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Abstract: Monitoring volumetric soil water content (θv) is the key for assessing water availability
and nutrient fluxes. This study evaluated the empirical accuracy of θv measurements using standard
and in situ calibrated frequency domain reflectometers (FDR) with gravimetric water content and
bulk density measurements of 1512 samples gathered from 15 profiles across 5 ICP Forests level II
intensive monitoring plots. The predicted θv, calibrated with standard functions, predominantly
underestimated the real water content. The measurement error exceeded the threshold of 0.03 m3

m−3 in 93% of all soil layers. Layer specific calibration removed bias and reduced the overall
prediction error with a factor up to 2.8. A simple linear regression often provided the best calibration
model; temperature correction was helpful in specific cases. To adequately remove bias in our study
plots, a calibration dataset of up to 24 monthly observations was required for topsoils (whereas 12
observations sufficed for subsoils). Based on estimated precision errors, 3 sensors per soil layer proved
to be sufficient, while up to 16 sensors are needed to meet the required accuracy in organic topsoils.
Validating FDR sensor outputs using in situ gravimetric measurements is essential for quality control
and assurance of long term θv monitoring and for improving site specific instrumentalization.

Keywords: soil moisture; frequency domain reflectometer; forest soils; calibration; ICP Forests; soil
sensors; long-term ecosystem monitoring

1. Introduction

Volumetric soil water content (θv) is a key variable in hydrological, climatological,
and environmental studies and its monitoring is essential to investigate soil-water-plant
relationships and nutrient fluxes. Under a changing climate, the need for accurate spatio-
temporal soil moisture data in all types of soils and land-use is even increasing.

Inaccurate soil moisture data has several potential implications: it may lead to the
development of unreliable indicators for soil water availability or drought, it will introduce
noise and systematic errors in water balance models at various spatial scales; and it could
lead to incorrect nutrient budget calculations. Hence, there is a great need for affordable,
highly accurate soil water measurement systems operating at a low cost for a long time.

For decades, soil moisture sensors have been widely used for their ability to provide
nondestructive continuous data [1] and their predictive performance has been evaluated in
many studies [1–10]. Sensors are often grouped in electromagnetic (EM) methods, such as
time domain reflectometry (TDR) and frequency domain reflectometry (FDR), time domain
transmission (TDT), capacitance and impedance sensors [6], and also neutron moisture
meters (NMN) [11] and heat-pulse probes (thermal sensors) [12] have been applied for
soil water content measurements at the point scale. The conventional reference method
both in the field and in the lab is destructive gravimetric sampling, preferably in steel
cylinders in order to determine gravimetric water content and bulk density on the same
undisturbed soil sample. The Campbell CS616 sensor, we evaluated in this study, is an
FDR type sensor widely recognized as a robust probe suitable for long-term monitoring,
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less accurate than TDR but more cost-effective [13]. FDR differs from conventional TDR in
that it uses a specific voltage level of the signal reflected from the end of the waveguide to
trigger the next pulse instead of analyzing the entire waveform as in TDR. Its installation,
operation and performance are well described by Ruelle and Laurent [13]. The rise time
of the reflected pulse of FDR sensors changes with the soil bulk electrical conductivity,
clay type (mineralogy and specific surface area) and content, soil temperature, and organic
matter content [10,11]. This limitation makes site-specific calibrations of such sensors
necessary [14]. Therefore, efforts have been made for soil specific calibration of CS616
sensors: from coarse textured soils [1], clay-loam soils [5], silty clays [15] to soils with
high-charge clays [3,7] or a range of soil textures [10] including saline soils [14].

Various ways of sensor calibrations are performed. The most straightforward one-step
comparison is relating the FDR output period as an indirect method with a direct measure
of θv (standard gravimetric method). FDR response may also be compared with the re-
sponse of other indirect methods assumed to be more accurate and precise, for instance
NMN [3] or TDR [10]. Alternatively, a two-step calibration procedure can be used. In a first
step, the relationship between sensor response and permittivity is determined for each sen-
sor (i.e., a sensor-specific calibration). In a second step, site-specific relationships between
permittivity and soil water content can be established using empirical or semi-empirical
models [16] with a limited number of measurements on soil samples, preferably using the
highly accurate TDR method (soil specific calibration) [6]. Lab calibration is often carried
out on artificial or real volumetric soil samples in order to control most factors affecting
the readings. Only few calibration studies are conducted directly in the field, since taking
field samples is destructive, labor intensive, slow, not timely, and costly [11,17]. Most
published calibration studies are performed on arable soils [1,4,17], which are generally
more homogenous due to cultivation compared to forest soils characterized by greater
and more variable organic matter contents, bulk densities and stoniness. For forestry,
soil water is of primary concern as an essential medium enabling movement of nutri-
ents towards and within trees, strongly impacting their growth, yield and vitality over
decades. Therefore, research sites in forests are often equipped with TDR or FDR soil
moisture sensors for continuous water budget monitoring [18], although few calibration
studies evaluated the trueness and precision of these sensors. Findings in forest soils were
reported by Czarnomski et al. [9] using a CS615 sensor, a former version of CS616, and
Udawatta et al. [15] tested the water dynamics with the CS616 for an agroforestry prac-
tice. To our knowledge, this study is the first attempt to systematically perform in situ
recalibration and validation of FDR sensors in European forest soils, and at various depths.

Direct measurement of reference gravimetric θv, with good practice, can be accurate
to less than 0.01 m3 m−3 [11]. For most agricultural applications, Hignett et al. [11]
recommended the sensor measurement accuracy for measuring θv to be less than 0.02
m3 m−3, while Varble and Chávez [4] applied an acceptable mean bias less than 0.02 m3

m−3 and RMSE < 0.035 m3 m−3. The latter performance criteria were copied by Dong
et al. [1] to evaluate their CS616 FDR sensors in agricultural fields.

For forest soils, the Expert Panel on Meteorology operating under the International
Cooperative Program (ICP) Forests (Working Group on Effects, UNECE AIR convention)
is recommending in its current manual [19] a minimum acceptable accuracy for θv mea-
surements of 0.03 m3 m−3. In this study, we evaluated whether this accuracy level is
achievable at single FDR sensor level using the standard calibration functions proposed by
the manufacturer [20] or by recalibration functions using the direct field approach.

Hence, the research questions of this study are: (1) Does in situ recalibration sub-
stantially improve the accuracy of soil moisture measurements compared to standard
calibration? (2) Is calibration required for each sampling location and depth to achieve the
given data quality objectives? (3) Which soil characteristics have the largest impact on the
bias and precision error? (4) How many reference measurements over which period are
needed for adequate calibration of the FDR sensors? The practical outcome of this study is
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a calibration dataset for each plot and adequate layer specific calibration functions for our
long-term monitoring plots.

2. Materials and Methods
2.1. Study Sites and Soil Characteristics

All measurements were conducted on five intensive monitoring plots of the Interna-
tional Co-operative Programme on Assessment and Monitoring of Air Pollution Effects
on Forests (ICP Forests), in Flanders (North of Belgium) and monitored since the begin-
ning of the 90s (Table A1). Flanders has a moderate Atlantic climate with a mean annual
precipitation (MAP) of 837 mm and a mean temperature (MAT) of 11 ◦C (Reference pe-
riod 1991–2020). Soil climate is classified as Mesic for soil temperature and Udic for soil
moisture regime [21]. Two plots are installed in evergreen coniferous forest: Pinus nigra
subsp. laricio (Poiret) Maire as an introduced species in Ravels (RAV), and Pinus sylvestris
L. in Brasschaat (BRA). These even-aged Pinus stands (both around 91 years old) are typi-
cally growing on the predominantly sandy soils (Arenosols and Podzols) of the Campine
region. The soil profile in RAV is well-drained, while in BRA the infiltration of water is
locally slowed down by clay lenses at 100–190 cm depth. Three other plots are installed
in deciduous broadleaved forest: Fagus sylvatica L. in Wijnendale (WIJ) and Hoeilaart
(HOE) and a mixture of Quercus robur L. and F. sylvatica L. in Gontrode (GON). According
to the World Reference Base for Soil Resources [22–24], the soil of WIJ is classified as an
Umbrisol, GON as a Planosol and HOE as a Retisol, formerly classified as Albeluvisol. The
associated qualifiers are listed in Table A1, as well as the parent material of the soils. Moder
humus systems [25] were found in GON and HOE, whereas the other sites qualified as
Mor systems (Table A1). All sites encompass circular plots with an area of 0.25 ha.

Average physico-chemical soil characteristics of the fixed depth soil layers are pro-
vided in Table 1. Soil textural fractions (clay, silt, and sand), acidity (pH-H2O), electrical
conductivity (EC), total organic carbon (TOC), total nitrogen (TN) and cation exchang
capacity (CEC) are determined on a sample composite of 24 sampling points, while bulk
density (ρb) is the average of 5 undisturbed samples of each layer and the mass of the
organic layer (OLM) based on at least 3 replicate measurements. These analytical results
are stored in the ICP Forests Level II aggregated soil database [26]. For all soil variables
methods were applied according to the ICP Forests soil manual [27].

Table 1. Physico-chemical soil properties of the study plots.

Thickness Clay Silt Sand Tex.
Class OLM 1 ρb

pH-
H2O EC TOC TN CEC 2

Plot Layer cm % USDA kg m−2 kg m−3 - µS cm−1 g kg−1 g kg−1 cmolc kg−1

WIJ OFH 8.6 - - - - 11.95 139 3.82 - 414.4 20.0 21.9
M01 10 3.3 24.8 71.9 SL - 1256 3.65 56.2 35.6 2.9 7.1
M12 10 3.8 23.8 72.4 SL - 1335 3.24 64.5 18 1.2 8.9
M24 20 3.6 21.5 74.9 LS - 1306 3.51 54.6 16.9 1.0 5.0
M48 40 5.9 21.9 72.2 SL - 1505 3.83 41.9 10.1 0.7 4.3

RAV OFH 8.7 - - - - 14.04 161 3.72 - 340.7 12.3 21.9
M01 10 1.5 11.1 87.4 S - 1453 3.76 169.2 18.9 0.7 1.35
M12 10 0.7 11.9 87.4 S - 1429 3.85 142.7 21.3 0.6 4.7
M24 20 3.0 12.0 85.0 LS - 1478 4.12 48.2 12.8 0.6 1.6
M48 40 1.4 12.4 86.2 S - 1536 4.30 34.8 3.7 <0.5 2.6

BRA OFH 7.4 - - - - 11.10 150 3.93 - 392.5 14.0 18.3
M01 10 2.0 5.9 92.2 S - 1376 3.87 31.0 17.2 0.8 3.75
M12 10 1.8 5.9 92.3 S - 1443 4.05 26.5 11.3 0.5 1.7
M24 20 1.0 6.2 92.8 S - 1474 4.00 20.3 8.7 <0.5 2.6
M48 40 1.6 5.4 93.0 S - 1512 4.24 20.6 3.5 <0.5 2.5

GON OFH 5.3 - - - - 9.37 177 4.39 - 320.5 15.3 24.2
M01 10 9.5 50.6 39.9 SiL - 1128 3.71 99.6 52.6 3.0 13.4
M12 10 11.0 48.2 40.8 L - 1367 3.78 90.7 17.9 1.2 8.8
M24 20 24.5 46.1 29.4 L - 1416 3.90 68.1 10.5 0.6 9.4
M48 40 47.5 36.6 15.9 C - 1441 4.24 53.8 5.7 0.5 14.9
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Table 1. Cont.

Thickness Clay Silt Sand Tex.
Class OLM 1 ρb

pH-
H2O EC TOC TN CEC 2

Plot Layer cm % USDA kg m−2 kg m−3 - µS cm−1 g kg−1 g kg−1 cmolc kg−1

HOE OFH 2.8 - - - - 3.96 141 4.79 - 216.2 10.5 16.3
M01 10 7.9 88.3 3.8 Si - 1064 3.97 90.1 38.9 2.2 9.05
M12 10 14.4 81.8 3.8 SiL - 1277 4.49 54.8 11.3 0.7 4.3
M24 20 13.5 81.3 5.2 SiL - 1442 4.18 40.4 8.2 0.6 4.6
M48 40 19.1 76.9 4.0 SiL - 1505 4.40 41.9 3.5 <0.5 7.4

1 OLM is defined as organic layer dry mass of the forest floor F and H layer, excluding the L layer. 2 CEC is determined in a BaCl2-extract
(for methodological details see Cools and De Vos [27])). Layers are denoted OFH for humus layers, M01 for 0–10 cm mineral layer, M12 for
10–20 cm; M24 for 20–40 cm and M48 for 40–80 cm.

For the distinct soil layers of the three profiles (A, B, C) per site, soil water retention
curves (SWRCs) were fitted according to the Van Genuchten model [28] based on water
retention measurements (Sand/Kaolin box and membrane pressure plates from Eijkelkamp
equipment, The Netherlands) of undisturbed samples taken at the time of FDR sensor
installation in each layer. Table 2 lists the parameters residual water content (θr), saturated
water content (θs), air entry (α) and pore size distribution (n). From these SWRCs we
derived field capacity (θfc) for sandy soils (WIJ, RAV and BRA) at a potential of −10
kPa and for the silt loam to clay soils (GON and HOE) at −31.6 kPa. Permanent wilting
point θpwp was determined at −1584 kPa. The difference between both predicts available
water capacity.

Table 2. Soil water retention and soil moisture characteristics.

Van Genuchten Parameters of Modeled Soil Water Retention Curve Soil Moisture Characteristics

θr
(m3 m−3)

θs
(m3 m−3)

α

(cm−1) n θfc
(m3 m−3)

θpwp
(m3 m−3)

Plot Layer A B C A B C A B C A B C A B C A B C

WIJ OFH 0.150 0.150 0.058 0.665 0.689 0.769 0.150 0.150 0.150 1.405 1.296 1.297 0.32 0.39 0.37 0.17 0.20 0.13
M02 <0.001<0.001<0.0010.503 0.517 0.529 0.021 0.021 0.029 1.261 1.297 1.227 0.39 0.39 0.40 0.11 0.09 0.13
M24 <0.001<0.0010.047 0.494 0.543 0.491 0.015 0.008 0.007 1.305 1.395 1.402 0.39 0.47 0.44 0.09 0.08 0.11
M48 <0.001<0.001<0.0010.385 0.346 0.390 0.011 0.007 0.019 1.314 1.446 1.371 0.32 0.30 0.28 0.08 0.04 0.05

RAV OFH 0.121 0.150 0.129 0.777 0.824 0.814 0.150 0.150 0.113 1.385 1.509 1.706 0.35 0.32 0.25 0.15 0.16 0.13
M02 0.149 0.092 0.018 0.453 0.398 0.369 0.033 0.023 0.037 2.144 3.000 1.351 0.22 0.15 0.23 0.15 0.09 0.06
M24 0.067 0.063 0.044 0.449 0.463 0.388 0.021 0.023 0.045 2.924 3.000 1.178 0.15 0.14 0.30 0.07 0.06 0.15
M48 0.041 0.021 <0.0010.396 0.419 0.346 0.026 0.023 0.031 2.544 3.000 1.370 0.12 0.09 0.22 0.04 0.02 0.04

BRA OFH 0.096 0.637 0.150 1.258 0.36 0.17
M01 <0.0010.026 <0.0010.610 0.428 0.420 0.092 0.065 0.050 1.256 1.344 1.298 0.34 0.23 0.25 0.10 0.06 0.06
M12 0.074 <0.001<0.0010.401 0.453 0.459 0.049 0.039 0.047 1.801 1.366 1.310 0.16 0.27 0.28 0.08 0.04 0.06
M24 0.047 <0.001<0.0010.419 0.362 0.360 0.069 0.033 0.024 1.394 1.386 1.426 0.22 0.22 0.23 0.07 0.03 0.03
M48 0.005 <0.001<0.0010.320 0.371 0.332 0.005 0.031 0.040 1.488 1.226 1.386 0.29 0.28 0.19 0.04 0.09 0.03

GON OFH <0.001 0.795 0.150 1.141 0.46 0.27
M01 <0.001 0.150 0.461 0.679 0.015 0.150 1.144 1.085 0.36 0.53 0.21 0.42
M12 <0.001<0.0010.150 0.455 0.575 0.495 0.049 0.011 0.003 1.140 1.221 1.355 0.31 0.42 0.44 0.18 0.19 0.24
M24 <0.0010.150 <0.0010.363 0.471 0.539 0.005 0.001 0.134 1.312 1.933 1.066 0.29 0.45 0.42 0.10 0.17 0.33
M48 <0.0010.150 <0.0010.533 0.628 0.620 0.011 0.002 0.003 1.094 1.167 1.053 0.46 0.59 0.60 0.33 0.41 0.51

HOE M01 0.055 <0.0010.150 0.507 0.490 0.552 0.006 0.005 0.006 1.312 1.139 1.236 0.40 0.43 0.47 0.17 0.27 0.29
M12 0.109 0.116 <0.0010.436 0.448 0.424 0.003 0.003 0.002 1.318 1.642 1.313 0.38 0.38 0.38 0.20 0.15 0.15
M24 0.150 <0.001<0.0010.420 0.411 0.397 0.003 0.007 0.004 1.633 1.196 1.177 0.36 0.33 0.35 0.17 0.16 0.19
M48 0.045 <0.001<0.0010.395 0.420 0.396 0.011 0.014 0.002 1.149 1.173 1.203 0.33 0.32 0.37 0.21 0.17 0.20

Same layer codes as in Table 2, including M02 for the 0–20 cm mineral layer.



Appl. Sci. 2021, 11, 11620 5 of 38

2.2. Monitoring Equipment: Soil Moisture and Temperature Sensors

The volumetric soil water content is measured at four depths using Campbell CS616
soil water reflectometers (FDRs). Each FDR sensor consists of two stainless steel rods
(300 mm long, 3.2 mm diameter, 32 mm spacing) connected to a printed circuit board. A
shielded four-conductor cable is connected to the circuit board to supply power, enable
the probe, and monitor the pulse output. The circuit board is encapsulated in epoxy. High-
speed electronic components on the circuit board are configured as a bistable multivibrator.
The output of the multivibrator is connected to the probe rods which act as a wave guide.
The travel time of the signal on the probe rods depends on the dielectric permittivity of
the material surrounding the rods and the dielectric permittivity depends on the water
content [20]. Digital circuitry scales the multivibrator output to an appropriate frequency
for measurement with a datalogger (in our case a Campbell Scientific CR1000). The sensor
output is essentially a 0.7 V square wave with frequency dependent on water content. The
probe output period average (PA) ranges from about 14 microseconds with rods in air to
about 42 µs with the rods completely immersed in tap water. A calibration function, which
needs to be monotonically increasing, converts output period (PA) to volumetric water
content (θFDR) predicted by the sensor. The probe output period (PA) was measured by a
special CS616 data logger instruction and stored in the loggers’ memory as raw data.

Campbell Ltd. [20] provides standard manufacturers’ calibration functions, valid
for all soils with a bulk electrical conductivity < 500 µS/cm and a soil bulk density <
1550 kg m−3:

Linear model θFDR = −0.4677 + 0.0283PA (1)

Quadratic model θFDR = −0.0663 − 0.0063PA + 0.0007PA2 (2)

where θFDR being the measured volumetric water content expressed as a fraction (m3 m−3),
PA the period average (in µs) as uncorrected sensor output.

The manufacturer reports an error in measured θFDR caused by the temperature
dependency of the CS616 sensor, and provides the following correction equation to be
applied to the uncorrected sensor output:

PAc = PA + (20 − ST) ∗ (0.526 − (0.052PA) + (0.00136PA2)) (3)

where PAc is the temperature corrected period (in µs), ST the soil temperature (◦C) at the
time and depth of the PA measurement. The coefficients of the standard linear (LM) and
quadratic model (QM) given in (1) and (2) are also applied when using PAc instead of PA.

Soil temperature was measured using BetaTherm 100K6A Thermistor (model T107,
Campbell) with a measurement range between −35 ◦C and +50 ◦C and with an inter-
changeability error of <±0.2 ◦C within the 0–60 ◦C range. According to the manufacturer
and in a “worst case” situation, all errors add to an accuracy of ±0.4 ◦C within the range
−24 ◦C to 48 ◦C and maximally ±0.9 ◦C within the range −38 ◦C to 53 ◦C.

Three dedicated profile pits were dug in spring 2010 and soil material was layerwise
temporarily on-site stored till the pit was ready to be closed again, layerwise with exactly
the same soil material. Prior to installation of the sensors, a soil profile description of the
pedogenetic horizons was performed and soil core samples were taken at the fixed depth
intervals 0–10, 10–20, 20–40 and 40–80 cm, yielding the data in Table 2.

CS616 sensors were carefully introduced horizontally in the wall of these soil pits
(Figure 1). A fork hole with a dummy and level was applied to assure good contact of the
rods with the soil following the guidelines of [13]. Through the horizontal installation of the
30 cm rods in order to determine vertical water fluxes, soil water content is ‘averaged’ over
at least this length at the specific depth reducing small scale soil variation and capturing
possible vertical preferential flow. Ruelle et al. [13] state that a horizontal buried probe at
a particular depth will give the mean soil water content at that depth ± approximately
1.5 cm. Sensors were inserted at 4 depth intervals: 0–5 cm, 5–20 cm, 20–40 cm and 40–80
cm maximally overlapping the sampling depths of the long-term Level II soil monitoring
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program (Table 2) in order to relate physico-chemical data with time series of soil water
dynamics for each layer.
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Figure 1. FDR installation, spatial sensor configuration and calibration sampling scheme. Profile pit A of BRA with installed
FDR sensors (April 2010) according to four depth intervals; setup of FDR sensors in three pits (A, B, C) and temperature
probes in pit A only; scheme indicating monthly sampling locations for calibration measurements 2 m north of each pit.
Clockwise sampling at inner ring locations (Year 1, red) and outer ring (Year 2, green). At each location undisturbed samples
were taken at the 4 depths.

At each site, the CR1000 datalogger was situated in the middle of the triangle formed
by the profile pits A, B, and C (Figure 1), limiting the cable length between CS616 probe
and logger to maximum 10 m. The T107 temperature sensors were installed at Pit A
only (at all four depths) and at least laterally 10 cm away from the CS616 probe to avoid
interference. The soil temperature readings of pit A were applied for possible temperature
correction in the other pits. After installation of all sensors, the wiring holes were carefully
covered with soil and the profile refilled layerwise. All sensors have continued operation
since 2010, whereas some of the central CR1000 data loggers required periodical revision
or replacement.

The accuracy specifications mentioned by the manufacturer for the θFDR measurement
using the CS616 probes is based on laboratory measurements in a variety of soils and
over the water content range air-dry to saturated. The soils were typically sandy loam
and coarser. The CS616 accuracy is ±0.025 m3 m−3 using standard calibration with bulk
electrical conductivity ≤ 500 µS cm−1 and soil bulk density ≤ 1550 kg m−3 in a measure-
ment range from 0 to 0.50 m3 m−3. Resolution (i.e., the minimum change in the dielectric
permittivity that is reliably detectable) is better than 0.001 m3 m−3. Precision or repeatabil-
ity of the θFDR measurements in the same soil material is also better than 0.001 m3 m−3.
Probe-to-probe variability ranges from ±0.005 m3 m−3 in dry soil to ±0.015 m3 m−3 in a
typical saturated soil [20].

2.3. Soil Sampling and Analysis

For in situ calibration of the FDR sensors, monthly sampling during the period March
2015–March 2017 for bulk density and gravimetric soil moisture was performed using an
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Edelman- and Riverside auger and Kopecky steel cylinders of 100 cc (5.3 cm diameter; 5
cm of height). Since none of the soils are stony nor contain coarse fragments, this method
is adequate for both the assessment of bulk density, gravimetric and volumetric water
content. These core samples were taken using a closed ring holder (Eijkelkamp, Giesbeek,
The Netherlands) loaded with the steel cylinder. The exact sampling depths are listed in
Table A2. On the WIJ and GON plots the forest floor was >5 cm thick and FDR sensors
were installed in the forest floor (OFH layer) of the B and C profiles. Hence, volumetric
sampling was carried out in OFH layers as well.

Immediately after sampling and recording of the ring ID, the Kopecky cylinders
were sealed with plastic covers (top and bottom) to prevent moisture loss, stored in an
extra plastic bag and transported in a cooled box to the lab. Monthly sampling of the
three soil profiles per site (4 sampling depths) was performed clockwise in a circle with a
radius of 0.5 m from the reference point located 2 m north of the sensors (Figure 1). The
sampled vertical profiles were about 25 cm apart from each-other. So, all core samples were
taken between 1 and 3 m from the FDR sensors. This distance was required in order to
avoid direct damage or interference with the active FDR and soil temperature sensors (and
cabling), or indirectly by disturbing the local soil water distribution or preferential flow
over the profile by monthly coring and sample extraction. We hereby assumed that the soil
water content in the same soil layer was similar ~2 m away from the FDR sensor.

Following sampling, the borehole was carefully refilled and a bamboo stick was left
in the last sampled borehole as an indicator for the next sampling. Care was taken not
to disturb (compact) the soil too much when sampling the soil, especially on the future
sampling locations. The second-year sampling was carried out in a circle with a radius of 1
m from the reference point (Figure 1, green circle).

The core samples were processed in the laboratory. Their wet/moist mass was de-
termined prior to drying in a ventilated oven at 105 ◦C until constant mass, which was
maximally one week for all soils. Then dry bulk density (ρbKop) was determined as oven
dry mass per unit volume and gravimetric moisture content quantified. Volumetric water
content was computed by multiplying gravimetric moisture content with the ρbKop of the
sample. Sampling characteristics for all 5 sites are listed in Table 3. Overall, 1512 cores
were processed to compile ρbKop and θv values for the calibration dataset.

Table 3. Features of the calibration sampling design and timeseries.

Feature\Site WIJ RAV BRA GON HOE

Date start sampling 1 11 March 2015 13 March 2015 13 March 2015 11 March 2015 27 February 2015
Date end sampling 21 March 2017 23 March 2017 23 March 2017 21 March 2017 21 March 2017
Sampling frequency monthly monthly monthly monthly monthly
Nb of sampling events 25 25 25 25 26
Nb of profiles 3 3 3 3 3
Nb of depths (layers) 4 4 4 4 4
Nb of calib. points 300 300 300 300 300

1 Sampling was performed around the mid of each sampling month.

2.4. Calibration Dataset

For all five sites, a calibration dataset was assembled with the attributes listed in
Table 4.
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Table 4. Attributes of the calibration dataset.

Attribute Format/Unit Description

TimeStamp YYYY-mm-dd hh-mm-ss Nearest FDR recording time to field
sampling event (in UTC + 1)

PA i, j µs Period average raw sensor output for
each profile i and depth j

ST j
◦C Soil temperature measured in profile i = 1

at depth j

ρb i, j kg m−3 Fine earth bulk density of profile i and
depth j

θm i, j g kg−1 Soil water content by mass (gravimetric)

θv i, j m3 m−3 Soil water content by volume
(volumetric)

Logger data V, ◦C Logger diagnostics: record ID, battery
voltage, logger temperature

After final calibration we added the corresponding recalibrated FDR measurements to
the datasets (Downloadable from Supplementary material).

2.5. Statistical Evaluation

All statistical processing, evaluations and graphics were performed in the R environ-
ment, using R version 4.1.0 [29,30] in R Studio v1.3.1073. For time series manipulation
and analysis, we used package xts v0.12.1. Evaluation of models was performed both
for their relative and absolute quality. Relative model selection among candidate models
was evaluated using the Akaike Information Criterion (AIC) corrected for small sample
sizes (AICc) using the AICcmodavg package v. 2.3-1 [31]. The AICc weights for each model
are given and the evidence ratios (ER) quantifying the amount of support in favor of a
model relative to a competing model. Absolute quality of models was judged using a set of
complementary validation indices of their predictive quality by comparing their predicted
Pi with observed (reference) values Oi (Equations (4)–(8)). R2

p is the prediction coefficient
of determination informing the explained variance of the model (4), MPE is the mean
prediction error or bias (5), SDPE is the standard deviation of the prediction error or noise
(precision) (6), RMPSE is the overall model prediction error or model accuracy (7) and is
the general closeness of agreement between the FDR output measurement (θFDR) and the
reference observations (θv). RMSPE is the square root of the mean square prediction error
(MSPE). For large n, MSPE equals the sum of MPE2 (bias) and SDPE2 (noise) as shown
in Equation (8). With effective calibration the MPE (bias) is removed and the precision
component of accuracy dominates.

R2
p =

[cov(Pi, Oi)]
2

var(Oi) · var(Pi)
(4)

MPE =
1
n

n

∑
i=1

(Pi −Oi) (5)

SDPE =

√
1

n− 1

n

∑
i=1

((Pi −Oi)−MPE)2 (6)

RMSPE =

√
1
n

n

∑
i=1

(Pi −Oi)
2 (7)

MSPE =
1
n

n

∑
i=1

(Pi −Oi)
2 = MPE2 +

n− 1
n

SDPE2 (8)

The revised index of agreement (dr) is dimensionless and bounded by [−1, 1] with 1
indicating perfect agreement [32]. Principal component analysis was applied using the R
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prcomp function, with data centered and scaled. The ggbiplot v.0.55 package was used to
generate biplots using ggplot2 in order to plot both the position of each sample in terms of
the principal components together with the initial variables mapped as vectors. In order to
evaluate the importance of soil variables on the RMSPE, a generalized boosted regression
tree model was built using the R package gbm v.2.1.8 with a gaussian distribution and
following parameters: n.trees = 10,000, shrinkage = 0.01 and an interaction.depth = 4.
The relative influence of each predictor, i.e., the reduction of squared error attributable to
each variable, was used to select the most important ones for explaining RMSPE. Possible
interaction was evaluated using the Friedman’s H-statistic which is on the scale of [0, 1]
with higher values indicating larger interaction effects.

3. Results
3.1. Validation of FDR Measurements
3.1.1. Reference Dataset

The summary statistics of the reference dataset used for calibration are presented in
Table A3. On the plots WIJ and GON, the upper FDR sensors were located in the forest
floor layers (OFH) of B and C profiles, while in mineral topsoil (Ah layer) for the A profile.
Hence, bulk samples for reference θv were taken in the same OFH layers (n = 47 in WIJ and
n = 50 in GON) and the remaining in M01 layer of the A profiles. Local spatial variation in
OFH thickness caused some reference samples to be more mineral than organic and vice
versa. Therefore, we considered reference samples having a ρbKop < 850 kg m−3 (threshold
derived from [29]) as part of OFH layers, and above this threshold as M01. On RAV and
HOE, two reference Kopecky samples qualified as OFH samples, whereas none in BRA
topsoil samples.

Over the total calibration period raw FDR sensor output ranges from 20.5 to 34.1 µs in
the OFH layers, and from 17 to 41.9 µs in mineral layers, covering the full range reported by
the manufacturer [20]. Note that on the plots WIJ and GON, neither significant differences
in period means nor ranges were found between the FDRs in the OFH and those in the
mineral layer (M01) for the same site. However, the observed mean period was lower on
the sandy site WIJ compared to the heavier textured GON site (Table 1). Overall, the PA
values are lower in the sandy soils (WIJ, RAV and BRA) than in the silty and clayey soils of
GON and HOE. Within sites, the mean PA values differ significantly among depth layers
as shown by the 95% confidence interval of the means, which can be attributed both to
specific soil layer properties and a possible sensor effect.

Each sites’ soil temperature was sensed in the A profile only. Mean annual soil
temperature was roughly above 10 ◦C on the sandy sites, and slightly lower on the heavier
textured soils, but this difference is neither significant between sites nor between soil layers
within the sites for the reference dataset. However, the range is wider in the topsoil layers,
especially in the forest floor (OFH) which may warm up to 25 ◦C. In subsoil layers, the
amplitude of the temperature fluctuations is reduced due to the well-known damping effect.
Soil bulk density, known for its significant effect on dielectric permittivity, is significantly
smaller in the OFH layers compared to the mineral layers (M01–M48). In the mineral soil
profile of each site, ρb generally increases with depth. Lowest ρb values are found in GON
and highest in HOE (Retisol), but also elevated values in the Arenosols (RAV and BRA).

At the WIJ and GON sites, the mean gravimetric soil water content (θm) in the OFH
layers is more than three times θm in the mineral soil, clearly showing that forest floor layers
can hold more water than their dry mass compared to mineral layers generally storing less
than 50% of their mass. On all sites, mean θm significantly differs by layer with higher mean
moisture contents in the 0–10 cm topsoil (M01) due to elevated contents of organic matter.
Depending on the depth of the groundwater, perched water table or subsurface flows,
mean θm can rise again in the M48 layer. Volumetric soil water content (θv) is greatest in
the OFH up to 0.62 m3 m−3 while maximally 0.52 m3 m−3 in M01 layers. Again, significant
differences in means are found by mineral layers within sites and between sites, justifying
the need for multiple moisture sensors. The observed means and ranges of θv indicate
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clearly that RAV and BRA are the driest plots (0.05–0.06 m3 m−3 in dry periods), WIJ can
store more soil water in its organic-rich sandy soil compared to HOE in the silt-loam soil,
while highest mean θv values are observed in GON (0.38–0.47 m3 m−3) due to the perched
water table above the clayey substrate (Table 1).

For all plots, layer specific graphs are presented in S1 to S5 showing the temporal
variation of sampled soil water content in the three profiles, the corresponding FDR
response (Period) and their linear relationships. These graphs clearly show variable types
of relationships among layers, and within layers (especially topsoil layers) distinct linear
relationships between the profiles. For WIJ (Figure A1 and Figure S1) calibration will
be difficult in the topsoil due to high scatter of calibration data (mix of M01 and OFH
layers) and limited slope of the linear models. For deeper mineral layers of the WIJ plot
with a more limited range in water content, adequate calibration is more feasible, and
similar slopes indicate higher correlation between profiles even suggesting that one single
calibration function per layer would be feasible. Other hard to calibrate profiles are profile
A of layer 1 in RAV and profiles B and C in GON layer 4. Overall, these graphs indicate
that layer and profile specific calibration is preferred using reference measurements taken
close to the sensors.

3.1.2. Calibration Testing

Based on the calibration dataset, a two-step testing approach was adopted. First,
we validated the standard models suggested by the manufacturer by simply relating the
measured θv at a specific moment with the observed output period of the FDR sensor at
that moment, for each of the 60 soil layers. In Figure 2a these observed data-pairs are
plotted along with the standard function for the M12 layer of profile B on the HOE site.
Clearly the standard function underestimates the measured θv (negative bias of −0.0534
m3 m−3, data in Table S5). In the second step, we recalibrated the model in order to remove
the bias, and used this recalibrated model for predicting θFDR using the continuous FDR
output period values. Note that with calibration the accuracy improved (RMSPE decreased
from 0.057 to 0.019 m3 m−3) and the index of agreement substantially increased from 0.67
to 0.91. Figure 2b illustrates that the monthly measured real soil water content is much
better predicted when the recalibrated function is applied.
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The standard response remains permanently below field capacity whereas the recali-
brated response during winter is situated between θs and θfc as expected. In summertime
standard response drops below θpwp in contrast to recalibrated response and the calibration
measurements.

Note that the calibration measurements on the HOE plot started in February when
soils were above field capacity, then followed a drying phase until September and a fast-
rewetting phase in October/November. To improve calibration for the HOE plot, more
calibration pairs would be beneficial for θv between 0.25 and 0.35 m3 m−3, roughly situated
between May and the end of November.

For each plot, layer and profile, graphs as in Figure 2b were produced to illustrate all
calibration results of this study (Figures A1–A5), with indication of measured θfc and θpwp.

3.1.3. Validation of Standard Functions

For all plots, profiles and layers, standard calibration functions (Equations (1) and (2))
were applied and the coefficients of determination (R2) and predictive quality indices are
listed in Tables S1–S5.

The standard linear (LM) and quadratic models (QM) generally explained the mea-
sured topsoil water content rather poorly, indicated by R2 as low as 0.005 in OFH layers
of the WIJ site and explaining just 10 to 50% of the variance in mineral soil layers. With
increasing depth, the standard calibration functions approximate the measured water
contents slightly better. Figure 3 displays the positive or negative bias (MPE) and total
prediction error (RMSPE) of the standard linear and quadratic functions when predicting
the measured θv.

In general, the quadratic standard model generates a greater bias and total prediction
error compared to the linear model. A paired t-test of all profiles and layers reveals that
when the standard LM is used the bias is 0.015–0.019 m3 m−3 smaller compared to the QM
for all plots but GON (Table 5). On the latter plot a positive bias (i.e., overestimation of θv)
was observed attributed to the clayey subsoil layers (Figure 3). As expected, the random
error (SDPE) does not differ significantly between standard LM and QM. The resulting
overall prediction error is significantly smaller when using the standard LM, and its index
of agreement is significantly greater.

On the WIJ, RAV, BRA, and HOE plots a predominantly negative bias was found,
especially in the topsoil: up to 0.16 m3 m−3 in mineral (M01) and up to 0.32 m3 m−3 of θv
in OFH layers was underestimated (Tables S1–S5).

For almost all layers the allowable measurement error threshold for θv of 0.03 m3 m−3

is exceeded except for two M48 layers in RAV, and two M48 layers in HOE. So, for only 4
out of 60 layers the (linear) standard function predicts θv according to the required level
of accuracy.

The mean total prediction error is greatest for the GON plot (RMSPE = 0.17 m3 m−3)
and smallest for the RAV plot (0.07 m3 m−3). The RMSPE is similar for BRA and HOE.
The greater overall prediction error on the sites WIJ and GON is mainly due to the large
prediction errors of the OFH layers (Figure 3). If we omit the values for OFH, the mean
RMSPE for WIJ becomes 0.09 m3 m−3 whereas it remains high (0.17 m3 m−3) for GON here
due to the high estimation errors in the clayey substrates.
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Table 5. Paired difference of validation indices computed for standard linear compared to quadratic
model (LM-QM). Significance level according to a paired t-test: *** p < 0.001, ** p < 0.01, * p < 0.05, NS

denotes not significant.

SITE MPE SDPE RMSPE dr

WIJ 0.019 *** 0.0008 NS −0.015 *** 0.14 ***
RAV 0.016 *** 0.0006 NS −0.007 *** 0.09 ***
BRA 0.016 *** −0.0013 * −0.009 * 0.08 *
GON −0.030 NS −0.0050 NS −0.040 * 0.16 **
HOE 0.015 *** −0.0002 NS −0.009 ** 0.07 *
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Temperature Correction

Prior to the use of the standard LM and QM, a temperature correction (TC) of the PA
signal was performed using Equation (3), and compared to the same model without TC
(Table 6). Results show that TC reduces the MPE (bias) significantly for both model types,
but has a small to insignificant impact on the precision error, except for WIJ.

For the WIJ plot, overall accuracy as indicated by RMSPE and index of agreement
improved significantly, but for the other plots the improvement was negligible. Hence,
temperature correction for the standard functions may help in reducing prediction bias.

Table 6. Paired difference of validation indices without and with temperature correction of PA signal
for each model type. Validation index of model with TC minus index of same model without TC,
using a paired t-test. Levels of statistical significance are * p < 0.05, ** p < 0.01 and *** p < 0.001.

Site Model MPE SDPE RMSPE dr

WIJ LM 0.026 *** 0.007 *** −0.012 *** 0.096 ***
QM 0.030 *** 0.010 *** −0.016 *** 0.133 ***

RAV LM 0.014 *** 0.002 ** −0.002 NS 0.04 NS

QM 0.013 *** 0.002 NS −0.004 * 0.060 **
BRA LM 0.011 *** 0.0004 NS −0.005 NS 0.04 NS

QM 0.010 *** −0.0002 NS −0.006 * 0.05 NS

GON LM 0.084 *** 0.014 * 0.040 NS −0.06 NS

QM 0.140 ** 0.040 * 0.090 NS 0.01 NS

HOE LM 0.044 *** 0.004 NS 0.005 NS −0.013 NS

QM 0.055 *** 0.011 * −0.007 NS 0.012 NS

When evaluating the overall RMSPE of standard models with temperature correction,
only the predicted θv of the M48 layers in RAV was not exceeding the allowable error of
0.03 m3 m−3, so for only 2 out of 60 layers water content was predicted accurately.

3.1.4. Validation of In Situ Recalibrated Functions

For each layer four candidate recalibration models (LM and QM, with and without
temperature correction, denoted LMTC and QMTC), are compared relatively to one another
and the best and second-best models were selected based on lowest AICc value (Table A4).
For 32 out of 60 layers, the simple LM proved to be the most parsimonious model and was
supported over the LMTC or QM. Using the AICc, a LMTC was selected as the best model for
23% of all layers, more frequently than the QM (13% of all layers) and QMTC (10% of all layers).
Evidence ratio’s (ER) between the best and second-best model ranged from 1.01 (equally well)
to 22.8 times better. Generally, the best model in the topsoil had no temperature correction
which is remarkable for the layer where variation in soil temperature is greatest.

By definition, recalibration of the standard functions eliminates bias so that overall
prediction error is mainly determined by the SDPE (precision) composed of errors attributed
to (short distance) spatial variation, sampling errors and random measurement error.
Figure 4 shows the calibration gain of the overall prediction error for the best standard (i.e.,
with highest dr) and recalibrated functions for all plots.

Hence, compared to the standard functions, recalibration lowered the overall predic-
tion error with a factor 1.8 (RAV) to 2.8 (GON). When comparing plots, the mean RMSPE is
greatest at the GON plot, still double the allowable error of 0.03 m3 m−3 while on HOE
the mean RMSPE equals the threshold while the means of the other plots are in between.
For GON, not a single layer meets the threshold, whereas in HOE only three layers are
exceeding the threshold when using the best recalibrated model.

Apparently, accurate prediction of θv is most challenging for topsoil layers, whether
they are organic (OFH) or mineral (M01) or most likely organo-mineral, with organic
contents and bulk densities in between pure organic and mineral materials (Figure A1).
However, some subsoil layers, such as M48 in GON show high prediction errors. From
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Figure A4 it is clear that the recalibrated response for the B and C profiles in the M48 layer
shows almost no variation in contrast to highly variable gravimetric measurements.

We carefully checked whether all quadratic calibration models (QM and QMTC) selected as
best models based on AICc (Table A4) were monotonically increasing functions (i.e., increasing
output period should physically relate to higher soil water content). Five functions (WIJ-B-M12,
RAV-C-M12, GON-B-M12, GON-C-M12, and GON-C-M48) did not meet this requirement. For
example, in the GON-C-M12 layer, the QMTC calibration function increased until a temperature
corrected period of 31 µs and decreased afterwards (Figure 5). We replaced this function by the
LM (selected as second best by AICc in Table A4), hereby explaining even less variance (27% to
12%) but with a more plausible calibration function, though a greater prediction error.

For the heavy-clay subsoil M48 layer in GON C profile, no adequate monotonic
function could be constructed, meaning that no calibration of that FDR sensor in a layer
with ~47% clay was feasible with the given calibration dataset (Figure A4).
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3.2. Explaining the Prediction Errors at the Plot Scale
3.2.1. Contributors to Bias

The principal component analysis (PCA) biplot in Figure 6 is based on the estimated
bias (MPE) of the standard LM along with the soil properties of each layer of the 5 sites
(Tables 1 and 2). The first 2 principal components (PC1 and PC2) explain 65% of the
variance, PC3 and PC4 add 12 and 9% and these are mainly determined by EC and pH-
H2O, respectively. The factor loadings of PC1 are dominated positively by ρbKop, and
negatively by CEC, θs, TOC and TN. Bias is mainly contributing to PC2, strongly associated
with Clay content and soil depth, all having negative factor loadings. Indeed, in topsoils
(M01 and OFH) we mostly found a negative bias (underestimation of real θv) while a
positive bias was generally found in subsoils, especially when they are clay rich. The
impact of depth justifies separated calibration by depth layer.
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3.2.2. Contributors to Overall Error

When the bias is eliminated by in situ calibration the overall prediction error (RMSPE)
is dominated by the precision error. In Figure 7 the PCA clearly indicates that on PC1 the
RMSPE is closely and positively associated with TOC and TN and negatively correlated
with ρbKop and Depth. The lower the ρbKop, the higher RMSPE, and this is extremely visible
in the OFH layers, which obviously have a high TOC and TN content. PC2, explaining still
22% of the variation, is mainly determined by texture fractions Clay, Silt and Sand, but
is rather uncorrelated with RMSPE. Conversely, Clay and Silt are associated with greater
values for θfc and θpwp.
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The PCA clearly shows that BRA and HOE are more homogenous sites in terms of soil
properties as indicated by smaller ellipses, and independently from the fact that they are
texturally very different from each-other, have low overall prediction errors. Conversely,
WIJ and GON have high variation in soil properties and thick OFH layers leading to high
overall RMSPE especially for the organic layers low in ρb.

When we build a generalized boosted regression tree model to predict RMSPE based
on the layer specific soil properties (Tables 1 and 2), the relative influence of the predictors
is given in Table 7. Two predictor sets were applied, Set 1 using ρbKop (Table A3), and Set 2
using ρb as listed in Table 1.

Upon using the first set, bulk density in the sampling rings is clearly the major
predictor and has higher influence than depth, θs, clay fraction, and all other soil variables.
When replacing ρbKop by ρb, relative influence decreases and the saturated soil water
content takes over as the major predictor. Since θs is inversely correlated with ρbKop
(Figure 7) this is no surprise. Samples with greater θs and consequently lower ρb have
more macropores, allowing air to enter and influencing the dielectric permittivity and PA
output. Two-way interactions between predictors as indicated by Friedman’s H-statistic
are all below H = 0.11 (between depth and θr) and therefore negligible.
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Table 7. Relative influence of two sets of soil properties in predicting RMSPE after calibration
according to a generalized boosted regression tree model. The first set includes average bulk density
of the gravimetric samples (ρbKop), the second set ρb.

Set 1 Set 2

Predictor Rel.Inf Predictor Rel.Inf

ρbKop 21.90 θs 15.66
Depth 9.80 Depth 11.48

θs 9.62 θpwp 9.64
Clay 9.45 Clay 8.98

pH-H2O 8.75 EC 8.25
θr 8.17 pH-H2O 7.96
EC 6.46 CEC 7.71
θfc 5.72 θr 7.58

Sand 5.44 Sand 6.76
TOC 4.55 θfc 6.01
θpwp 4.37 ρb 5.60
TN 2.91 TOC 3.17

CEC 2.86 TN 1.18

3.3. Improving the Prediction Errors in Organo-Mineral Topsoil Layers

The statistical evaluations clearly indicate that accurate prediction of θFDR is most
challenging for the topsoil layers due to high natural variability of ρb and organic carbon
in the organo-mineral layers.

For the plots WIJ and GON where the FDR sensors are installed in the OFH layers (B and
C profiles), accurate calibration is jeopardized by the high variability of the reference samples
taken each month. This can be seen from the scatterplot of the WIJ site in Figure 8a. With high
PA values (PA > 31 µs) of the sensor, θv may range from 0.31 to 0.73 m3 m−3 and ρb from 300 kg
m−3 (pure organic matrix) to 1310 kg m−3 (mineral matrix). It is also clear that the lower the ρb
(and hence more organic the reference sample), the more soil moisture (θv) may be stored, often
more than 0.5 m3 m−3 compared to mineral samples (ρb > 850 kg m−3) holding less than 0.5
m3 m−3 (see θs values in Table 2).
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Figure 8. Scatterplots of topsoil calibration data relating sensor output to observed volumetric water content (θv) and
measured ρb value (kg m−3) for each sample: (a) all topsoil (0−10 cm) samples of WIJ site; (b) topsoil (0−10 cm) samples of
GON site. Linear regression lines for all topsoil samples (dashed line) and for selected organo-mineral samples (full line
and filled dots).
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Selecting from each WIJ profile (max 25 calibration pairs) only the organo-mineral
samples by their ρb value (i.e., ρb < 850 kg m−3) yields too few samples for adequate
calibration per profile. Therefore, we pooled all topsoil samples from the three profiles
of the WIJ plot (n = 75 samples). When calibrating a LM the slope of the model was not
significantly different from 0 (Figure 8a). When subselecting organo-mineral samples with
ρb < 850 kg m−3, a LM based on n = 47 paired observations was calibrated: θFDR = 0.320295
+ 0.00971 PA, with R2 = 0.119, p = 0.0099 and RMSPE = 0.0745 m3 m−3.

Based on AICc criterion, QM, LMTC nor QMTC models performed better than the
LM. However, when varying different thresholds for ρb, the best linear calibration model
was found for organo-mineral samples with a ρb < 600 kg m−3, and parameters: θFDR =
0.39962 + 0.008767 PA, with R2 = 0.276, p = 0.005 and RMSPE = 0.0417 m3 m−3. The selected
samples (n = 24) and calibration function are indicated in Figure 8a. Only one-third of
the total number of calibration samples was selected, but this number resembles the 25
samples used for calibration of each individual profile.

Note that the overall prediction error lowered substantially from 0.1126 to 0.0417 m3 m−3.
The resulting recalibrated response for the B and C profile can be seen in Figure A1. The
moisture content remains high in the OFH layers compared to the A profile or underlying
mineral layers of that plot.

The situation is somewhat different for the GON site (Figure A4), where combining all
topsoil calibration pairs already leads to an adequate LM: θFDR = −0.38825 + 0.030858 PA,
with R2 = 0.515, p < 0.001 but a relatively high RMSPE = 0.0785 m3 m−3 (Figure 8b). Here
also some calibration samples had high ρb values (up to 1300. kg m−3) while others are as
low as 200 m3 m−3. When selecting a subset of samples with ρb < 850 kg m−3 (n = 50) the
best regression model was found, again a LM outperforming the other model types based
on AICc) with parameters: θFDR =−0.45026 + 0.033966 PA, R2 = 0.716, p < 0.001 and RMSPE
= 0.0591 m3 m−3. The selected calibration samples and LM are indicated in Figure 8b. Note
that this calibration function is not performing better than the originally recalibrated one
for profile B (RMSPE was 0.0553 m3 m−3 while the revised function yields 0.0591 m3 m−3

but better for the OFH layer in profile C that had a RMSPE of 0.0797 m3 m−3). Since
the sensor is effectively located in organo-mineral layers, we replaced both by the new
function (Table A5). The resulting time series for GON is presented in Figure A4. Here the
seasonality of the moisture content of the OFH is much more pronounced than in WIJ, with
expected higher moisture levels than in the M01 layer. Note that the θfc was estimated for
mineral samples, not for the OFH layer.

3.4. Requirements for Optimal Calibration

The practical question is raised how many field samples are required for adequate
calibration of the FDR sensors. Figure 9 shows a simulation for the HOE site with the
evolution of the overall prediction error (RMSPE in black), the bias (MPE in blue) and
precision (SDPE in red) relative to an increasing number of calibration months, beginning
from a three months period. Starting when soils are near field capacity (in February/March)
extra calibration data is gained during spring and summer months when soils are gradually
drying out. This substantially decreases the bias until August (i.e., eight months). Since the
bias is eliminated by then, the overall error is converging with the precision error during
this first calibration period.

We considered the bias as sufficiently eliminated when the MPE is continuously below
a 0.01 m3 m−3 threshold (i.e., the maximal error of the gravimetric reference measurement).
The number of months required for each plot, profile and layer is given in Table 8. It is
clear that for all plots a longer calibration period is needed to remove the bias in the topsoil
(19−24 monthly observations) compared to subsoil layers, although some special layers
also require almost two years of calibration.

The precision error starts to decline substantially from 9 till 14 observation months,
when soils are rewetting until field capacity in March, but raises again during the drying
phase until driest conditions in August/September and declines again in the rewetting



Appl. Sci. 2021, 11, 11620 19 of 38

phase afterwards. For the M12 layers of the HOE site, the precision (and overall) error
drops below the 0.03 m3 m−3 threshold after more than 22 observation months, but for
the M01 layers in HOE and on the other sites much more than 25 observation months are
required or will exceed a reasonable calibration period (see RMSPE Table A5). In that case,
due to the high precision error (noise), reducing the prediction error will only be possible
by increasing the number of sensors for these specific layers.
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Table 8. Number of consecutive months required for stable removal of bias (MPE < 0.01 m3 m−3) and adequate calibration.

WIJ RAV BRA GON HOE

Layer A B C A B C A B C A B C A B C

M01/OFH 21 20 3 19 23 21 19 23 17 20 22 24 21 21 22
M12 11 13 6 17 20 11 17 20 12 17 17 20 13 11 21
M24 12 19 8 10 19 10 10 19 22 14 20 20 8 5 22
M48 10 6 19 8 12 9 10 3 22 14 20 23 7 9 8

For those layers where the sensor’s precision error after calibration still exceeds
the threshold of 0.03 m3 m−3, and assuming that the bias is near-zero and the observed
precision error is of the same magnitude for other individual CS616 sensors used under
similar (soil) conditions, the average measurement error can be reduced by the square root
of the number of sensors installed in parallel in the given layer, following the classical
central limit theorem.

For each layer, we therefore estimated the number of sensors required to reduce
the maximum SDPE found in the three profiles of that layer (data from three individual
sensors) to a measurement error below 0.03 m3 m−3. So, the most difficult calibration
environment per layer will determine the number of sensors needed for averaging soil
moisture measurements of that layer at the plot level (Table 9).

Table 9. Estimated number of FDR sensors required to reduce average measurement error well below
0.03 m3 m−3 for each plot and layer, based on the maximum SDPE found within each layer. The
numbers in bold refer to an increased number of sensors compared to the current sampling setup.

WIJ RAV BRA GON HOE

OFH 2 4
M01 16 5 3 5 3
M12 6 4 2 5 1
M24 1 3 2 4 2
M48 1 1 2 10 1

Table 9 suggests that the current number of three sensors is sufficient for all layers of
the sites BRA and HOE. However, more sensors are required for the topsoils up to 20 cm of
depth for WIJ and RAV, and also for the subsoil layers in GON, with up to 10 sensors in the
clayey substrate if the required measurement accuracy has to be met.

3.5. Final Calibration Functions

The best performing calibrated functions with eliminated bias for each site and layer
are presented in Table A5. These functions are applied to the respective FDR sensors of
the LII plots to construct the θFDR time series and may be considered the end-product of
this study. For the 60 layers examined, a linear model (LM) was the best choice for 58% of
these layers and 27% of them a LM with temperature correction. Quadratic models seemed
more appropriate for 10% (QM) and 5% (QMTC) of all layers. The resulting time series of
all calibrated models for the 2015–2017 period is given in Figures A1–A5.

On average, calibration functions explained 56% (median 61%) of the total variance
of the calibration dataset with a maximum of 96%, but also with no variance explained at
all (R2 = 0.003) in the special case of extremely clayey substrates. The RMSPE ranges from
0.012 to 0.117 m3 m−3 with a mean of 0.043 m3 m−3 and median 0.041 m3 m−3. Hence,
regardless of specific soil conditions, measurements of one sensor per layer will not suffice
to predict θv better than the 0.03 m3 m−3 accuracy threshold.
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4. Discussion
4.1. Attainable Level of Predictive Accuracy

One of the fundamental questions of this study is the level of predictive accuracy, as
indicated by the RMSPE, one can achieve using the CS616 sensor for θv measurement in
various soil types compared to reference gravimetric sampling. Hignett et al. [11] estimated
the RMSPE of the reference method to maximally 0.01 m3 m−3. The user manual [20] of
the CS616 mentions that the factory standard calibration is accurate to ±0.025 m3 m–3 in
the θv range of 0−0.50 m3 m–3 valid for soils with low bulk electrical conductivity ≤500 µS
cm−1 and bulk density less than 1550 kg m−3. This conforms with all forest soil layers
under study.

In Table 10 we compiled RMSPE values obtained with standard and revised functions
in various studies for coarse to fine textured soils and organic layers using the CS616
sensors. From all mentioned studies it is clear that recalibration or correction for the
specific soils significantly reduces the overall prediction error. The standard function
provided by the manufacturer [20] generally performs best for sandy samples [1,10], but as
clay content increases, larger prediction errors are found and soil-specific recalibration is
absolutely required [1,3,4,6,7,9,11]. Most recalibrations or corrections are performed in the
laboratory, since field-based calibration is challenging to perform for many users [10].

Table 10. Average RMSPE values for FDR CS616 sensor performance in various textures reported in literature compared to
this study.

RMSPE (m3 m–3)

Type of Soil USDA Texture Standard
Function Revised Function Error Reduction Reference

Sandy Sand 0.071 0.04 −44% This study
Sand 0.017 0.006 −65% Dong et al. 2020
Sand 0.058 0.016 −72% Vaz et al. 2013

Loamy sand 0.068 0.035 −49% This study
Loamy sand 0.023 0.021 −9% Dong et al. 2020
Loamy sand 0.034 0.004 −88% Varble & Chavez 2011
Sandy loam 0.084 0.046 −45% This study

Sandy clay loam 0.039 0.012 −69% Vaz et al. 2013
Sandy clay loam 0.049 0.034 −31% Vaz et al. 2013
Sandy clay loam 0.156 0.043 −72% Vaz et al. 2013
Sandy clay loam 0.147 0.021 −86% Varble & Chavez 2011

Loams Loam 0.102 0.052 −49% This study
Silt loam 0.064 0.029 −55% This study
Silt loam 0.039 Udawatta 2011

Silt 0.135 0.043 −68% This study
Silty clay loam 0.962 0.344 −64% Vaz et al. 2013
Silty clay loam 0.04 Udawatta 2011

Clay loam 0.157 0.043 −73% Vaz et al. 2013
Clay loam 0.289 0.021 −93% Varble & Chavez 2011

Clay Silty clay 0.029 Udawatta 2011
Clay 0.207 0.076 −63% This study

Clay (heavy Clay) 0.05–0.15 0.003–0.012 −92% Veldkamp 2000
Clay 0.169 0.05 −70% Vaz et al. 2013

Organic Organic 0.218 0.05 −77% This study
Organic 0.179 0.06 −66% Vaz et al. 2013

All soil types 0.094 0.045 −52% This study

The RMSPE quality criteria set by [4] for a mean bias ± 0.02 m3 m–3 and RMSE <
0.035 m3 m–3 or a RMSE < 0.30 m3 m–3 for forest soils by [18] are rarely met, even after
(re)calibration or correction.

Furthermore, revised calibration functions developed under controlled but limited
laboratory conditions, are not always appropriate for field conditions [1,5]. In 2008, an
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international group of soil water instrumentation experts came to the conclusion that “all
soil moisture sensors must be field calibrated in order to obtain reasonable accuracy” except
conventional time domain reflectometry (TDR), which is accurate to ±0.02 m3 m–3 in most
soils [11].

Most studies mentioned in Table 10 collected (large) volumetric field samples in
containers and transported them to the lab in order to test a number of moisture sensors
and compare the results using standard and revised functions. For practical reasons
they calibrate their sensors during a drying phase [3] under controlled temperature and
humidity conditions. In our in situ calibration approach we sampled over two years two
drying phases and two rewetting phases (Figure 2b), accounting also for the real soil
temperature variations associated with the moment and depth of sampling.

On the other hand, since gravimetric soil sampling is destructive and we cannot
sample close (i.e., less than 1 m) to the sensors to avoid interference, we add spatial and
sampling errors to our validation measurements. This set-up requirement is the major
limitation of our in situ calibration approach, certainly since many forest soils tend to
have a high small-scale variability of moisture influencing soil parameters. Most reference
studies reported that the factory-based standard function underestimates the real moisture
content, but under- or overestimation seems dependent on the soil texture. However,
Varble and Chávez [4] found in the laboratory that the factory calibrated CS616 sensors
overestimated θv by an average bias of 0.10 m3 m−3 in sandy clay loam, 0.03 m3 m−3 in
loamy sand, and 0.24 m3 m−3 in clay loam. This is contrasting to [1] where negative biases
and much lower values were found for the same texture classes. In our study we found
that standard functions generally underestimated sand layers with MPE = −0.042 m3 m−3

and loamy sand with −0.053 m3 m−3 which is greater than these studies, but this might be
related to our in situ sampling.

Dong et al. [1] corrected the standard functions with correction equations but the
improvement was quite small: 0.011 m3 m–3 for sand to 0.002 m3 m–3 in loamy sand
and 0.027 m3 m–3 in sandy clay loam. We believe that recalibration of the models is
more effective than applying correction equations on poorly performing factory-based
functions, and that only calibrations using in situ measurements can lower the effective
bias substantially.

The standard functions (Equations (1) and (2)) provided by Campbell are found
inadequate for clay and clay loam soils (Table 10), often overestimating θv. Varble and
Chávez [4] reported the average RMSE of the clay loam samples (n = 65) as 0.289 m3 m−3

compared to 0.21 m3 m−3 for clays in our study. Using laboratory-based recalibration, they
succeeded to eliminate bias and reduce the resulting RMSE below 0.021 m3 m−3 for the
clay loam soil, an error reduction of 93%. In our study RMSE after in situ recalibration is
still 0.076 m3 m−3 for clay samples, an error reduction of 63% (Table 10).

Veldkamp and O’Brien [7] tested heavy clay soils (60−80% clay) and found standard
calibrated CS616 sensors to underestimate water content up to 0.15 m3 m−3. This is in
contrast with our findings that clay soils are overestimated with the standard function, but
clay mineralogy clearly differed between our studies. Instead of recalibrating the models
for the clayey soils [7] developed a 3-phase mixing model for topsoil and subsoil separately
and reduced RMSE for these clay soils to maximum 0.012 m3 m−3. (error reduction of 93%).
This 3-phase mixing model, using a physical basis for the derivation of the calibration
function, might be a good alternative for recalibration functions, especially for soils rich in
clay and organic matter.

Vaz et al. [10] evaluated the CS616 among eight commercially available electromag-
netic water content sensors in seven well-characterized soils (Table 10). They merely
compared the sensor types and did not optimize the calibration functions. Instead, they
compared the standard QM (Equation (2)) with a calibration function developed by [15],
which performed much better for most of their soil samples with error reductions between
31% and 73%.
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Logsdon [3] who compared laboratory and field calibrations of the CS616 sensor found
that “field calibrations would be recommended over laboratory calibrations for the CS616
sensor, at least if they are used for field monitoring” and [11] recommended to develop a
procedure to routinely calibrate each new sensor or method, preferably in the field and for
each distinct soil horizon where it is to be used. They argue that this process will not only
produce a more accurate, site-specific calibration, but will also help identify problems with
installation, measurement and technique. We fully agree with this conclusion.

4.2. FDR Response to Soil Properties

It is well known that the FDR response is affected by soil bulk density, clay and organic
matter content, voids and also salts (electrical conductivity). Therefore, we believe it is best
that each sensor is calibrated in situ for the specific soil horizon it is located in, since the
unique combination of all these factors in each horizon is hard to simulate in the lab, let
alone their interactions.

Soil bulk density (ρb) is one of the most spatially variable soil properties, especially in
the topsoil of forest soils [33]. Moreover, if ρb is not determined from the same sample as
the mass basis water content, there will be an error in the calculation of θv [11] and this
may seriously affect the quality of any calibration or validation dataset.

Bulk density in forest soils is strongly and inversely related with organic matter
content, which is its best predictor. The more organic the soil, the lower ρb, the higher the
meso- and macroporosity and the more water can be stored in the soil. In fine textured
soils, such as clays, their volume will change as they dry, so their ρb may not be a constant
and the relationship between FDR response and ρb may not be constant as well. Besides, if
the soils shrink, this might change the contact of the rods with the soil which will affect
measurement accuracy.

The response of the CS616 to changing water content has been shown to change for
some soils when bulk density exceeds 1500 kg m−3, which is seldom the case for the studied
soils. This response to changing water content is still well behaved, but the slope will
decrease with increasing bulk density [20]. Most laboratory calibrations in small or larger
containers try to mimic the average soil ρb of the field. Since ρb is strongly determining
the RMSPE as we found in our study, lab conditions will presumably underestimate real
intrinsic variation in field conditions and thus underestimate real RMSPE.

A big advantage of the CS616 is its larger measurement volume—about 3740 cm3

compared to other EM sensors mostly below 1000 cm3 [10]—which results in less spatial
variability than probes with a smaller measurement volume [3]. We expect effects from ρb
and other soil properties to be averaged over the 30 cm long rods.

The amount of organic matter and clay in a soil can alter the response of dielectric-
dependent methods to changes in water content. This is apparent when mechanistic models
are used to describe this measurement methodology, but less clear by using empirical
calibration models [11]. Standard calibration coefficients are given for the CS616 for mineral
soils with clay content less than 30% [20]. Consequently, higher clay contents require
specific calibration but this calibration is also influenced by conductivity, compaction
(ρb) and temperature. Therefore [10] suggested that manufacturers supply calibration
relationships for a general group of mineral soils (covering a wide range of textures) and
specifically for sandy and clayey soils. Udawatta et al. [15] suggested that future research
should focus on the effects of clay mineralogy on FDR response.

We found that fitting calibration functions for topsoil layers and especially for OFH
layers as part of the forest floor is quite complex and difficult. This is partly due to the high
intrinsic heterogeneity of the organo-mineral topsoils in forests both for the organic matter
content and the resulting ρb.

Since most studies on FDR are conducted in arable soils, we found no papers dealing
with FDR measurements in forest floor layers. For TDR, Schaap et al. [34] developed an
adequate linear calibration function for forest floor media. They report negligible effects
of decomposition, residual water and temperature on the calibration parameters, but a
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strong effect of shrinkage of the organic material both influencing θv and TDR reflection
times, which may cause errors up to 0.02 m3 m−3 if not accounted for. We expect the same
effects with FDR instruments. More research of FDR performance in forest floors and
organo-mineral soils is definitely needed.

It is clear from Table 10 and Figure A1 that standard functions are inadequate for pre-
dicting θv in forest floors but also in organo-mineral topsoils (Ah layers or M01). Problems
start when taking the calibration samples for sensors located in forest floors of variable
thickness (5–9 cm in our study) if the steel cylinders are already 5 cm in height. Impossible
to avoid sampling of mineral soil material. Similarly, sampling M01 without collecting
forest floor material is also tentative. In our study we applied a ρb threshold to discriminate
real forest floor samples from those contaminated with mineral soil, but this is a surrogate
solution. Anyway, it helped us to lower RMSPE from 0.22 to 0.05 m3 m−3 which is sur-
prisingly similar to the RMSPE of 0.06 m3 m−3 found by [10] for organic layers, using the
calibration function of [15]: θFDR = −0.283 + 0.0182PA + 0.0002PA2.

Vaz et al. [10] concluded that for the organic samples, FDR sensor outputs are in
general lower than for mineral soils. This is expected due to the low ρb. and high porosity
of organic materials. This statement is confirmed by the increasing slope in Figure 8b
compared to all samples (including mineral).

Accurate sensor readings depend on the absence of air gaps between the CS616 rods
and soil [13]. Their study showed that 50% of the sensed volume is concentrated in the first
6 mm around and between the rods. So, hence heterogeneity of materials or air gaps should
be avoided. However, since forest soils are full of life, bioturbation may cause tunnels
or gaps around sensor rods affecting the readings. In addition, cracking or shrinking
processes in clayey soils, such as in GON, might have disturbed sensor readings.

Campbell Ltd. [20] indicates that soils exhibiting bulk electrical conductivity (BEC) >
500 µS cm–1 will require a specific calibration. All soils in this study have an EC value well
below 500µS/cm (Table 1), so this was no issue in our study.

Metallic soil components such as ironstone, or sesquioxide rich Bs horizons may
affect FDR sensor readings [11] but we found no studies confirming that. Similarly,
large knowledge gaps exist for possible effects of soil biota (roots, mycorrhiza) affect-
ing FDR measurements, since these are transporting water. What if roots align with or
cross the rods of the CS616, which makes sense if these sensors are installed for decades.
Kang et al. [35] studied plant root growth effects in horticultural substrates. They found
that various root size indicators (root fresh weight, root dry weight, and root water content)
all had a negative effect on the estimation of θv by FDR sensors and that this effect should
be considered in research applications.

Several authors recommended considering soil temperature in the calibration process
of the CS616, since they found that diurnal fluctuations in soil temperature influenced the
sensor readings [3,4].

Varble et al. [4] suggested making sensor readings during periods that the soil tem-
perature is similar (for example, every early in the morning). Our calibration dataset was
compiled with observations just before or after noon, so a possible diurnal effect could not
be observed in our study. However, the recalibrated functions are applied to diurnal sensor
outputs and could therefore induce extra prediction error for data at night. Presumably this
possible error will be greater in the topsoil than in the subsoil due to temperature damping
with increasing depth.

We found that temperature correction applied in standard functions may significantly
reduce bias, but had a limited effect on precision error. So, a possible bias may be introduced
due to temperature effects and it is worthwhile to quantify its magnitude, preferably in the
field. The manufacturer mentions possible changes in water content due to temperature
effects of up to 0.005 m3 m–3 ◦C–1 in clayey soils. The magnitude of the temperature
sensitivity changes with water content, so the temperature correction assumes that both
the water content and temperature do not vary over the length of the probe’s rods [20].
With recalibration we found also that models including temperature correction were rarely
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supported (using AICs) as best models in the topsoil, but rather in (some) subsoil layers.
This may suggest that there is a risk of overfitting the calibration function by including
temperature correction given the low number of replicates.

A similar conclusion was drawn by [13]. They found that temperature compensation
was not satisfactory for most of the layers they calibrated. It may be necessary for soils
with high EC (>500 µS/cm) or electrically lossy clays (large surface area and CEC).

4.3. Spatio-Temporal Variation of Soil Water Content

We observed a quite high variability among the three gravimetric reference measure-
ments in each layer (Figures S1–S5), especially in the topsoil. A more stable calibration
value would have been obtained by 4 reference measurements around each sensor or 12
measurements per layer. The number of calibration samples per layer is ideally derived
from autocorrelation lengths based on spatio-temporal variogram studies of soil moisture
measurements in forest soils. However, Huisman et al. [36] state that determination of
correlation length from experimental variograms is highly uncertain even in the case of
100+ soil moisture measurements. Instead, they recommend ground penetrating radar
measurements to assess spatial water content variation over time, but this technique might
have its limitations in forest soils due to the presence of a forest floor and permanent
root systems. Vereecken et al. [37] pointed out that many studies have shown that the
correlation scale itself varies as a function of soil moisture content and increases as the soil
is drying. So, there is a temporal dimension as well to account for. All of these studies
indicate that the temporal variation of the correlation length is controlled by an interplay
of several forcings, including throughfall, evapotranspiration and structural elements such
as topography and soil properties and deterministic modelling using all these factors is
difficult. From the three profiles studied per plot (Figures A1–A5 and Figures S1–S5), we
found indications for inhomogeneous soil properties affecting soil moisture measurements
and the principal components analysis confirmed that ρb, TOC and clay content are im-
portant controls. However, intrinsic heterogeneity due to micro-topography, drainage
ditches, location of trees and ground vegetation patches could also play a role affecting
soil moisture measurements. A dedicated multi-annual soil moisture monitoring on a
highly instrumented site on one of the most variable plots (e.g., GON) would help to better
understand how spatio-temporal variation of soil water content can be explained.

5. Conclusions

On all sites, in situ recalibration removed the bias of standard functions up to
0.16 m3 m−3 in topsoils and reduced the overall prediction error by a factor of 1.8 to
2.8. Standard functions performed very poorly in organic and organo-mineral topsoil
layers and clayey substrates. Definitely, recalibration is required for each location where an
FDR sensor is installed and new layer-specific empirical calibration functions have to be
developed for each site in order to meet the data quality objectives (bias less than 0.01 m3

m−3 and RMSPE < 0.03 m3 m−3).
However, average single FDR sensor accuracy for the studied forest soils is 0.043 m3 m−3

so for most layers multiple sensors are required to predict average θv with an accuracy better
than 0.03 m3 m−3 at the plot scale. Operators should be aware of the level of effective field
accuracy of their sensors.

Prediction bias is strongly related with clay content and soil depth and therefore
there is a need for depth specific empirical calibration functions or mechanistic functions
that incorporate clay content and depth variables. Precision error is most positively
related to carbon content (organic matter) and negatively with soil bulk density. Especially
organo-mineral topsoil layers showing high ρb variation are hard to calibrate in situ due to
imprecise field measurements. The current number of sensors at GON is too low to reduce
the total measurement error and this might thwart future application of water balance
models for environmental modeling purposes.
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For most sites, more than 19 monthly calibrations are required to lower the bias
consistently below 0.01 m3 m−3, which is in fact a 2 drying and 1 rewetting phase if
calibration started when soils are near field capacity. We recommend intensifying the
calibration sampling during the growing season, for instance by two-weekly sampling
instead of monthly for a better spread of calibration points between field capacity and
permanent wilting point.

Finally, we found that two to three FDR sensors per layer for the Flemish ICP Forests
Level II study plots are adequate to reach an acceptable measurement accuracy in the
homogeneous sand and silt loam sites, but up to 10 to 16 sensors may be required in
heterogeneous topsoil or clayey subsoil layers of the other sites to account for their high
intrinsic variability, otherwise hydrological modeling will be tentative.

Future research should focus on development of dedicated calibration functions for
forest floors and other organic layers followed by an adequate in situ validation.

Supplementary Materials: The following Supplementary data are available online at https://www.
mdpi.com/article/10.3390/app112411620/s1. Figures S1–S5—Layer specific relationships between
reference gravimetric water content and FDR sensor measurements for each site; Tables S1–S5 with
Coefficients and predictive quality of standard calibration functions for all profiles and depths
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Appendix A

Table A1. Stand and site characteristics of the 5 Level II plots.

Site WIJ RAV BRA GON HOE

ICP Forests LII
plot code 1 2_11 2_14 2_15 2_16 2_21

Location Wijnendale Ravels Brasschaat Gontrode Hoeilaart
Latitude [DD] 51.06946 51.40306 51.30762 50.97501 50.74722

Longitude [DD] 3.03612 5.05694 4.51982 3.80433 4.41472
Altitude [m asl] 31 35 14 26 129

MAT [◦C] 11 10.4 10.8 10.6 10.7
MAP [mm] 867 887 882 786 854

https://www.mdpi.com/article/10.3390/app112411620/s1
https://www.mdpi.com/article/10.3390/app112411620/s1
http://icp-forests.net/page/data-requests
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Table A1. Cont.

Site WIJ RAV BRA GON HOE

Type Deciduous
broadleaved

Evergreen
coniferous

Evergreen
coniferous

Deciduous
broadleaved

Deciduous
broadleaved

EFTC 2 6.Beech forest 14.Introduced tree
species

2.Nemoral
coniferous forest

5.Mesophytic
deciduous forest 6.Beech forest

Dom. tree species Fagus sylvatica Pinus nigra Pinus sylvestris;
Betula pendula

Quercus robur;
Fagus sylvatica Fagus sylvatica

Age [yr] 86 91 92 103 112
Top height 3 [m] 30.57 27.96 22.36 31.01 37.18
Basal area 4 [m2] 30.97 42.56 28.53 36.39 33.30
Stem density 5

[n/ha]
152 404 576 548 224

Humus system 6 Mor Mor Mor Moder Moder
Reference Soil

Group 7 Umbrisol Arenosol Arenosol Planosol Retisol

Soil qualifiers 7
Endogleyic, Folic,

Endoaric,
Endoraptic

Hyperdystric,
Albic, Endogleyic,

Folic, Humic

Hyperdystric,
Albic, Brunic,

Gleyic, Aric, Raptic

Eutric, Luvic, Folic,
Clayic, Siltic,

Ochric, Endoraptic

Hyperdystric,
Glossic, Fragic,

Abruptic, Cutanic,
Differentic,
Pantosiltic,
Profondic

Parent Material Eolian sands Eolian sands Eolian sands Loamy loess on
Tertiary clay Loamy loess

1 Plot code is concatenation of Country code_Plot number, 2 European Forest Type Category [24], 3 Top height is the average of all dominant
trees with height > 19 m during winter 2019–2020, 4 Basal area is sum of all trees with diameter > 5 cm (winter 2019–2020), 5 Stem density is
number of all trees with diameter > 5 cm (winter 2019–2020), 6 according to [25], 7 according to [23].

Table A2. FDR sensor depth (cm) relative to the top of the mineral horizon. Negative depths are in the forest floor. Center
of Kopecky cylinders for reference sampling are situated at the same depth.

WIJ RAV BRA GON HOE

Layer A B C A B C A B C A B C A B C

OFH −2 −4 −3 −4
M01 2 1 1 2.5 3.5 0 7 4 5 5 4
M12 12.5 11 8 16 13 14 15 16 25 17 7 19 19 20 15
M24 36 31 28 30 31 29 35 36 40 37 20 35 39 45 42
M48 57 61 59 60 61 62 73 66 60 58 55 58 62 66 60
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Table A3. Summary statistics of calibration dataset by site and soil layer.

Depth Period Average (PA, µs) Soil Temperature (ST, ◦C) 1 Bulk Density (ρbKop, kg m−3) Gravimetric SWC (θm, g kg−1) Volumetric SWC (θv, m3 m−3)

Site Seq. Layer n Mean CI95 Mean Range Mean CI95 Mean Range Mean CI95 Mean Range Mean CI95 Mean Range Mean CI95 Mean Range

WIJ 1 OFH 47 27.8 [26.9, 28.7] 20.5–32.5 11.5 [9.2, 15.2] 5.5–25.0 559 [498, 616] 190–840 1343 [1139, 1609] 493–3476 0.59 [0.57, 0.61] 0.41–0.73
1 M01 28 28.7 [27.6, 29.5] 20.3–32.1 12.5 [10.2, 16.2] 6.4–24.2 1066 [1010, 1122] 870–1320 404 [367, 442] 208–593 0.42 [0.39, 0.44] 0.27–0.53
2 M12 75 24.2 [23.8, 24.6] 19.7–26.4 10.6 [9.5, 11.8] 6.2–15.4 1335 [1290, 1358] 420–1530 221 [200, 301] 117–1592 0.28 [0.27, 0.30] 0.14–0.67
3 M24 75 24.2 [23.6, 24.9] 18.4–30.0 10.5 [9.6, 11.6] 6.7–14.9 1317 [1297, 1335] 1110–1500 208 [198, 218] 117–335 0.27 [0.26, 0.29] 0.15–0.41
4 M48 75 24.6 [23.9, 25.3] 18.4–28.7 10.4 [9.5, 11.4] 7–14.5 1441 [1418, 1461] 1130–1620 195 [182, 209] 76.4–379 0.28 [0.26, 0.29] 0.11–0.46

RAV 1 OFH 2 21.6 - 18.6–24.6 15.8 - 15.8–15.8 765 - 690–840 470 - 260–680 0.35 - 0.23–0.47
1 M01 73 22.7 [22.1, 23.4] 17.8–29.4 10.2 [8.8, 11.6] 4.6–16.7 1434 [1395, 1467] 990–1660 179 [165, 196] 53.2–409 0.25 [0.23, 0.27] 0.07–0.43
2 M12 75 23.5 [23.1, 24.0] 18.4–26.3 10.4 [9.2, 11.6] 5.4–15.8 1461 [1434, 1485] 1150–1660 136 [125, 148] 43–262 0.2 [0.18, 0.21] 0.06–0.34
3 M24 75 21.7 [21.3, 22.1] 17.7–24.8 10.5 [9.4, 11.7] 5.8–15.6 1399 [1376, 1422] 1190–1670 143 [133, 154] 48–298 0.2 [0.18, 0.21] 0.06–0.36
4 M48 75 19.7 [19.5, 20.1] 17.9–26.4 10.4 [9.4, 11.4] 6.4–14.5 1602 [1582, 1617] 1310–1760 74.3 [68.4, 82.6] 27.9–213 0.12 [0.11, 0.13] 0.05–0.28

BRA 1 M01 75 21.7 [21.3, 22.2] 17.4–26.2 10.7 [9.1, 12.4] 4.1–17.7 1378 [1337, 1407] 640–1570 154 [140, 177] 49.1–603 0.2 [0.19, 0.22] 0.07–0.39
2 M12 75 21.2 [20.7, 21.6] 17.0–25.5 10.7 [9.3, 12.2] 4.8–16.3 1440 [1416, 1460] 1140–1590 130 [120, 142] 38.4–301 0.19 [0.17, 0.20] 0.05–0.38
3 M24 75 20.2 [19.9, 20.4] 17.2–22.4 10.9 [9.7, 12.2] 5.7–16.0 1494 [1476, 1513] 1220–1700 115 [106, 124] 38.5–228 0.17 [0.16, 0.19] 0.06–0.33
4 M48 75 22.9 [22.5, 23.3] 18.2–26.6 10.7 [9.6, 11.8] 6.4–15.3 1549 [1532, 1564] 1280–1700 121 [112, 129] 48.8–201 0.19 [0.17, 0.20] 0.08–0.30

GON 1 OFH 50 30.2 [29.4, 31.0] 23.6–34.1 10.5 [8.7, 12.3] 4.1–16.1 509 [450, 570] 200–830 1495 [1255, 1787] 370–3449 0.58 [0.54, 0.61] 0.22–0.78
1 M01 25 30 [29.1, 30.9] 24.7–33.9 9.8 [7.7, 12.1] 5.7–15.6 1031 [986, 1084] 870–1300 469 [431, 523] 295–824 0.47 [0.45, 0.52] 0.36–0.78
2 M12 75 28 [27.5, 28.5] 22.2–31.1 10.3 [9.1, 11.6] 4.9–15.7 1095 [1050, 1141] 550–1440 400 [366, 440] 158–1036 0.41 [0.39, 0.43] 0.18–0.59
3 M24 75 31.1 [29.8, 32.2] 20.2–38.3 10.2 [9.0, 11.4] 5.3–15.2 1221 [1177, 1261] 530–1580 325 [300, 356] 115–804 0.38 [0.36, 0.40] 0.14–0.59
4 M48 75 38.6 [37.9, 39.2] 31.7–41.9 10.1 [9.1, 11.2] 5.7–14.7 1193 [1149, 1241] 720–1740 394 [364, 423] 151–683 0.45 [0.42, 0.47] 0.22–0.62

HOE 1 OFH 2 29.6 - 28.9–30.2 4.8 - - 775 - 700–850 818 - 674–962 0.62 - 0.57–0.68
1 M01 76 27.7 [27.1, 28.3] 21.7–31.0 9.9 [8.5, 11.3] 4.5–15.4 1239 [1209, 1268] 900–1480 364 [344, 386] 182–660 0.44 [0.42, 0.46] 0.25–0.59
2 M12 78 27.1 [26.5, 27.6] 21.6–29.6 9.6 [8.4, 11.0] 4.6–15.1 1430 [1410, 1451] 1220–1700 255 [242, 267] 127–372 0.36 [0.35, 0.38] 0.16–0.48
3 M24 78 27.9 [27.5, 28.2] 23.4–29.4 9.7 [8.5, 11.0] 5.0–14.9 1539 [1515, 1560] 1290–1770 222 [212, 232] 133–365 0.34 [0.33, 0.35] 0.18–0.47
4 M48 78 29.2 [29.0, 29.3] 27.0–30.5 9.5 [8.4, 10.6] 5.2–14.2 1571 [1554, 1587] 1400–1710 218 [212, 224] 161–291 0.34 [0.33, 0.35] 0.23–0.43

1 Soil temperature is measured in Profile A only.
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Table A4. AICc based selection of best and second best recalibrated model types for each profile and
layer with AICc weights (AICsWt) and evidence ratios (ER). The ER indicates how many times more
parsimonious the best model is over the second best model.

Site Profile Layer Best Model AICcWt 2nd Best Model AICcWt ER

WIJ A M01 LM 0.506 LMTC 0.250 2.03
M12 LMTC 0.496 LM 0.305 1.63
M24 LMTC 0.529 LM 0.264 2.00
M48 LM 0.323 LMTC 0.242 1.33

B OFH QM 0.422 LM 0.249 1.70
M12 QMTC 0.504 QM 0.197 2.56
M24 LM 0.392 LMTC 0.292 1.34
M48 LMTC 0.440 LM 0.365 1.21

C OFH LM 0.400 LMTC 0.384 1.04
M12 LM 0.508 LMTC 0.282 1.80
M24 QMTC 0.483 QM 0.451 1.07
M48 LM 0.428 LMTC 0.352 1.21

RAV A M01 LM 0.407 LMTC 0.391 1.04
M12 LMTC 0.505 LM 0.258 1.96
M24 LM 0.406 LMTC 0.399 1.02
M48 LMTC 0.365 LM 0.287 1.27

B M01 LM 0.472 LMTC 0.320 1.47
M12 LM 0.281 LMTC 0.277 1.01
M24 LM 0.392 LMTC 0.292 1.34
M48 LM 0.520 QM 0.226 2.30

C M01 LMTC 0.432 LM 0.337 1.28
M12 QM 0.949 QMTC 0.042 22.8
M24 LM 0.431 LMTC 0.217 1.98
M48 QM 0.645 QMTC 0.314 2.05

BRA A M01 LM 0.463 LMTC 0.329 1.41
M12 LM 0.420 LMTC 0.370 1.14
M24 QM 0.308 LMTC 0.251 1.23
M48 QM 0.498 LM 0.240 2.07

B M01 LM 0.449 LMTC 0.259 1.73
M12 LM 0.419 LMTC 0.319 1.31
M24 LM 0.427 LMTC 0.329 1.30
M48 LMTC 0.413 LM 0.244 1.69

C M01 LM 0.412 LMTC 0.296 1.39
M12 QMTC 0.630 LMTC 0.169 3.73
M24 LMTC 0.549 LM 0.255 2.16
M48 LM 0.390 LMTC 0.341 1.14

GON A M01 LM 0.712 QM 0.179 3.97
M12 QM 0.314 LM 0.289 1.09
M24 LMTC 0.427 LM 0.350 1.22
M48 LMTC 0.498 LM 0.250 1.99

B OFH LM 0.667 QM 0.169 3.95
M12 QMTC 0.821 LMTC 0.092 8.90
M24 LMTC 0.472 LM 0.305 1.55
M48 LM 0.343 LMTC 0.336 1.02

C OFH LM 0.574 LMTC 0.217 2.65
M12 QMTC 0.558 LM 0.240 2.32
M24 LM 0.657 QM 0.268 2.45
M48 QMTC 0.488 LM 0.226 2.16
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Table A4. Cont.

Site Profile Layer Best Model AICcWt 2nd Best Model AICcWt ER

HOE A M01 LM 0.552 LMTC 0.215 2.57
M12 QM 0.468 LM 0.308 1.52
M24 LMTC 0.690 QMTC 0.181 3.81
M48 LMTC 0.395 LM 0.368 1.07

B M01 QM 0.374 LM 0.306 1.23
M12 LM 0.532 QM 0.296 1.80
M24 LMTC 0.612 QMTC 0.228 2.68
M48 LM 0.389 LMTC 0.264 1.47

C M01 LM 0.462 LMTC 0.287 1.61
M12 LM 0.530 QM 0.304 1.74
M24 LM 0.630 QM 0.170 3.70
M48 LM 0.720 QM 0.176 4.08

Table A5. Finally selected recalibrated functions for all sites and layers with their prediction quality indices.

Coefficients Prediction Quality

Site Profile Layer Model C0 C1 C2 R2
adj RMSPE dr

WIJ A M01 LM −0.606312 0.036363 - 0.102 0.1165 0.547
M12 LMTC −0.242666 0.020704 - 0.787 0.0213 0.794
M24 LMTC −0.136595 0.016481 - 0.822 0.0282 0.792
M48 LM −0.361767 0.025925 - 0.859 0.0317 0.833

B OFH LM 0.39962 0.008767 - 0.276 0.0417 0.562
M12 LMTC −0.44317 0.028264 - 0.304 0.0763 0.596
M24 LM −0.33985 0.024922 - 0.753 0.0278 0.751
M48 LMTC −0.26083 0.020252 - 0.792 0.0307 0.78

C OFH LM 0.39962 0.008767 - 0.276 0.0417 0.562
M12 LM −0.2188 0.021074 - 0.674 0.0217 0.715
M24 QMTC −0.9755 0.091207 −0.0016 0.731 0.0278 0.748
M48 LM −0.10914 0.016292 - 0.793 0.0329 0.787

RAV A M01 LM 0.128851 0.004916 - 0.012 0.062 0.504
M12 LMTC −0.30848 0.02074 - 0.47 0.0418 0.659
M24 LM −0.31094 0.023671 - 0.527 0.0337 0.654
M48 LMTC −0.40985 0.025594 - 0.718 0.0115 0.737

B M01 LM −0.22922 0.023997 - 0.418 0.0596 0.592
M12 LM −0.03778 0.010414 - 0.126 0.0606 0.519
M24 LM −0.13118 0.016274 - 0.18 0.0533 0.582
M48 LM −0.46501 0.029232 - 0.693 0.015 0.749

C M01 LMTC −0.08591 0.012619 - 0.271 0.0673 0.567
M12 LM −0.54236 0.030826 - 0.606 0.0462 0.686
M24 LM −0.46445 0.028796 - 0.613 0.0379 0.723
M48 QM −1.811908 0.159353 −0.003051 0.827 0.0188 0.786

BRA A M01 LM −0.46195 0.029329 - 0.572 0.0531 0.71
M12 LM −0.4655 0.032457 - 0.569 0.0419 0.674
M24 QM 3.513639 −0.39108 0.01113 0.63 0.032 0.697
M48 QM 2.004305 −0.18441 0.00445 0.742 0.024 0.749

B M01 LM −0.37521 0.026302 - 0.45 0.0519 0.638
M12 LM −0.46384 0.032053 - 0.577 0.0382 0.688
M24 LM −0.45503 0.030181 - 0.634 0.0291 0.707
M48 LMTC −0.2654 0.020287 - 0.621 0.0297 0.665

C M01 LM −0.40277 0.029549 - 0.468 0.0511 0.664
M12 QMTC 2.685401 −0.24947 0.00605 0.591 0.0438 0.659
M24 LMTC −0.67844 0.042803 - 0.564 0.0446 0.649
M48 LM −0.27922 0.021949 - 0.528 0.0357 0.627
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Table A5. Cont.

Coefficients Prediction Quality

Site Profile Layer Model C0 C1 C2 R2
adj RMSPE dr

GON A M01 LM −0.70751 0.043 - 0.516 0.0677 0.618
M12 QM 3.422366 −0.27949 0.006171 0.697 0.0461 0.723
M24 LMTC −0.28558 0.02309 - 0.803 0.0409 0.814
M48 LMTC 0.064455 0.008269 - 0.239 0.0755 0.545

B OFH LM −0.450262 0.033966 - 0.716 0.0591 0.749
M12 LMTC −0.309709 0.02574 - 0.509 0.0588 0.625
M24 LMTC −0.42131 0.022229 - 0.456 0.0589 0.616
M48 LM 0.167012 0.008683 - 0.057 0.0618 0.513

C OFH LM −0.450262 0.033966 - 0.716 0.0591 0.749
M12 LM −0.389548 0.027291 - 0.124 0.075 0.513
M24 LM −0.68547 0.032331 - 0.266 0.0468 0.558
M48 LM 0.22404 0.004552 - 0.003 0.0998 0.495

HOE A M01 LM −0.32741 0.026886 - 0.576 0.0442 0.685
M12 QM −2.7324 0.202518 −0.00324 0.916 0.0201 0.872
M24 LMTC −0.95799 0.043073 - 0.73 0.0269 0.77
M48 LMTC −0.64529 0.032059 - 0.705 0.0227 0.74

B M01 QM −1.56127 0.128421 −0.00204 0.835 0.0287 0.793
M12 LM −0.46119 0.030068 - 0.955 0.019 0.91
M24 LMTC −0.63709 0.032494 - 0.797 0.0288 0.779
M48 LM −0.88683 0.0411 - 0.66 0.0244 0.718

C M01 LM 0.022978 0.016508 - 0.374 0.0547 0.602
M12 LM −0.29728 0.024898 - 0.865 0.0245 0.823
M24 LM −0.35907 0.026401 - 0.67 0.0361 0.686
M48 LM −0.83325 0.04117 - 0.749 0.0218 0.74
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Appendix B. Standard and Recalibrated Soil Water Series
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Figure A1. Soil water content (m3 m−3) according to standard and recalibrated functions for each profile and layer of the 
WIJ plot with indication of field capacity and permanent wilting point for mineral soils (dashed lines). 
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WIJ plot with indication of field capacity and permanent wilting point for mineral soils (dashed lines).
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Figure A2. Soil water content (m3 m−3) according to standard and recalibrated functions for each profile and layer of the 
RAV plot with indication of field capacity and permanent wilting point for mineral soils (dashed lines). 
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RAV plot with indication of field capacity and permanent wilting point for mineral soils (dashed lines).
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Figure A3. Soil water content (m3 m−3) according to standard and recalibrated functions for each profile and layer of the 
BRA plot with indication of field capacity and permanent wilting point for mineral soils (dashed lines). 
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Figure A4. Soil water content (m3 m−3) according to standard and recalibrated functions for each profile and layer of the 
GON plot with indication of field capacity and permanent wilting point for mineral soils (dashed lines). 
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Figure A5. Soil water content (m3 m−3) according to standard and recalibrated functions for each profile and layer of the 
HOE plot with indication of field capacity and permanent wilting point for mineral soils (dashed lines). 
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