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Abstract: Over the last decade, a driver’s distraction has gained popularity due to its increased
significance and high impact on road accidents. Various factors, such as mood disorder, anxiety,
nervousness, illness, loud music, and driver’s head rotation, contribute significantly to causing a
distraction. Many solutions have been proposed to address this problem; however, various aspects
of it are still unresolved. The study proposes novel geometric and spatial scale-invariant features
under a boosting framework for detecting a driver’s distraction due to the driver’s head panning.
These features are calculated using facial landmark detection algorithms, including the Active Shape
Model (ASM) and Boosted Regression with Markov Networks (BoRMaN). The proposed approach is
compared with six existing state-of-the-art approaches using four benchmark datasets, including
DrivFace dataset, Boston University (BU) dataset, FT-UMT dataset, and Pointing’04 dataset. The proposed
approach outperforms the existing approaches achieving an accuracy of 94.43%, 92.08%, 96.63%, and
83.25% on standard datasets.

Keywords: distraction; boosting; yaw angle; temporal features; motion vectors; classifier

1. Introduction

Drowsiness and distraction are the two most significant reasons for fatal car accidents
in the last two decades [1]. In 2017, the US Department of Transportation’s National
Highway Traffic Safety Administration (NHTSA) reported that 795 causalities in vehicle
crashes were the result of driver drowsiness, which was 2.3–2.5% of the total fatal crashes
in the US. According to NHSTA reports, 2841 lives were claimed in the accidents due to
distracted drivers in 2018, which was 6–9% of the total fatal crashes in the US [2]. At the
time of a crash, 13% of distracted drivers were using their cell phones, indicating that cell
phone usage was a major cause of these crashes [2]. Some signs that indicate the drowsiness
of a driver include the inability to keep eyes open, frequent yawning, leaning the head
forward, and face complexion change [3].

There are various metrics to determine the level of a driver’s drowsiness: physiolog-
ical, vehicle-based, and behavioral measures [4,5]. In behavioral measures, information
is based on the camera to detect slight changes in the driver’s facial expression. Facial
expression analysis uses a combination of multiple facial features to predict various charac-
teristics of the face, such as attractiveness [6] or disease [7]. It also can be used to evaluate
driver drowsiness, such as extreme head poses and wrinkles in the forehead [8–10], and
facial landmarks [11]. Eye blink rate and eye closure rate are other drowsiness detection
measures [12–14], along with the physiological signal registered using wearable (on-body)
sensors, such as electroencephalography (EEG) [15,16], respiratory signals [17], electro-
cardiogram/photoplethysmogram (ECG/PPG) signals [18,19], and heart rate variability
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(HRV) [20]. Finally, the sitting posture of the human body can be recognized and evaluated
using motion sensors [21,22] or video recordings [23,24] as well as hand gestures [25].

Distraction is mainly a result of the driver’s in-attention that may be due to cell
phone usage, eating, talking to other passengers, texting, or adjusting the radio or climate
controls. In terms of the driver’s functionality, the NHTSA characterizes distraction as
auditory, biomechanical, visual, or cognitive [26]. Various approaches for detecting driver
distraction have been developed, which can be classified based on the parameters being
measured as driving performance, subjective, physical, biological, and hybrid measures.
Driving performance measurements, such as braking, steering, and other relevant driving
behaviors, are among these that can be used to detect visual distraction [27]. Eye gaze
is a useful distraction measuring tool, while subjective measures cannot be obtained in
real-time in an uncontrolled driving environment. The drivers’ biological measures also
affect the driving operation.

Human lives can be saved by using effective automatic distraction detection technolo-
gies. One way for detecting driver distraction is to detect the driver’s 3D head rotation,
which can be classified into three types: changes in the yaw angle produce spinning (rota-
tion in the horizontal plane), rotation caused due to the changes in pitch angle (rotation in
the vertical plane), and rotation caused due to the changes in roll angle (back and forth
rotation). The paper proposes a scale-invariant system under a boosting framework that
can detect the driver’s head rotation due to a change in the yaw angle more accurately
than the existing state-of-the-art methods. The work also proposes spatial and temporal
variance-based features that estimate the geometric orientation of a driver’s head.

The structure of this paper is as follows. Section 2 discusses related work on the
drivers’ distraction. Section 3 describes the proposed methodology for distraction detection
due to drivers’ head panning, while the results and discussion are explained in Section 4.
Section 5 presents the conclusion and discusses future work.

2. Related Work

Typically, head pose estimation is the first step in many driving safety applications.
The head pose estimation methods can be categorized into visual methods, which monitor
the position of face, its expression, and various movements of its parts, such as blinking or
yawning. On the other hand, multimodal methods combine information from driver videos
or images with additional data obtained from physiological or embedded car sensors.

An example of a visual method is the study of Nikolaidis et al., which calculated
head yaw from the distortion of the isosceles triangle made by the mouth and the two
eyes [28]. They make use of the facial feature point locations and head shape to estimate
the head pose. Another work proposed geometric models that only used the location of
the center of the face and face boundaries for head yaw estimation [29]. The geometric
methods for head yaw estimation are invariant to facial expressions, support large head
rotations, and work with or without glasses. Ji et al. proposed a similar approach for
estimating and tracking the 3D pose of a face obtained from a single monocular camera [30].
The shape of the 3D face was estimated by the ellipse and its aspect ratio. The detected
face ellipse was then tracked in subsequent frames, which allowed tracking the 3D face
pose. The authors claimed that their approach was more robust than existing feature-
based approaches based on synthetic and real datasets. Zhang et al. proposed a system
for estimating a head pose based on multi-view face detectors using a Naive Bayesian
classifier [31]. The temporal variation of the head pose was modeled by HMM that
predicted the optimal head pose. Ohue et al. developed a driver’s facial pose recognition
system that alarms if the face was distracted [32]. Wang utilized the mouth and eye corner
points for vanishing point and head pose estimation [33]. The authors reported the mean
error in head pose estimation of 2.56°, 1.67°, and 3.54° around the X-axis, Y-axis, and Z-axis,
respectively, over eight video sequences. Balasubramanian et al. proposed a framework
called Biased-Manifold Embedding for obtaining performance improvement in head pose
estimation [34]. The experimental results obtained an average pose angle estimation error
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up to 2° on the FacePix dataset, which contained 5430 face images with pose variations
at a granularity of 1°. Wang et al. developed an approach that combined non-linear
techniques of dimensionality reduction with a learned distance metric transformation [35].
The experimental results showed that their method achieved accuracy in the range of
97% to 98% for facial images with varying poses and 96–97% accuracy on images with
both pose and illumination variations. Fu et al. demonstrated that discriminating power
can be sufficiently boosted by applying the local manner in sample space, feature space,
and learning space via linear subspace learning [36]. Experiments demonstrated that the
local approach had around a 20% estimation error in head pose and 30% error in pitch.

Morency et al. presented a probabilistic framework that integrated the three ap-
proaches: the user independence and relative precision of differential registration, the sta-
bility and automatic initialization of static head pose estimation, and bounded drift of
frame tracking [37]. Ji et al. proposed a novel regression method for learning the regression
between pose angles and image features and noise removal and outlier detection from
the training data [38]. Experiments on real data with outliers demonstrated an MAR of
9.1° in yaw estimation and 12.6° in pitch estimation. Hu et al. proposed a method for
improving the accuracy of head pose estimation [39]. The symmetry of the face image
and the head pose resulted in the use of Gabor filters and Local Binary Pattern operators
in one-dimension. The experiments on two different datasets resulted in a mean yaw
estimation error of 7.33°.

Some visual methods used three-dimensional (3D) tracking. For example, Yan et al.
proposed a novel manifold embedding algorithm supervised by both identity and pose
information, called synchronized sub-manifold embedding (SSE), for precise 3D pose esti-
mation [40]. The experiments on the 3D pose estimation dataset, CHIL data for CLEAR07
evaluation, showed 6.60° mean pan estimation error and 8.25° mean tilt estimation er-
ror. Murphy-Chutorian et al. presented a new method for static head pose estimation
and a new algorithm for visual 3D tracking [41]. The system consisted of three intercon-
nected modules that detected the driver’s head, provided initial estimates of the head
pose, and continuously tracked its position and orientation with six degrees of freedom.
Experimental results showed the mean estimation error of 3.62° in yaw, and 9.28° in pitch
during the day driving. For night driving, the yaw estimation error of 5.18° and pitch
estimation error of 7.74° was reported. Narayanan et al. proposed the head yaw angle esti-
mation, with the advantages of real-time performance, ability to work with low-resolution
images, and tolerable to partial occlusions [42]. The proposed model achieved an MAR
of 6.65° in head yaw estimation. Tran et al. proposed a vision-based distraction detec-
tion system that used four deep network architectures [43]. Residual Network, VGG-16,
AlexNet, and GoogleNet architectures resulted in a performance of frequency in the range
of (8–14 Hz) and an accuracy in the range of (86–92%). The GoogleNet outpeformed the
other network, yielding frequency of 11 Hz at an accuracy of 89%. Ruiz et al. presented a
robust method to determine a head pose by using a multi-loss convolutional neural net-
work to predict the intrinsic yaw angle, pitch angle, and roll angle directly from the image
intensity through pose classification and regression [44]. The authors claimed promising
results on common pose benchmark datasets. Eraqi et al. proposed a genetically weighted
ensemble of convolutional neural networks on a publicly available dataset with a great
variety of distraction postures, reporting an accuracy of 90% [45].

Minaee et al. surveyed the face detection techniques and summarized five important
models, cascade-CNN-based models, R-CNN-based models, single-shot detector models,
feature pyramid network-based models, and transformers-based models [46]. The authors
reported an accuracy of 34.5% to 96.5% on the Wider-Face dataset. The authors discussed
major challenges in face detection, such as robustness on tiny faces, face occlusion, accurate
lightweight models, few-shot face detection, interpretable deep models, and face detection
bias reduction. Alotaibi et al. proposed a posture recognition system for drivers’ distraction
based on a deep recurrent neural network (RNN) that yielded an accuracy of 96.23% and
92.36% on the StateFarm and AUC datasets, respectively, [47]. Yang et al. proposed head
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pose estimation from a single image [48]. The authors proposed a fine-grained structure
mapping for spatially grouping features before aggregation. The fine-grained structure
provides part-based information and pooled values. The authors claimed to have results
comparable to the most recent methods. Torres et al. explored the machine learning
algorithms to detect driver distraction due to smartphone usage [49]. The authors reported
that more than 95% accuracy can be obtained using CNN and gradient boosting methods.
Ye et al. proposed a driver fatigue detection system based on the residual channel attention
network and head pose estimation [50]. The authors reported 98.62% accuracy of detecting
eye state and 98.56% of detecting mouth state. The authors also proposed the perspective-n-
point method to estimate excessive deflection of head. Xing et al. proposed a driver activity
recognition system based on deep convolutional neural networks and reported to achieve
an accuracy of 81.6% using AlexNet, 78.6% using GoogleNet, and 74.90% using ResNet50
neural networks [51]. Chen et al. proposed a two-stream CNN model to estimate the
spatial and temporal parameters of driver behavior [52]. The authors reported an increase
in accuracy of 30% compared to the score-level fusion neural network model.

In multimodal head pose estimation, gaze tracking is often used to improve the head
pose estimation result. For example, Valenti et al. proposed a hybrid scheme to combine eye
location and head pose information to yield better gaze estimation [53]. The information
obtained from the head pose was utilized for normalizing the eye regions, while the
information generated by the eye location was used for correcting the pose estimation
procedure. The experimental results indicated that the combined gaze estimation system
was accurate with a mean error of 2–5°. Fu et al. studied a gaze tracking system that was
important for monitoring driver’s attention, detecting fatigue, and providing better driver’s
assistance systems, but it was difficult to deploy due to large head movements and highly
variable illumination [54]. The authors proposed a calibration method for determining the
head orientation of the driver that utilized the rear-view mirror, the side mirrors, and the
instrument board as calibration points. The system categorized the head pose in twelve gaze
zones based on facial features using a self-learning algorithm. Experimental results showed
that the automatic calibration method achieved an MAR of 2.44° in yaw estimation and an
MAR of 4.73° in pitch estimation during day and night driving. Vicente et al. described
a vision-based system to detect Eyes Off the Road (EOR) distraction [55]. The system
had three components: head pose and gaze estimation, robust facial feature tracking,
and 3D geometric reasoning to detect EOR distraction. Experimental evaluation under a
wide variety of illumination conditions, facial expressions, and individuals showed that
the system achieved above 90% EOR accuracy for all tested scenarios. Hirayama et al.
proposed a data mining approach for comparing the neutral driving state with the cognitive
distracted state by monitoring the vehicle behavior and driver’s gaze variations [56].
The proposed method achieved a classification accuracy of 96.2% under the distracted
condition and 76.6% under neutral condition. Fridman et al. investigated the question:
How much better could the driver gaze be classified using both eye and head pose versus
only head pose [57]? The experimental results showed that eye pose increased the average
accuracy from 89.2% to 94.6%. Lee et al. proposed a method that relied on fuzzy-system
for detecting a driver’s corneal and pupil specular reflection (SR) that could track the gaze
in a vehicle environment [58]. Based on the fuzzy output, the proposed method excluded
the eye region that had a high error rate. Experimental results on 20,654 images showed
that the method achieved a mean pupil detection error of 4.06 pixels and a mean corneal
SR detection error of 2.48 pixels across different gaze regions.

Additionally, information obtained from external car monitoring can be used. For ex-
ample, Loce et al. emphasized that major advancements in driver distraction could be
achieved by jointly analyzing and fusing the internal state of the vehicle and the external
state of the vehicle [59]. The authors pointed out that in the CARSAFE mobile applica-
tion, 83% precision and 75% recall rate for dangerous driving situations were achieved
by combining both the internal video monitoring of vehicle and external video moni-
toring. Streiffer et al. proposed using deep learning-based classification (DarNet) on
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driver image data and inertial measurement unit data, attaining an accuracy of 87.02% [60].
Hssayeni et al. reported an accuracy of 85% with ResNet deep convolutional network on
a dataset that incorporates drivers engaging in seven different distracting behaviors [61].
Peng et al. established a platform in which unexpected lane changing of cars was used as
typical risky driving behavior [62]. The authors established a neural network identification
model based on a Bayesian filter using data samples to identify risky driving behaviors. The
experimental results indicated an identification accuracy of 83.6% with the neural network
model only, but this could be increased to 92.46% if the Bayesian filter was also used.

The previous works, including the features and the methods used alongside their
limitations, are summarized in Table 1. Note that none of the distraction detection measures
are accurate enough for detecting distraction in all scenarios, so hybrid measures are used.

Table 1. Comparison of some existing distraction detection methods. Ref = Reference, Acc = Accuracy.

Ref Approach Acc Features Limitations

[45] genetically weighted CNNs 90.0% face, hand images high training time

[55] supervised descent method 90.0% facial features high complexity

[56] data-mining 95.4% gaze transition large cycle time

[57] gaze detection 94.6% eye pose large decision time

[62] CNN, bayesian filter 92.5% lane departure high complexity

[63] regression-based ML, fuzzy logic 80.0% speed deviation low accuracy

[64] deep learning 86.0% texting high training time

[49] gradient boosting 95.0% hand and face images high complexity

[65] face-matching-based fuzzy expert system 78.0% eyelid distance, eye closure rate low accuracy

3. Materials and Methods
3.1. Proposed Distraction Detection System

The distraction caused by the movement of the driver’s head around the X-axis, Y-axis,
and Z-axis corresponds to changes in pitch, yaw, and roll angles, respectively. The changes
in pitch angle (forward to backward movement of the neck), yaw angle (right to left
rotation of the head), and roll angle (right to left bending of the neck) are also named as
head nodding, panning, and tilting, respectively. This study proposes a feature-based
system to detect head panning of a driver under a boosting framework, as shown in
Figure 1. The approach has been tested using the publicly available standard datasets
including DrivFace [66], Boston University [67], and Pointing’04 [68].

3.1.1. Temporal and Spatial Variance for Driver’s Distraction Detection

The study aims to calculate the 3D rotation vector R corresponding to the panning of
a driver’s head. If the 3D rotation vector R for the driver’s head panning reaches above
20 degrees in a clockwise or anticlockwise direction, then the frame contains Distraction
(D); otherwise, it contains No Distraction (ND). It has been observed that the rotation vector
R changes with the change in features of the frame. The geometric features for frontal faces
are calculated using fiducial facial points. In the case of non-frontal faces, the geometric
features are calculated using interpolation based on motion vectors.

The active appearance model (AAM) minimizes the residual error between the
model appearance and the input image; hence, it often fails to accurately converge to
the landmark points of the input image. To alleviate this problem, the active shape model
(ASM), a fiducial facial point algorithm, is used, which gives 18 facial points, as shown
in Figure 2b [69,70]. The features being used for detecting distractions are explained in
Sections 3.1.2–3.1.6.
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Figure 1. Showing Complete Architecture of the Proposed System.

Figure 2. The output of Facial Fiducial Point Detection Algorithms, including ASM and BoRMaN:
(a) Original, (b) ASM, and (c) BoRMaN.

3.1.2. Variance of the Length-to-Width Ratio of Lips

The variance of the length-to-width ratio of lips is calculated to detect distraction
as its value varies significantly with changes in head pose. The equations are given in
Equations (1) and (2). By taking the ratio of length to width, this feature becomes scale-
invariant.

σ2
rlw =

1
i

i

∑
k=1

(rlw(i)− µlw)
2, (1)

Ratio(rlw) =
LengthLips

WidthLips
, (2)

where length and width are calculated by using the Euclidean distance formula. To find
the length of lips in Figure 3b, the Euclidean distance between point 5 (x5, y5) and point
6 (x6, y6). Similarly, to find the width of lips, the Euclidean distance is required to be
calculated between the point 7 (x7, y7) and the point 8 (x8, y8).

3.1.3. Variance of Length-to-Width Ratio of Eyes

The variance of the length-to-width ratio of left and right eye is calculated as shown
in Equations (3) and (4), respectively.

σ2
rle =

1
i

i

∑
k=1

(rle(i)− µle)
2, (3)

σ2
rre =

1
i

i

∑
k=1

(rre(i)− µre)
2. (4)
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The ratio of length to width of left and right eyes is calculated as shown in Equations (5)
and (6), respectively.

Ratio(rle) =
LengthLe f t Eye

WidthLe f t Eye
, (5)

Ratio(rre) =
LengthRight Eye

WidthRight Eye
, (6)

where right eye length and width and left eye length and width are calculated using the
Euclidean distance formula.

Figure 3. Computation of Geometric Features: (a) Original Image, (b) Ratios of length to width of
eyes and lips, (c) Triangles and Angles.

3.1.4. Variance of Area of Triangles

The variance of area of triangles serves as a strong feature as its value changes signifi-
cantly with head pose changes. The variance of area of three triangles42, 6, 17;42, 6, 21;
and418, 20, 17 are used, as shown in Figure 3c. The area of triangles is calculated using
Hero’s formula, as shown in Equation (7) [71]:

Area o f triangle =
√

s(s− a)(s− b)(s− c), (7)

where s can be calculated using Equation (8).

s = (a + b + c)/2 (8)

3.1.5. Variance of Ratio of Areas

The variance of ratio of areas is not only a strong feature but scale-invariant as well.
The variance of ratio of triangles is shown in Equation (9):

σ2
rat =

1
i

i

∑
k=1

(rat(i)− µat)
2, (9)

where the ratio of the area of two triangles is represented by rat, and µat is the mean of the
area of two triangles. The same three triangles as above are used to calculate the ratio of
triangles, as shown in Figure 3c.

3.1.6. Variance of Angles

Driver’s distraction results in head pose changes that, in turn, significantly change the
value of this feature, thus making it a strong feature. The variance of angles of a triangle
can be calculated as shown in Equation (10).

σ2
θ =

1
i

i

∑
k=1

(θ(i)− µθ)
2. (10)
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The angles of a triangle can be calculated using the Fundamental Law of Cosines [72].
The following angles are used in this feature, where the points 2, 6, 17, 18, 20, and 21 are
marked in Figure 3b,c:

∠2, 6, 17,∠2, 6, 21,∠2, 6, 22,∠17, 20, 22,∠6, 2, 17,∠6, 2, 21,∠6, 2, 22,∠17, 18, 22.

3.1.7. Boosting, a Meta-Algorithm

Boosting tweaks the results of the J48 that is the base classifier [73,74]. J48, based on
the ID3 algorithm, generates rules for the estimation of desired variables [75]. Boosting is
usually sensitive to outliers and noisy data due to overfitting. Boosting may reduce the
performance on unstable classifiers, while it improves the performance on J48, which is a
stable classifier [69,76]. In the case of the boosting algorithm, the number of terms, K, are
directly proportional to accuracy, i.e., with the increase in number of terms, the accuracy
on a test dataset increases and finally attains an optimal value.

In each iteration of boosting, the incorrectly categorized samples are given more
weight-age. The resulting classifier is a weighted mean of classifiers. If the training
sample is {(x1, y1), (x2, y2), . . . , (xN , yN)}, feature vector is xi, and the label corresponds to
yi ∈ {−1, 1}, i = 1, 2, . . . , N, the goal is to predict the label of a feature vector, xt, as shown
in the Equations (11) and (12)

ŷ = sign{F(xt)}, (11)

F(xt) =
K

∑
k=1

∝k φ(xt; θk), (12)

where ŷ is the estimated label, and φ(xt; θk) represents the base classifier that outputs a
binary label. The parameter, θk, represents the base classifier.

The J48 classifier works on the principle of the information gain ratio, which is based
on entropy. The node in the classification tree with the maximum value of the information
gain ratio is chosen. If the values of a feature, X, are A1, A2, . . . , Am, then for each value, Aj,
j = 1, 2, ..m, the records are divided into two sets. The feature values up to and including
Aj correspond to the first set, while those greater than Aj corresponds to the second set [77].
The GainRatio(X(j), T), where j = 1, 2, . . . m, is calculated for each of these m partitions,
and the partition corresponding to the maximum gain is selected. Equation (13) shows the
GainRatio(X, T).

GainRatio(X, T) =
Gain(X, T)

SplitIn f o(X, T)
. (13)

Equation (14) shows the SplitInfo.

SplitIn f o(X, T) = −
n

∑
i

|Ti|
|T| log2

|Ti|
|T| . (14)

3.1.8. Feature Computation

Due to the high rotation angle of a driver’s head, facial point identification algorithms,
such as ASM and BoRMaN, failed to detect fiducial points of non-frontal faces. This makes
calculating the feature values of those frames impossible. The missing values of features of
those frames are calculated using the interpolation technique based on motion vectors to
tackle this problem, as demonstrated in Figure 4.

If the feature value of the (ith) frame and the (i− 1)th) frame have previously been
determined, we may calculate the feature value of the (i + 1)th) frame. We assume that the
size of motion vectors (MV) is proportional to the percentage change in the feature value.
The MVs (mvx and mvy) are calculated using a block searching technique in which each
frame is broken into small blocks of a fixed size. The driver’s nose is used as a reference
point, and the MV between any two successive frames (i.e., (ith) and (i− 1)th frames) is
calculated by subtracting the nose block coordinates of the (ith) and (i− 1)th frames.
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Figure 4. Calculation of features using Motion Vector and Interpolation Technique.

The feature value change between the (i)th and (i + 1)th frames is then utilized to
determine the feature value of (i + 1)th frame. Consider Figure 4, where the feature
‘area’ must be determined for the (i + 1)th frame, despite the fact that the areas for the
(i− 1)th frame and (ith) frame are 2000 and 1500, respectively. Furthermore, the computed
magnitude of MVs between the (i− 1)th frame and the (ith) frame is 5, as is the calculated
magnitude of MVs between (ith) frame and (i + 1)th frame.

The area change between the (i− 1)th frame and the (ith) frame is calculated as 25%, as is
the percentage change in the area between the (ith) frame and the (i + 1)th frame. The area
of the (i + 1)th) frame was calculated using the area of the (ith) frame and the value of the
percentage change between the (ith) and (i + 1)th) frames, and it came out to be 1125. All
features of non-frontal faces with a high rotation angle of the driver’s head are determined in
this fashion, and the features are then supplied to the classifier for training and testing.

4. Results
4.1. Datasets

We performed experiments on four standard datasets namely DrivFace, Boston Uni-
versity (BU), FT-UMT, and Pointing’04 dataset.

4.1.1. DrivFace Dataset

The DrivFace dataset contains images and a video repository of driving scenarios
under an uncontrolled environment. The dataset contains 606 samples of 640 × 480 pixels.
It is generated using four drivers (two women and two men). The dataset includes
various facial features, such as glasses and beards. The normalized version of this dataset
(80 × 80 pixels) is also available as a MatLab file (drivFac.mat). The gaze direction of this
dataset includes right, frontal, and left. Figure 5 shows key images of this dataset with
different gaze directions.

4.1.2. Boston University Dataset

Boston University (BU) dataset contains 15k RGB images using five subjects with different
head poses [67]. The dataset was recorded in a lab under uniform and varying lighting
conditions. The dataset provides continuous translation and head orientation measurements.

4.1.3. FT-UMT Dataset

This dataset, generated and used in our previous publication [78], consists of four
videos containing frames with No Distraction (ND) or Distraction (D). The total frames
for first, second, third, and fourth videos are 418, 409, 390, and 397, respectively, while
the frames containing distraction (D) are 191, 221, 215, and 209. Figure 6 shows frames
containing various types of Distraction (D) and No Distraction (ND). The driver’s head
rotation of greater than 20 degrees is classified as Distraction (D) and vice versa.
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Figure 5. Images of the DrivFace dataset showing head poses with different values of the yaw angle.

Figure 6. Images of FT-UMT dataset showing head poses with different values of the yaw angle.

4.1.4. Pointing’04 Dataset

The Pointing’04 dataset is generated under a controlled environment with subjects
that have variations in skin color, without glasses and with glasses. The pose variations
are measured with values in the range of −90° to +90°. Figure 7 shows the various images
of this dataset with different poses. The dataset consists of 15 sets of images, where each
set contains two sequences of 93 images with varying poses of the same subject. These
sequences of images have 93 discrete values for head pose variations.

Figure 7. Images of Pointing’04 dataset showing head poses with different values of the yaw angle.
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4.2. Experimental Comparison with Existing Techniques

The boosting algorithm, ‘PA_B-J48’, is compared with EM-Stat [79], TA [80], AM-
Mouth [81], Ali [78], Lee [58], and Frid [82]. The comparison is made in terms of accuracy
(A), sensitivity (Se), Precision (P), F-Measure (F), TP-Rate, FP-Rate, ROC-Area, and time
efficiency with 10-Fold cross validation using Distraction (D) and No-Distraction (ND).
Sensitivity, Precision, and F-Measure are defined in Equations (15)–(17), respectively.

Sensitivity =
TP

(TP + FN)
, (15)

Precision =
TP

(TP + FP)
, (16)

F−Measure = 2× Precision× Recall
Precision + Recall

(17)

where (TP) is the true positive, (FN) is the false negative, (TN) is the true negative, and (FP)
is the false positive.

The ‘PA_B-J48’ uses geometric and spatial features with J48 under a boosting frame-
work. Facial fiducial points and motion vector-based interpolation for frontal and non-
frontal faces are used to compute the geometric features. AdaBoost, which incorporates
an ensemble learning approach, is used to combine various weak classifiers to form a
strong classifier.

4.2.1. Experiments on the DrivFace Dataset

DrivFace is a challenging dataset because it contains images acquired in real driving
scenarios with different head pose variations and various facial features, including glasses
and beards.

Table 2 shows that our proposed approach outperforms the existing approaches in
all the performance measures. One of the leading reasons is that the Boosting framework,
which tweaks its weak learners due to its adaptive nature, ultimately results in performance
improvement. Moreover, J48 gives better performance on datasets with missing values,
such as the DrivFace dataset.

Table 2. Comparison of the existing approaches, EM-Stat, TA, AM-Mouth, Ali, Lee, and Frid with
the proposed approach, PA_B-J48, in terms of accuracy (A), sensitivity/recall (Se), Precision (P),
F-Measure (F), TP Rate, FP Rate, ROC Area for DrivFace dataset.

EM-Stat TA AM-Mouth Ali Lee Frid PA_B-J48

A (%) 90.78 89.56 89.73 92.00 88.52 91.30 94.43

Se (%) 91.00 89.00 89.00 92.00 88.00 91.00 94.00

P (%) 89.00 80.00 0 91.00 82.00 91.00 94.00

F 0.89 0.84 0 0.91 0.84 0.91 0.94

TP 0.91 0.89 0.90 0.92 0.88 0.91 0.94

FP 0.61 0.89 0.89 0.38 0.86 0.41 0.32

ROC 0.86 0.64 0.64 0.86 0.58 0.71 0.91

4.2.2. Experiments on the Boston University (BU) Dataset

Although the Boston University (BU) dataset contains images with uniform and varying
lighting, our ‘PA_B-J48’ performs better than EM-Stat, TA, AM-Mouth, Ali, Lee, and Frid
in terms of Se, P, F, TP-Rate, and ROC-Area, as can be seen in Table 3. The performance
accuracy of existing approaches reduces significantly compared to the DrivFac dataset due
to the varying lighting conditions of this dataset. However, the performance of ‘PA_B-J48’
remains stable in this dataset due to the adaptive nature of the Boosting framework.
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Table 3. Comparison of the existing approaches, EM-Stat, TA, AM-Mouth, Ali, Lee, and Frid with
the proposed approach, PA_B-J48, for the Boston University dataset.

EM-Stat TA AM-Mouth Ali Lee Frid PA_B-J48

A (%) 86.33 71.58 55.03 89.20 78.05 82.37 92.08

Se (%) 86.00 71.00 55.00 89.00 78.00 82.00 92.00

P (%) 86.00 71.00 53.00 89.00 78.00 82.00 92.00

F 0.86 0.71 0.54 0.89 0.78 0.82 0.92

TP 0.86 0.71 0.55 0.89 0.78 0.82 0.92

FP 0.13 0.31 0.50 0.11 0.21 0.18 0.08

ROC 0.92 0.74 0.59 0.92 0.81 0.81 0.96

4.2.3. Experiments on FT-UMT Dataset

On the FT-UMT dataset, the proposed approach, ‘PA_B-J48’, shows the best perfor-
mance, as can be seen in Table 4. The reason is that geometric features of ‘PA_B-J48’ work
well on a subject with the beard as in the FT-UMT dataset. The second-best percentage
accuracy is shown by the approaches EM-Stat and Ali.

4.2.4. Experiments on the Pointing’04 Dataset

The best performance is indicated by EM-stat and the proposed approach ‘PA_B-
J48’, as can be seen in Table 5. The technique (Ali) also exhibits the same results, but its
performance degrades slightly in terms of FP-Rate and ROC-Area. This dataset becomes
most challenging because of its high intra-class variations, including skin color changes,
with and without glasses, and pose variations. Therefore, the performance of the proposed
approach ‘PA_B-J48’ and existing approaches degrades in this dataset.

Table 4. Comparison of the existing approaches, EM-Stat, TA, AM-Mouth, Ali, Lee, and Frid with
the proposed approach, PA_B-J48, for the FT-UMT dataset.

EM-Stat TA AM-Mouth Ali Lee Frid PA_B-J48

A (%) 95.25 90.10 92.68 95.25 94.36 95.05 96.63

Se (%) 95.00 90.00 92.00 95.00 94.00 95.00 96.00

P (%) 95.00 91.00 92.00 95.00 94.00 95.00 96.00

F 0.95 0.88 0.92 0.95 0.94 0.95 0.96

TP 0.95 0.90 0.92 0.95 0.94 0.95 0.96

FP 0.16 0.50 0.33 0.13 0.22 0.14 0.08

ROC 0.87 0.68 0.83 0.88 0.86 0.89 0.97

4.3. Variants of Proposed Approach

‘PA_B-J48’ is also compared with its variants, including Boosting with Naive Bayes
(BNB), Adaptive Boosting (BAda), Boosting with Neural Network (BNN), and Boosting
with Support Vector Machine (BSVM), respectively. The variants uses the same set of
features but differ in classifiers. Table 6 shows that the PA_B-J48 outperforms its variants
on the DrivFace, BU, FT-UMT, and Pointing’04 datasets. The features of the J48 classifier
that result in better accuracy are its ability to handle missing values, continuous attribute
value ranges, and derivation of rules.
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Table 5. Comparison of the existing approaches, EM-Stat, TA, AM-Mouth, Ali, Lee and Frid with
PA_B-J48 using the Pointing’04 dataset.

EM-Stat TA AM-Mouth Ali Lee Frid PA_B-J48

A (%) 82.81 67.40 72.24 82.81 81.49 81.05 82.81

Se (%) 82.00 67.00 72.00 82.00 81.00 81.00 82.00

P (%) 83.00 71.00 74.00 83.00 81.00 82.00 83.00

F 0.83 0.67 0.72 0.83 0.81 0.81 0.83

TP 0.82 0.67 0.72 0.82 0.81 0.81 0.82

FP 0.16 0.28 0.25 0.17 0.23 0.17 0.16

ROC 0.88 0.73 0.78 0.86 0.84 0.80 0.88

Table 6. Comparison of the proposed approach, PA_B-J48, with its variants, i.e., BNB, BAda, BNN
and BSVM for the DrivFace, BU, FT-UMT, and Pointing’04 datasets in terms of percentage accuracy.

Dataset BNB BAda BNN BSVM PA_B-J48

DrivFace 81.56 92.86 92.17 89.21 94.43

BU 69.42 85.97 92.08 83.81 92.08

FT-UMT 94.06 95.25 95.64 94.65 96.63

Pointing’04 80.61 82.37 95.02 81.93 83.25

4.4. Comparison with Deep Learning Models

‘PA_B-J48’ is also compared with six state-of-the-art deep learning models, including
ResNet-50, ResNet-101, VGG-19 [83], Inception-V3, MobileNet, and Xception using the
datasets, including DrivFace dataset(DF), Boston University dataset (BU), and FT-UMT
dataset (FT-UMT), as shown in Table 7. It can be observed that our proposed approach
outperforms the deep learning models. The deep learning models require a large dataset
to achieve better results and hence could not perform well on DF, BU, and FT-UMT.

Table 7. Comparison of PA_B-J48 with deep learning approaches including ResNet-50(R-50), ResNet-
101(R-101), VGG-19(V-19), Inception-V3(I-V3), MobileNet(M), and Xception(XP).

R-50 R-101 V19 M I-V3 Xp PA_B-J48

DrivFace 87.61 45.90 39.34 80.33 85.25 85.25 94.43

BU 87.40 44.44 47.09 60.32 86.24 85.71 92.08

FT-UMT 82.50 54.50 48.50 94.00 92.00 91.50 96.63

4.5. Relevance Analysis

Table 8 shows the accuracy after removing each feature (one by one) from the pro-
posed approach. It can be observed that after removing the feature ‘variance of area of
triangles’, the accuracy of the approach degrades significantly on the Boston University
dataset, which shows high contribution of this feature. Similarly, the accuracy becomes
lowest when ‘area of triangle’ is removed from the proposed approach using DrivFace and
Pointing ’04 datasets.

4.6. Execution Time Comparison

Besides outperforming in terms of various performance measures, the proposed
approach, PA_B-J48, also exhibits better time efficiency. PA_B-J48 is {1.2, 10.5, 0.5, and 0.6}
times faster than EM-Stat, Ali, TA, and AM-Mouth, respectively, when experimented on
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the DrivFace dataset, as shown in Figure 8. One reason for its better time efficiency is that
it uses simple and quicker-to-compute features, i.e., ratios and variances. For example,
rather than taking length and width of eyes as features, it only takes their ratios. EM-Stat
not only computes geometric features, including the height of eyes and the mouth, but it
also calculates the relationship between them to predict distraction that results in reduced
time efficiency. Ali uses a neural network classifier that results in lower time efficiency
compared to the proposed approach. TA and AM-Mouth uses fewer features that are
simple and quicker to compute.

Table 8. Accuracies obtained by subtracting features one by one from the proposed approach.
VA = Variance of Angles, VAT = Variance of Area of Triangles, VER = Variance of Eyes Ratio,
VTR = Variance of Triangle Area Ratio, VLR = Variance of Lips Ratio, BU = Boston University,
DF = DrivFace, and P04 = Pointing04.

VA VAT VER VTR VLR PA_B-J48

BU 87.05 86.90 87.76 87.41 87.05 92.08

DF 90.95 91.07 92.86 94.60 92.52 94.43

P04 80.54 80.93 81.02 81.90 81.70 82.81

In a few cases, it is also a trade-off between percentage accuracy and time efficiency. Lee
and Frid show better time efficiency, but their performance degrades significantly in terms
of percentage accuracy, sensitivity, precision, F-measure, TP-Rate, FP-Rate, and ROC-Area
on the DrivFace, BU, FT-UMT, and Pointing’04 datasets. In the case of the DrivFace dataset,
the percentage accuracy of Lee and Frid is 88.52% and 91.30%, respectively, while PA_B-J48
outperforms these techniques and exhibits an accuracy of 94.43%. A similar trend of time
efficiency is shown in the other three datasets, including BU, FT-UMT, and Pointing’04. PA_B-
J48 is 9.9, 1.3, 0.4, and 0.3 times faster than Ali, EM-Stat, TA, and AM-Mouth, respectively, in
the BU dataset, while it is 8.5, 0.7, 0.2, and 0.3 times faster than the similar approaches in the
case of the FT-UMT dataset. In the case of Pointing’04, PA_B-J48 is 8.6, 0.8, 0.25, and 0.45 times
faster than Ali, EM-Stat, TA, and AM-Mouth, respectively.

Figure 8. Comparison of execution times (seconds) of the variants (EM-Stat, TA, AM-Mouth, Ali, Lee,
Frid) and the proposed approach (PA_B-J48) on the DrivFace (DF), Boston University (BU), FT-UMT
(FT-UMT), and Pointing’04 (Point’04) datasets.
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5. Conclusions and Future Work

Distraction detection is an important feature in modern semi-assisted vehicles, but it
is difficult to detect it accurately due to the large number of factors involved. Numerous re-
search works attempted to detect the distraction of a driver while driving, but most of them
failed to achieve all the objectives of accuracy, simplicity, cost-effectiveness, and timeliness.

This paper proposes a feature-based approach that outperforms state-of-the-art meth-
ods, including EM-Stat, TA, AM-Mouth, Ali, Lee, and Frid on the DrivFace, Boston Uni-
versity, FT-UMT, and Pointing’04 datasets. The proposed approach also yields better
percentage accuracy than the deep learning models, namely: ResNet-50, ResNet-101, VGG-
19, Inception-V3, MobileNet, and Xception. The proposed approach is compared with its
variants and gives better results. The deep learning models are end to end and provide
better accuracy compared to the approach of hand-crafted features. However, deep learn-
ing approaches also come with a cost and require high processing power, large datasets
for training, and long training time. On the contrary, the classical approach works better
than deep networks on smaller datasets. Our proposed approach requires computationally
cheaper hardware and fewer data. Our technique is simple, accurate, and fast enough to
be implemented in the real world to detect a driver’s distraction from head panning.

As an extension of this work, the factors such as eye gaze movement, driver behavior
while driving, driver’s facial expressions, driver actions, and vehicle movement can be
considered. Distraction detection of a driver in night driving or dim light also needs to
be investigated. A distraction detection system should be invariant to various factors,
including camera distortion, projective geometry, multi-source non-Lambertian lighting, as
well as the movement of facial muscles, biological appearance, facial expression, use of cell
phone, hats, and glasses.
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6. Wei, W.; Ho, E.S.L.; McCay, K.D.; Damaševičius, R.; Maskeliūnas, R.; Esposito, A. Assessing Facial Symmetry and Attractiveness
using Augmented Reality. Pattern Anal. Appl. 2021, 1–17. [CrossRef]

7. Abayomi-alli, O.O.; Damaševicius, R.; Maskeliunas, R.; Misra, S. Few-shot learning with a novel voronoi tessellation-based image
augmentation method for facial palsy detection. Electronics 2021, 10, 978. [CrossRef]

8. Ngxande, M.; Tapamo, J.R.; Burke, M. Driver drowsiness detection using behavioral measures and machine learning techniques:
A review of state-of-art techniques. In Proceedings of the IEEE Pattern Recognition Association of South Africa and Robotics and
Mechatronics, Bloemfontein, South Africa, 30 November–1 December 2017; pp. 156–161.

9. Deng, W.; Wu, R. Real-Time Driver-Drowsiness Detection System Using Facial Features. IEEE Access 2019, 7, 118727–118738.
[CrossRef]

10. Guo, J.; Markoni, H. Driver drowsiness detection using hybrid convolutional neural network and long short-term memory.
Multimed. Tools Appl. 2019, 78, 29059–29087. [CrossRef]

11. Zhao, L.; Wang, Z.; Zhang, G.; Gao, H. Driver drowsiness recognition via transferred deep 3D convolutional network and state
probability vector. Multimed. Tools Appl. 2020, 79, 26683–26701. [CrossRef]

12. Dasgupta, A.; Rahman, D.; Routray, A. A Smartphone-Based Drowsiness Detection and Warning System for Automotive Drivers.
IEEE Trans. Intell. Transp. Syst. 2019, 20, 4045–4054. [CrossRef]

13. Baccour, M.H.; Driewer, F.; Kasneci, E.; Rosenstiel, W. Camera-based eye blink detection algorithm for assessing driver drowsiness.
In Proceedings of the IEEE Intelligent Vehicles Symposium, Paris, France, 9–12 June 2019; Volume 2019, pp. 987–993.

14. Bamidele, A.A.; Kamardin, K.; Aziz, N.S.N.A.; Sam, S.M.; Ahmed, I.S.; Azizan, A.; Bani, N.A.; Kaidi, H.M. Non-intrusive driver
drowsiness detection based on face and eye tracking. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 549–569. [CrossRef]

15. Gwak, J.; Hirao, A.; Shino, M. An investigation of early detection of driver drowsiness using ensemble machine learning based
on hybrid sensing. Appl. Sci. 2020, 10, 2890. [CrossRef]

16. Zhu, M.; Chen, J.; Li, H.; Liang, F.; Han, L.; Zhang, Z. Vehicle driver drowsiness detection method using wearable EEG based on
convolution neural network. Neural Comput. Appl. 2021, 33, 13965–13980. [CrossRef] [PubMed]

17. Guede-Fernández, F.; Fernández-Chimeno, M.; Ramos-Castro, J.; García-González, M.A. Driver Drowsiness Detection Based on
Respiratory Signal Analysis. IEEE Access 2019, 7, 81826–81838. [CrossRef]

18. Lee, H.; Lee, J.; Shin, M. Using wearable ECG/PPG sensors for driver drowsiness detection based on distinguishable pattern of
recurrence plots. Electronics 2019, 8, 192. [CrossRef]

19. Chui, K.T.; Gupta, B.B.; Liu, R.W.; Zhang, X.; Vasant, P.; Joshua Thomas, J. Extended-range prediction model using NSGA-III
optimized RNN-GRU-LSTM for driver stress and drowsiness. Sensors 2021, 21, 6412. [CrossRef]

20. Kim, J.; Shin, M. Utilizing HRV-derived respiration measures for driver drowsiness detection. Electronics 2019, 8, 669. [CrossRef]
21. Wozniak, M.; Wieczorek, M.; Silka, J.; Polap, D. Body Pose Prediction Based on Motion Sensor Data and Recurrent Neural

Network. IEEE Trans. Ind. Inform. 2021, 17, 2101–2111. [CrossRef]
22. Li, M.; Jiang, Z.; Liu, Y.; Chen, S.; Wozniak, M.; Scherer, R.; Damasevicius, R.; Wei, W.; Li, Z.; Li, Z. Sitsen: Passive sitting posture

sensing based on wireless devices. Int. J. Distrib. Sens. Netw. 2021, 17, 15501477211024846. [CrossRef]
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