β)
cos(θ + β)r2

0e2(θh−θ0) tan ϕt dxdθ

]
,

(12)

where, b denotes the width of the plane insert failure part (see Figure 4).
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5.2. Work Rate of the Rock Weight

From Figure 3, it can be seen that the rate of work of the rock weight consisted of two
parts and can be expressed as:

Wγ = Wγ−3D + Wγ−insert, (13)

where, Wγ−insert and Wγ−3D respectively denote the rate of work of the rock weight for the
plane strain insert part and the 3D horn part. The detailed derivation of the rate of work of
the rock weight could be described as follows.

(1) Calculation of Wγ−3D
The expression of Wγ−3D can be described as follows:

Wγ−3D = 2ωγ
[∫ θB

θ0

∫ x∗1
0
∫ y∗

a (rm + y)2 cos θdxdydθ+∫ θh
θB

∫ x∗2
0
∫ y∗

d (rm + y)2 cos θdxdydθ
]
,

(14)

where, y∗ =
√

R2 − x2.
According to the geometrical relations, a and b could be expressed as:

a =
sin θ0

sin θ
r0 − rm, (15)

d =
sin(θh + β)

sin(θ + β)
r0e(θC−θA) tan ϕt − rm, (16)

where, rm = (r + r′)/2 and R = (r− r′)/2.
(2) Calculation of Wγ−insert
The expression of Wγ−insert can be described as follows:

Wγ−insert = γωr4
0

b
H
( f1 − f2 − f3)

[
sin θhe(θh−θ0) tan ϕt − sin θ0

]
, (17)

with
f1(θ0, θh) =

1
3(1+9 tan2 ϕt)

[(3 tan ϕt cos θh + sin θh)e3(θh−θ0) tan ϕt

−(3 tan ϕt cos θh + sin θ0)],
(18)

f2(θ0, θh) =
1
6

L
r0

(
2 cos θ0 −

L
r0

)
sin θ0, (19)

f3(θ0, θh) =
1
6 e(θh−θ0) tan ϕt [sin(θh − θ0)

− L
r0

sin θh

][
cos θh − L

r0
+ cos θhe(θh−θ0) tan ϕt

]
,

(20)

where,
L
r0

=
sin(θh − θ0)

sin θh
− sin(θh + β)

sin θh sin β

[
sin θhe(θh−θ0) tan ϕt − sin θ0

]
.

5.3. Work Rate of the Seismic Loads

In this work, the pseudo-static approach was adopted to incorporate the impact of
seismic forces into the 3D horn failure model. Because the vertical seismic acceleration had
little influence on seismic displacements of slopes [21], the vertical seismic acceleration
was not considered in this study. From Figure 3, the rate of work done by the seismic loads
could be divided into two parts and could be expressed as:

Wkh = Wkh−3D + Wkh−insert, (21)
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where, Wkh−insert and Wkh−3D respectively denotes the rate of work of seismic loads for the
plane strain insert part and 3D horn part. The detailed derivation of the rate of work done
by the seismic loads could be described as follows:

(1) Calculation of Wkh−3D
Combining Equation (14) and Figure 3, the expression of Wkh−3D can be described as:

Wkh−3D = 2khωγ
[∫ θB

θ0

∫ x∗1
0
∫ y∗

a (rm + y)2 sin θdxdydθ+∫ θh
θB

∫ x∗2
0
∫ y∗

d (rm + y)2 sin θdxdydθ
]
,

(22)

where, kh denotes the horizontal seismic acceleration coefficient and could be obtained by
the following equation:

kh =
ah
g

, (23)

where, ah is the horizontal seismic acceleration, and g is the gravity acceleration.
(2) Calculation of Wkh−insert
Combining Equation (17) and Figure 3, the expression of Wkh−insert can be described

as:
Wkh−insert = khωγr4

0
b
H
( f4 − f5 − f6)

[
sin θhe(θh−θ0) tan ϕt − sin θ0

]
, (24)

with
f4(θ0, θh) =

1
3(1+9 tan2 ϕt)

[(3 tan ϕt sin θh − cos θh)e3(θh−θ0) tan ϕt

−(3 tan ϕt cos θh − cos θ0)],
(25)

f5(θ0, θh) =
1
6

L
r0
(2 sin θ0 sin θ0), (26)

f6(θ0, θh) =
1
6

e(θh−θ0) tan ϕt
H
r0

sin(θh + β)

sin β

[
2 sin θhe(θh−θ0) tan ϕt − H

r0

]
, (27)

where,
H
r0

= sin θhe(θh−θ0) tan ϕt − sin θ0,

5.4. Calculation of Critical Seismic Acceleration

Combining the Equations (9)–(27), the critical seismic acceleration coefficient could be
obtained by equating the energy dissipation rate to the total rate of work of external forces
based on upper-bound limit analysis theory as follows:

khc = min
θ0,θh ,

r
′
0

r0
, b

H ,ϕt

D3D + Dinsert −Wγ−3D −Wγ−insert

2ωγ

 ∫ θB
θ0

∫ x∗1
0
∫ y∗

a (rm + y)2 sin θdxdydθ+∫ θh
θB

∫ x∗2
0
∫ y∗

d (rm + y)2 sin θdxdydθ

+ωγr4
0

b
H ( f4 − f5 − f6)

[
sin θhe(θh−θ0) tan ϕt − sin θ0

] , (28)

It should be noted that the critical seismic acceleration coefficient khc obtained in

this work was the minimum of Equation (28) with respect to θ0, θh, r′0
r0

, b
H , ϕt, with given

constraint MHB parameters (σci, GSI, mi, Di, γ) and slope geometry (H, β), with the aid of
the optimization tool (particles warm) in Matlab.

From Equation (28), when the values of material parameters (σci, GSI, mi, Di) are
given, one could easily find that the critical seismic acceleration coefficient khc was uniquely
related to the slope geometry (H), which could be presented in Equation (29).

khc = f (σci, GSI, mi, D, γ, H, β), (29)
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A dimensionless parameter SR was defined in this study as follows:

SR =
σci
γH

, (30)

Then Equation (29) can be substituted by Equation (31),

FoS = f (GSI, mi, D, SR, β). (31)

Four different groups of critical seismic acceleration coefficient khc with different
parameters (σci, γ, H) but the same SR are presented in Table 1. From Table 1, the values
of the critical seismic acceleration coefficient khc kept constant for the cases of the same
SR, which indicated that the khc was uniquely related to the dimensionless parameter SR,
regardless of the magnitude of individual parameters σci, γ, H.

Table 1. Comparison of the khc of given rock slopes with the same SR. SR is a dimensionless
parameter defined in Equation (30); mi is the Hoek–Brown constant; GSI is the geological strength
index; Di is the disturbance factor of the intact rock; β is the slope angle; σci is the uniaxial compressive
stress of the intact rock; γ is the unit rock weight; H is the slope height; khc is the critical seismic
acceleration coefficient.

SR mi GSI Di β (◦) σci (kPa) γ (kPa) H (m) khc (g)

4 10 10 0 35

160 20 2 0.147
252 21 3 0.147
352 22 4 0.147
460 23 5 0.147

6 5 20 0.3 40

240 20 2 0.220
378 21 3 0.220
528 22 4 0.220
690 23 5 0.220

8 15 20 0.5 45

320 20 2 0.185
504 21 3 0.185
704 22 4 0.185
920 23 5 0.185

12 20 40 1.0 50

480 20 2 0.282
756 21 3 0.282

1056 22 4 0.282
1380 23 5 0.282

6. Validation

Since no theoretical models have estimated rock slopes’ critical seismic acceleration
coefficient in the MHB failure criterion, a numerical simulation using finite element limit
analysis (FELA) was adopted here to validate the proposed method. A recent study
showed that FELA can be adopted to accurately evaluate the seismic stability of slopes
by combining with the pseudo-static approach [21]. It should be noted that FELA was
a 2D numerical simulation software, which had been widely used to study the stability
issues of various engineering structures [18,21,22]. Due to the 2D analysis neglecting the
influence of the energy dissipation rate done by horn failure part (see Figure 4), the results
obtained from 2D analysis are more conservative when compared with those from 3D
analysis [7,9]. Recent works also showed that the results for B/H = +∞ can be regarded
as the 2D solutions [7,23]. Figure 5 shows the critical seismic acceleration coefficients khc
calculated in this work compared with those calculated by FELA for β = 45◦, GSI = 30,
Di = 0.5, and mi = 10. It is worth noting that, in Figure 5, SR is a defined dimensionless
parameter, and can be calculated by using Equation (30).
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From Figure 5, it could be seen that both SR and B/H had a significant influence on the
critical seismic acceleration coefficient khc. As also shown in Figure 5, one could conclude
that the values of the critical seismic acceleration coefficient khc calculated in this work for
B/H = +∞ were slightly higher than those from FELA, with the most significant ratio less
than 3.5%, which illustrates the validity of the proposed method. It can also be seen in
Figure 5 that the gap between the results from this study and FELA increased with the B/H
decrease, due to the FELA is a 2D numerical simulation software, which indicated that it
would lead to conservative estimations for stability of three-dimensional slope, especially
for narrow slopes. The similar conclusions can be found in Yang et al. [23] and Michalowski
and Drescher [7]. These observations illustrated that the proposed method could be used
to accurately determine the critical seismic acceleration coefficient khc for 3D rock slopes.

7. Results and Discussion

In this section, the effects of B/H, SR, and β on the critical seismic acceleration coeffi-
cient khc were presented and discussed in the distributed and undistributed rock slopes.
Table 2 shows the critical seismic acceleration coefficient khc calculated in this work for
the cases of GSI = 20, mi = 7 and Di = 0. Table 3 shows the critical seismic acceleration
coefficient khc calculated in this study for the cases of GSI = 30, mi = 10 and Di = 0.5. From
Tables 2 and 3, it could be clearly seen that the B/H, SR, and β all had great significance on
the critical seismic acceleration coefficient khc. The critical seismic acceleration coefficient
khc decreased with the increasing of B/H and β, and increased with SR.
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Table 2. Critical seismic acceleration coefficient khc for GSI = 20, mi = 7 and Di = 0.

β (◦) B/H
SR

6 7 8 9 10 11 12 13

35

1 0.334 0.370 0.402 0.431 0.458 0.483 0.507 0.531
2 0.300 0.332 0.361 0.386 0.410 0.431 0.450 0.468
5 0.286 0.319 0.347 0.373 0.396 0.417 0.436 0.454

10 0.280 0.313 0.341 0.366 0.389 0.410 0.429 0.447

40

1 0.255 0.288 0.317 0.343 0.368 0.390 0.410 0.431
2 0.234 0.266 0.294 0.319 0.341 0.362 0.381 0.398
5 0.222 0.253 0.281 0.306 0.328 0.349 0.367 0.385

10 0.216 0.248 0.276 0.300 0.322 0.343 0.361 0.379

45

1 0.182 0.214 0.242 0.267 0.290 0.310 0.329 0.348
2 0.166 0.197 0.225 0.249 0.271 0.291 0.309 0.326
5 0.154 0.185 0.213 0.237 0.259 0.279 0.297 0.314

10 0.149 0.180 0.208 0.232 0.254 0.273 0.292 0.309

50

1 0.109 0.141 0.168 0.192 0.214 0.235 0.286 0.308
2 0.095 0.126 0.153 0.177 0.199 0.219 0.237 0.255
5 0.084 0.115 0.142 0.166 0.188 0.207 0.225 0.242

10 0.079 0.110 0.137 0.161 0.183 0.202 0.220 0.237

55

1 0.034 0.066 0.093 0.117 0.139 0.160 0.180 0.199
2 0.022 0.053 0.080 0.104 0.126 0.146 0.164 0.182
5 0.011 0.042 0.069 0.093 0.115 0.135 0.153 0.170

10 0.006 0.038 0.065 0.089 0.110 0.130 0.148 0.165

Table 3. Critical seismic acceleration coefficient khc for GSI = 30, mi = 10 and Di = 0.5.

β (◦) B/H
SR

6 7 8 9 10 11 12 13

35

1 0.468 0.510 0.548 0.587 0.627 0.665 0.708 0.744
2 0.416 0.451 0.482 0.510 0.536 0.561 0.585 0.608
5 0.402 0.437 0.467 0.495 0.520 0.544 0.566 0.589

10 0.395 0.430 0.460 0.488 0.513 0.536 0.558 0.580

40

1 0.376 0.411 0.447 0.482 0.517 0.552 0.591 0.622
2 0.348 0.382 0.411 0.437 0.463 0.487 0.512 0.535
5 0.335 0.369 0.398 0.424 0.448 0.471 0.494 0.517

10 0.329 0.363 0.392 0.417 0.441 0.464 0.487 0.509

45

1 0.297 0.330 0.363 0.395 0.428 0.460 0.493 0.526
2 0.278 0.310 0.339 0.366 0.393 0.418 0.442 0.466
5 0.266 0.298 0.326 0.353 0.378 0.402 0.426 0.448

10 0.261 0.293 0.321 0.347 0.371 0.395 0.418 0.441

50

1 0.221 0.287 0.325 0.318 0.349 0.381 0.411 0.442
2 0.206 0.238 0.268 0.296 0.323 0.349 0.374 0.399
5 0.195 0.226 0.255 0.282 0.308 0.334 0.358 0.381

10 0.190 0.221 0.250 0.276 0.302 0.327 0.351 0.374

55

1 0.146 0.181 0.214 0.245 0.276 0.306 0.335 0.365
2 0.132 0.165 0.196 0.225 0.253 0.280 0.306 0.331
5 0.122 0.153 0.183 0.212 0.239 0.265 0.290 0.314

10 0.117 0.149 0.178 0.206 0.232 0.258 0.283 0.306

8. Conclusions

Based on the 3D horn failure model, the critical seismic acceleration coefficient was
determined using upper-bound limit analysis theory with the MHB failure criterion. The
generalized tangential technical was adopted to transfer the MHB failure criterion to a
linear one. Based on the obtained results, the following conclusions can be drawn:
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1. Based on the generalized tangential technical, the MHB failure criterion was adopted
to estimate the stability of rock slopes. The comparisons between the results from this
study and FELA showed that the generalized tangential technical could be accurately used
to evaluate the stability issues of rock slopes with the MHB failure criterion.

2. Based on the 3D horn failure model, the critical seismic acceleration coefficient was
determined with the MHB failure criterion. The results showed that all parameters have
a great influence on the critical seismic acceleration coefficient. Previously, researchers
tended to focus on estimating the stability number of slopes and rarely calculated the
critical seismic acceleration coefficient, especially for the MHB failure criterion.

3. Even though the critical seismic acceleration coefficient of rock slopes was con-
ducted based on the 3D horn failure model with the MHB failure criterion in this work, a
possible extension of this work could be further investigated to determine the displacement
of rocks slopes induced by seismic loads by considering the earthquake duration, arias
energy, etc., and with a combination of probabilistic approaches.
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